Browsing by Author "Birnstiel, Tilman"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A Dust-trapping Ring in the Planet-hosting Disk of Elias 2-24(IOP Publishing, 2024) Carvalho, Adolfo S.; Pérez, Laura M.; Sierra, Anibal; Mellado, Maria Jesus; Hillenbrand, Lynne A.; Andrews, Sean; Benisty, Myriam; Birnstiel, Tilman; Carpenter, John M.; Guzmán, Viviana V.; Huang, Jane; Isella, Andrea; Kurtovic, Nicolas; Ricci, Luca; Wilner, David J.Rings and gaps are among the most widely observed forms of substructure in protoplanetary disks. A gap–ring pair may be formed when a planet carves a gap in the disk, which produces a local pressure maximum following the gap that traps inwardly drifting dust grains and appears as a bright ring owing to the enhanced dust density. A dust-trapping ring would provide a promising environment for solid growth and possibly planetesimal production via the streaming instability. We present evidence of dust trapping in the bright ring of the planet-hosting disk Elias 2-24, from the analysis of 1.3 and 3 mm Atacama Large Millimeter/submillimeter Array observations at high spatial resolution (0.″029, 4.0 au). We leverage the high spatial resolution to demonstrate that larger grains are more efficiently trapped and place constraints on the local turbulence (8 × 10−4 < α turb < 0.03) and the gas-to-dust ratio (Σ g /Σ d < 30) in the ring. Using a scattering-included marginal probability analysis, we measure a total dust disk mass of . We also show that at the orbital radius of the proposed perturber the gap is cleared of material down to a flux contrast of 10−3 of the peak flux in the disk.Item The Millimeter Continuum Size–Frequency Relationship in the UZ Tau E Disk(IOP, 2018) Tripathi, Anjali; Andrews, Sean M.; Birnstiel, Tilman; Chandler, Claire J.; Isella, Andrea; Pérez, Laura M.; Harris, R.J.; Ricci, Luca; Wilner, David J.; Carpenter, John M.; Calvet, N.; Corder, S.A.; Deller, A.T.; Dullemond, C.P.; Greaves, J.S.; Henning, Th.; Kwon, W.; Lazio, J.; Linz, H.; Testi, L.We present high spatial resolution observations of the continuum emission from the young multiple star system UZ Tau at frequencies from 6 to 340 GHz. To quantify the spatial variation of dust emission in the UZ Tau E circumbinary disk, the observed interferometric visibilities are modeled with a simple parametric prescription for the radial surface brightnesses at each frequency. We find evidence that the spectrum steepens with radius in the disk, manifested as a positive correlation between the observing frequency and the radius that encircles a fixed fraction of the emission (R eff ∝ ν 0.34±0.08). The origins of this size–frequency relation are explored in the context of a theoretical framework for the growth and migration of disk solids. While that framework can reproduce a similar size–frequency relation, it predicts a steeper spectrum than that observed. Moreover, it comes closest to matching the data only on timescales much shorter (≤1 Myr) than the putative UZ Tau age (~2–3 Myr). These discrepancies are direct consequences of the rapid radial drift rates predicted by models of dust evolution in a smooth gas disk. One way to mitigate that efficiency problem is to invoke small-scale gas pressure modulations that locally concentrate drifting solids. If such particle traps reach high-continuum optical depths at 30–340 GHz with a ~30%–60% filling fraction in the inner disk (r lesssim 20 au), they can also explain the observed spatial gradient in the UZ Tau E disk spectrum.