Browsing by Author "Berezhkovskii, Alexander M."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Optimal Length of Conformational Transition Region in Protein Search for Targets on DNA(American Chemical Society, 2017) Kochugaeva, Maria P.; Berezhkovskii, Alexander M.; Kolomeisky, Anatoly B.The starting point of many fundamental biological processes is associated with protein molecules finding and recognizing specific sites on DNA. However, despite a large number of experimental and theoretical studies on protein search for targets on DNA, many molecular aspects of underlying mechanisms are still not well understood. Experiments show that proteins bound to DNA can switch between slow recognition and fast search conformations. However, from a theoretical point of view, such conformational transitions should slow down the protein search for specific sites on DNA, in contrast to available experimental observations. In addition, experiments indicate that the nucleotide composition near the target site is more symmetrically homogeneous, leading to stronger effective interactions between proteins and DNA at these locations. However, as has been shown theoretically, this should also make the search less efficient, which is not observed. We propose a possible resolution of these problems by suggesting that conformational transitions occur only within a segment around the target where stronger interactions between proteins and DNA are observed. Two theoretical methods, based on continuum and discrete-state stochastic calculations, are developed, allowing us to obtain a comprehensive dynamic description for the protein search process in this system. The existence of an optimal length of the conformational transition zone with the shortest mean search time is predicted.Item Surface-facilitated trapping by active sites: From catalysts to viruses(AIP Publishing, 2021) Misiura, Mikita M.; Berezhkovskii, Alexander M.; Bezrukov, Sergey M.; Kolomeisky, Anatoly B.; Center for Theoretical Biological PhysicTrapping by active sites on surfaces plays important roles in various chemical and biological processes, including catalysis, enzymatic reactions, and viral entry into host cells. However, the mechanisms of these processes remain not well understood, mostly because the existing theoretical descriptions are not fully accounting for the role of the surfaces. Here, we present a theoretical investigation on the dynamics of surface-assisted trapping by specific active sites. In our model, a diffusing particle can occasionally reversibly bind to the surface and diffuse on it before reaching the final target site. An approximate theoretical framework is developed, and its predictions are tested by Brownian dynamics computer simulations. It is found that the surface diffusion can be crucial in mediating trapping by active sites. Our theoretical predictions work reasonably well as long as the area of the active site is much smaller than the overall surface area. Potential applications of our approach are discussed.