Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ben-Jacob, Eshel"

Now showing 1 - 20 of 21
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Antibiotic-Induced Anomalous Statistics of Collective Bacterial Swarming
    (American Physical Society, 2015) Benisty, Sivan; Ben-Jacob, Eshel; Ariel, Gil; Be’er, Avraham; Center for Theoretical Biological Physics
    Under sublethal antibiotics concentrations, the statistics of collectively swarmingᅠBacillus subtilisᅠtransitions from normal to anomalous, with a heavy-tailed speed distribution and a two-step temporal correlation of velocities. The transition is due to changes in the properties of the bacterial motion and the formation of a motility-defective subpopulation that self-segregates into regions. As a result, both the colonial expansion and the growth rate are not affected by antibiotics. This phenomenon suggests a new strategy bacteria employ to fight antibiotic stress.
  • Loading...
    Thumbnail Image
    Item
    Construction of an Effective Landscape for Multistate Genetic Switches
    (American Physical Society, 2014) Lu, Mingyang; Onuchic, José; Ben-Jacob, Eshel; Center for Theoretical Biological Physics
    Multistate genetic switches play a crucial role during embryonic development and tumorigenesis. An archetypical example is the three-way switch regulating epithelial-hybrid-mesenchymal transitions. We devise a special WKB-based approach to investigate white Gaussian and shot noise effects on three-way switches, and construct an effective landscape in good quantitative agreement with stochastic simulations. This approach allows efficient analytical or numerical calculation of the landscape contours, the optimal path, and the state relative stability for general multicomponent multistate switches.
  • Loading...
    Thumbnail Image
    Item
    Coupling the modules of EMT and stemness: A tunable ‘stemness window’ model
    (Impact Journals, LLC., 2015) Jolly, Mohit Kumar; Jia, Dongya; Boareto, Marcelo; Mani, Sendurai A.; Pienta, Kenneth J.; Ben-Jacob, Eshel; Levine, Herbert; Bioengineering; Biosciences; Physics and Astronomy; Center for Theoretical Biological Physics
    Metastasis of carcinoma involves migration of tumor cells to distant organs and initiate secondary tumors. Migration requires a complete or partial Epithelial-to-Mesenchymal Transition (EMT), and tumor-initiation requires cells possessing stemness. Epithelial cells (E) undergoing a complete EMT to become mesenchymal (M) have been suggested to be more likely to possess stemness. However, recent studies suggest that stemness can also be associated with cells undergoing a partial EMT (hybrid E/M phenotype). Therefore, the correlation between EMT and stemness remains elusive. Here, using a theoretical framework that couples the core EMT and stemness modules (miR-200/ZEB and LIN28/let-7), we demonstrate that the positioning of 'stemness window' on the 'EMT axis' need not be universal; rather it can be fine-tuned. Particularly, we present OVOL as an example of a modulating factor that, due to its coupling with miR-200/ZEB/LIN28/let-7 circuit, fine-tunes the EMT-stemness interplay. Coupling OVOL can inhibit the stemness likelihood of M and elevate that of the hybrid E/M (partial EMT) phenotype, thereby pulling the 'stemness window' away from the M end of 'EMT axis'. Our results unify various apparently contradictory experimental findings regarding the interconnection between EMT and stemness, corroborate the emerging notion that partial EMT associates with stemness, and offer new testable predictions.
  • Loading...
    Thumbnail Image
    Item
    Distinguishing mechanisms underlying EMT tristability
    (Springer International Publishing, 2017) Jia, Dongya; Jolly, Mohit K.; Tripathi, Satyendra C.; Den Hollander, Petra; Huang, Bin; Lu, Mingyang; Celiktas, Muge; Ramirez-Peña, Esmeralda; Ben-Jacob, Eshel; Onuchic, José Nelson; Hanash, Samir M.; Mani, Sendurai A.; Levine, Herbert; Bioengineering; Biosciences; Chemistry; Physics and Astronomy
    Abstract Background The Epithelial-Mesenchymal Transition (EMT) endows epithelial-looking cells with enhanced migratory ability during embryonic development and tissue repair. EMT can also be co-opted by cancer cells to acquire metastatic potential and drug-resistance. Recent research has argued that epithelial (E) cells can undergo either a partial EMT to attain a hybrid epithelial/mesenchymal (E/M) phenotype that typically displays collective migration, or a complete EMT to adopt a mesenchymal (M) phenotype that shows individual migration. The core EMT regulatory network - miR-34/SNAIL/miR-200/ZEB1 - has been identified by various studies, but how this network regulates the transitions among the E, E/M, and M phenotypes remains controversial. Two major mathematical models – ternary chimera switch (TCS) and cascading bistable switches (CBS) - that both focus on the miR-34/SNAIL/miR-200/ZEB1 network, have been proposed to elucidate the EMT dynamics, but a detailed analysis of how well either or both of these two models can capture recent experimental observations about EMT dynamics remains to be done. Results Here, via an integrated experimental and theoretical approach, we first show that both these two models can be used to understand the two-step transition of EMT - E→E/M→M, the different responses of SNAIL and ZEB1 to exogenous TGF-β and the irreversibility of complete EMT. Next, we present new experimental results that tend to discriminate between these two models. We show that ZEB1 is present at intermediate levels in the hybrid E/M H1975 cells, and that in HMLE cells, overexpression of SNAIL is not sufficient to initiate EMT in the absence of ZEB1 and FOXC2. Conclusions These experimental results argue in favor of the TCS model proposing that miR-200/ZEB1 behaves as a three-way decision-making switch enabling transitions among the E, hybrid E/M and M phenotypes.
  • Loading...
    Thumbnail Image
    Item
    Effect of Peripheral Electrical Stimulation (PES) on Nocturnal Blood Glucose in Type 2 Diabetes: A Randomized Crossover Pilot Study
    (Public Library of Science, 2016) Catalogna, Merav; Doenyas-Barak, Keren; Sagi, Roi; Abu-Hamad, Ramzia; Nevo, Uri; Ben-Jacob, Eshel; Efrati, Shai; Center for Theoretical Biological Physics
    Background: Regulation of hepatic glucose production has been a target for antidiabetic drug development, due to its major contribution to glucose homeostasis. Previous pre-clinical study demonstrated that peripheral electrical stimulation (PES) may stimulate glucose utilization and improve hepatic insulin sensitivity. The aim of the present study was to evaluate safety, tolerability, and the glucose-lowering effect of this approach in patients with type 2 diabetes (T2DM). Methods: Twelve patients with T2DM were recruited for an open label, interventional, randomized trial. Eleven patients underwent, in a crossover design, an active, and a no-intervention control periods, separated with a two-week washout phase. During the active period, the patients received a daily lower extremity PES treatment (1.33Hz/16Hz burst mode), for 14 days. Study endpoints included changes in glucose levels, number of hypoglycemic episodes, and other potential side effects. Endpoints were analyzed based on continuous glucose meter readings, and laboratory evaluation. Results: We found that during the active period, the most significant effect was on nocturnal glucose control (P < 0.0004), as well as on pre-meal mean glucose levels (P < 0.02). The mean daily glucose levels were also decreased although it did not reach clinical significance (P = 0.07). A reduction in serum cortisol (P < 0.01) but not in insulin was also detected after 2 weeks of treatment. No adverse events were recorded. Conclusions: These results indicate that repeated PES treatment, even for a very short duration, can improve blood glucose control, possibly by suppressing hepatic glucose production. This effect may be mediated via hypothalamic-pituitary-adrenal axis modulation.
  • Loading...
    Thumbnail Image
    Item
    Hyperbaric Oxygen Therapy Can Diminish Fibromyalgia Syndrome – Prospective Clinical Trial
    (Public Library of Science, 2015) Efrati, Shai; Golan, Haim; Bechor, Yair; Faran, Yifat; Daphna-Tekoah, Shir; Sekler, Gal; Fishlev, Gregori; Ablin, Jacob N.; Bergan, Jacob; Volkov, Olga; Friedman, Mony; Ben-Jacob, Eshel; Buskila, Dan; Center for Theoretical Biological Physics
    Background: Fibromyalgia Syndrome (FMS) is a persistent and debilitating disorder estimated to impair the quality of life of 2–4% of the population, with 9:1 female-to-male incidence ratio. FMS is an important representative example of central nervous system sensitization and is associated with abnormal brain activity. Key symptoms include chronic widespread pain, allodynia and diffuse tenderness, along with fatigue and sleep disturbance. The syndrome is still elusive and refractory. The goal of this study was to evaluate the effect of hyperbaric oxygen therapy (HBOT) on symptoms and brain activity in FMS. Methods and Findings: A prospective, active control, crossover clinical trial. Patients were randomly assigned to treated and crossover groups: The treated group patients were evaluated at baseline and after HBOT. Patients in the crossover-control group were evaluated three times: baseline, after a control period of no treatment, and after HBOT. Evaluations consisted of physical examination, including tender point count and pain threshold, extensive evaluation of quality of life, and single photon emission computed tomography (SPECT) imaging for evaluation of brain activity. The HBOT protocol comprised 40 sessions, 5 days/week, 90 minutes, 100% oxygen at 2ATA. Sixty female patients were included, aged 21–67 years and diagnosed with FMS at least 2 years earlier. HBOT in both groups led to significant amelioration of all FMS symptoms, with significant improvement in life quality. Analysis of SPECT imaging revealed rectification of the abnormal brain activity: decrease of the hyperactivity mainly in the posterior region and elevation of the reduced activity mainly in frontal areas. No improvement in any of the parameters was observed following the control period. Conclusions: The study provides evidence that HBOT can improve the symptoms and life quality of FMS patients. Moreover, it shows that HBOT can induce neuroplasticity and significantly rectify abnormal brain activity in pain related areas of FMS patients.
  • Loading...
    Thumbnail Image
    Item
    Implications of the hybrid epithelial/mesenchymal phenotype in metastasis
    (Frontiers Media S.A., 2015) Jolly, Mohit Kumar; Boareto, Marcelo; Huang, Bin; Jia, Dongya; Lu, Mingyang; Ben-Jacob, Eshel; Onuchic, José Nelson; Levine, Herbert; Bioengineering; Chemistry; Biosciences; Center for Theoretical Biological Physics; Systems, Synthetic, and Physical Biology
    Transitions between epithelial and mesenchymal phenotypes - the epithelial to -mesenchymal transition (EMT) and its reverse the mesenchymal to epithelial transition (MET) - are hallmarks of cancer metastasis. While transitioning between the epithelial and mesenchymal phenotypes, cells can also attain a hybrid epithelial/mesenchymal (E/M) (i.e., partial or intermediate EMT) phenotype. Cells in this phenotype have mixed epithelial (e.g., adhesion) and mesenchymal (e.g., migration) properties, thereby allowing them to move collectively as clusters. If these clusters reach the bloodstream intact, they can give rise to clusters of circulating tumor cells (CTCs), as have often been seen experimentally. Here, we review the operating principles of the core regulatory network for EMT/MET that acts as a "three-way" switch giving rise to three distinct phenotypes - E, M and hybrid E/M - and present a theoretical framework that can elucidate the role of many other players in regulating epithelial plasticity. Furthermore, we highlight recent studies on partial EMT and its association with drug resistance and tumor-initiating potential; and discuss how cell-cell communication between cells in a partial EMT phenotype can enable the formation of clusters of CTCs. These clusters can be more apoptosis-resistant and have more tumor-initiating potential than singly moving CTCs with a wholly mesenchymal (complete EMT) phenotype. Also, more such clusters can be formed under inflammatory conditions that are often generated by various therapies. Finally, we discuss the multiple advantages that the partial EMT or hybrid E/M phenotype have as compared to a complete EMT phenotype and argue that these collectively migrating cells are the primary "bad actors" of metastasis.
  • Loading...
    Thumbnail Image
    Item
    Interrogating the topological robustness of gene regulatory circuits by randomization
    (Public Library of Science, 2017) Huang, Bin; Lu, Mingyang; Jia, Dongya; Ben-Jacob, Eshel; Levine, Herbert; Onuchic, José Nelson; Bioengineering; Biosciences; Chemistry; Physics and Astronomy; Center for Theoretical Biological Physics
    One of the most important roles of cells is performing their cellular tasks properly for survival. Cells usually achieve robust functionality, for example, cell-fate decision-making and signal transduction, through multiple layers of regulation involving many genes. Despite the combinatorial complexity of gene regulation, its quantitative behavior has been typically studied on the basis of experimentally verified core gene regulatory circuitry, composed of a small set of important elements. It is still unclear how such a core circuit operates in the presence of many other regulatory molecules and in a crowded and noisy cellular environment. Here we report a new computational method, named random circuit perturbation (RACIPE), for interrogating the robust dynamical behavior of a gene regulatory circuit even without accurate measurements of circuit kinetic parameters. RACIPE generates an ensemble of random kinetic models corresponding to a fixed circuit topology, and utilizes statistical tools to identify generic properties of the circuit. By applying RACIPE to simple toggle-switch-like motifs, we observed that the stable states of all models converge to experimentally observed gene state clusters even when the parameters are strongly perturbed. RACIPE was further applied to a proposed 22-gene network of the Epithelial-to-Mesenchymal Transition (EMT), from which we identified four experimentally observed gene states, including the states that are associated with two different types of hybrid Epithelial/Mesenchymal phenotypes. Our results suggest that dynamics of a gene circuit is mainly determined by its topology, not by detailed circuit parameters. Our work provides a theoretical foundation for circuit-based systems biology modeling. We anticipate RACIPE to be a powerful tool to predict and decode circuit design principles in an unbiased manner, and to quantitatively evaluate the robustness and heterogeneity of gene expression.
  • Loading...
    Thumbnail Image
    Item
    Live time-lapse dataset ofᅠin vitroᅠwound healing experiments
    (Oxford University Press, 2015) Zaritsky, Assaf; Natan, Sari; Kaplan, Doron; Ben-Jacob, Eshel; Tsarfaty, Ilan
    Background: The wound healing assay is the common method to study collective cell migration in vitro. Computational analyses of live imaging exploit the rich temporal information and significantly improve understanding of complex phenomena that emerge during this mode of collective motility. Publicly available experimental data can allow application of new analyses to promote new discoveries, and assess algorithms’ capabilities to distinguish between different experimental conditions. Findings: A freely-available dataset of 31 time-lapse in vitro wound healing experiments of two cell lines is presented. It consists of six different experimental conditions with 4–6 replicates each, gathered to study the effects of a growth factor on collective cell migration. The raw data is available at ‘The Cell: an Image Library’ repository. This Data Note provides detailed description of the data, intermediately processed data, scripts and experimental validations that have not been reported before and are currently available at GigaDB. This is the first publicly available repository of live collective cell migration data that includes independent replicates for each set of conditions. Conclusions: This dataset has the potential for extensive reuse. Some aspects in the data remain unexplored and can be exploited extensively to reveal new insight. The dataset could also be used to assess the performance of available and new quantification methods by demonstrating phenotypic discriminatory capabilities between the different experimental conditions. It may allow faster and more elaborated, reproducible and effective analyses, which will likely lead to new biological and biophysical discoveries.
  • Loading...
    Thumbnail Image
    Item
    Modeling the Transitions between Collective and Solitary Migration Phenotypes in Cancer Metastasis
    (Macmillan Publishers Limited, 2015) Huang, Bin; Jolly, Mohit Kumar; Lu, Mingyang; Tsarfaty, Ilan; Ben-Jacob, Eshel; Onuchic, José Nelson; Bioengineering; Biosciences; Chemistry; Physics and Astronomy; Center for Theoretical Biological Physics
    Cellular plasticity during cancer metastasis is a major clinical challenge. Two key cellular plasticity mechanisms —Epithelial-to-Mesenchymal Transition (EMT) and Mesenchymal-to-Amoeboid Transition (MAT) – have been carefully investigated individually, yet a comprehensive understanding of their interconnections remains elusive. Previously, we have modeled the dynamics of the core regulatory circuits for both EMT (miR-200/ZEB/miR-34/SNAIL) and MAT (Rac1/RhoA). We now extend our previous work to study the coupling between these two core circuits by considering the two microRNAs (miR-200 and miR-34) as external signals to the core MAT circuit. We show that this coupled circuit enables four different stable steady states (phenotypes) that correspond to hybrid epithelial/mesenchymal (E/M), mesenchymal (M), amoeboid (A) and hybrid amoeboid/mesenchymal (A/M) phenotypes. Our model recapitulates the metastasis-suppressing role of the microRNAs even in the presence of EMT-inducing signals like Hepatocyte Growth Factor (HGF). It also enables mapping the microRNA levels to the transitions among various cell migration phenotypes. Finally, it offers a mechanistic understanding for the observed phenotypic transitions among different cell migration phenotypes, specifically the Collective-to-Amoeboid Transition (CAT).
  • Loading...
    Thumbnail Image
    Item
    Notch-Jagged signalling can give rise to clusters of cells exhibiting a hybrid epithelial/mesenchymal phenotype
    (Royal Society Publishing, 2016) Boareto, Marcelo; Jolly, Mohit Kumar; Goldman, Aaron; Pietilä, Mika; Mani, Sendurai A.; Sengupta, Shiladitya; Ben-Jacob, Eshel; Levine, Herbert; Onuchic, José Nelson; Bioengineering; Biosciences; Chemistry; Physics and Astronomy; Center for Theoretical Biological Physics
    Metastasis can involve repeated cycles of epithelial-to-mesenchymal transition (EMT) and its reverse mesenchymal-to-epithelial transition. Cells can also undergo partial transitions to attain a hybrid epithelial/mesenchymal (E/M) phenotype that allows the migration of adhering cells to form a cluster of circulating tumour cells. These clusters can be apoptosis-resistant and possess an increased metastatic propensity as compared to the cells that undergo a complete EMT (mesenchymal cells). Hence, identifying the key players that can regulate the formation and maintenance of such clusters may inform anti-metastasis strategies. Here, we devise a mechanism-based theoretical model that links cell–cell communication via Notch-Delta-Jagged signalling with the regulation of EMT. We demonstrate that while both Notch-Delta and Notch-Jagged signalling can induce EMT in a population of cells, only Jagged-dominated Notch signalling, but not Delta-dominated signalling, can lead to the formation of clusters containing hybrid E/M cells. Our results offer possible mechanistic insights into the role of Jagged in tumour progression, and offer a framework to investigate the effects of other microenvironmental signals during metastasis.
  • Loading...
    Thumbnail Image
    Item
    Operating principles of Notch–Delta–Jagged module of cell–cell communication
    (IOP Publishing, 2015) Jolly, Mohit Kumar; Boareto, Marcelo; Lu, Mingyang; Onuchic, José Nelson; Clementi, Cecilia; Ben-Jacob, Eshel; Bioengineering; Biosciences; Chemistry; Physics and Astronomy; Center for Theoretical Biological Physics
    Notch pathway is an evolutionarily conserved cell–cell communication mechanism governing cell-fate during development and tumor progression. It is activated when Notch receptor of one cell binds to either of its ligand—Delta or Jagged—of another cell. Notch–Delta (ND) signaling forms a two-way switch, and two cells interacting via ND signaling adopt different fates—Sender (high ligand, low receptor) and Receiver (low ligand, high receptor). Notch–Delta–Jagged signaling (NDJ) behaves as a three-way switch and enables an additional fate—hybrid Sender/Receiver (S/R) (medium ligand, medium receptor). Here, by extending our framework of NDJ signaling for a two-cell system, we show that higher production rate of Jagged, but not that of Delta, expands the range of parameters for which both cells attain the hybrid S/R state. Conversely, glycosyltransferase Fringe and cis-inhibition reduces this range of conditions, and reduces the relative stability of the hybrid S/R state, thereby promoting cell-fate divergence and consequently lateral inhibition-based patterns. Lastly, soluble Jagged drives the cells to attain the hybrid S/R state, and soluble Delta drives them to be Receivers. We also discuss the critical role of hybrid S/R state in promoting cancer metastasis by enabling collective cell migration and expanding cancer stem cell (CSC) population.
  • Loading...
    Thumbnail Image
    Item
    OVOL guides the epithelial-hybrid-mesenchymal transition
    (Impact Journals, LLC, 2015) Jia, Dongya; Jolly, Mohit Kumar; Boareto, Marcelo; Parsana, Princy; Mooney, Steven M.; Pienta, Kenneth J.; Levine, Herbert; Ben-Jacob, Eshel; Bioengineering; Biosciences; Physics and Astronomy; Center for Theoretical Biological Physics
    Metastasis involves multiple cycles of Epithelial-to-Mesenchymal Transition (EMT) and its reverse-MET. Cells can also undergo partial transitions to attain a hybrid epithelial/mesenchymal (E/M) phenotype that has maximum cellular plasticity and allows migration of Circulating Tumor Cells (CTCs) as a cluster. Hence, deciphering the molecular players helping to maintain the hybrid E/M phenotype may inform anti-metastasis strategies. Here, we devised a mechanism-based mathematical model to couple the transcription factor OVOL with the core EMT regulatory network miR-200/ZEB that acts as a three-way switch between the E, E/M and M phenotypes. We show that OVOL can modulate cellular plasticity in multiple ways - restricting EMT, driving MET, expanding the existence of the hybrid E/M phenotype and turning both EMT and MET into two-step processes. Our theoretical framework explains the differences between the observed effects of OVOL in breast and prostate cancer, and provides a platform for investigating additional signals during metastasis.asis.
  • Loading...
    Thumbnail Image
    Item
    Periodic, Quasi-periodic and Chaotic Dynamics in Simple Gene Elements with Time Delays
    (Macmillan Publishers Limited, 2016) Suzuki, Yoko; Lu, Mingyang; Ben-Jacob, Eshel; Onuchic, José Nelson; Center for Theoretical Biological Physics
    Regulatory gene circuit motifs play crucial roles in performing and maintaining vital cellular functions. Frequently, theoretical studies of gene circuits focus on steady-state behaviors and do not include time delays. In this study, the inclusion of time delays is shown to entirely change the time-dependent dynamics for even the simplest possible circuits with one and two gene elements with self and cross regulations. These elements can give rise to rich behaviors including periodic, quasi-periodic, weak chaotic, strong chaotic and intermittent dynamics. We introduce a special power-spectrum-based method to characterize and discriminate these dynamical modes quantitatively. Our simulation results suggest that, while a single negative feedback loop of either one- or two-gene element can only have periodic dynamics, the elements with two positive/negative feedback loops are the minimalist elements to have chaotic dynamics. These elements typically have one negative feedback loop that generates oscillations, and another unit that allows frequent switches among multiple steady states or between oscillatory and non-oscillatory dynamics. Possible dynamical features of several simple one- and two-gene elements are presented in details. Discussion is presented for possible roles of the chaotic behavior in the robustness of cellular functions and diseases, for example, in the context of cancer.
  • Loading...
    Thumbnail Image
    Item
    Prostate cancer and neuroendocrine differentiation: more neuronal, less endocrine?
    (Frontiers Media S.A., 2015) Grigore, Alexandru Dan; Ben-Jacob, Eshel; Farach-Carson, Mary C.; Bioengineering; Biosciences; Center for Theoretical Biological Physics
    Neuroendocrine differentiation (NED) marks a structural and functional feature of certain cancers, including prostate cancer (PCa), whereby the malignant tissue contains a significant proportion of cells displaying neuronal, endocrine, or mixed features. NED cells produce, and can secrete, a cocktail of mediators commonly encountered in the nervous system, which may stimulate and coordinate cancer growth. In PCa, NED appears during advanced stages, subsequent to treatment, and accompanies treatment resistance and poor prognosis. However, the term "neuroendocrine" in this context is intrinsically vague. This article seeks to provide a framework on which a unified view of NED might emerge. First, we review the mutually beneficial interplay between PCa and neural structures, mainly supported by cell biology experiments and neurological conditions. Next, we address the correlations between PCa and neural functions, as described in the literature. Based upon the integration of clinical and basic observations, we suggest that it is legitimate to seek for true neural differentiation, or neuromimicry, in cancer progression, most notably in PCa cells exhibiting what is commonly described as NED.
  • Loading...
    Thumbnail Image
    Item
    Stability of the hybrid epithelial/mesenchymal phenotype
    (Impact Journals, LLC, 2016) Jolly, Mohit Kumar; Tripathi, Satyendra C.; Jia, Dongya; Mooney, Steven M.; Celiktas, Muge; Hanash, Samir M.; Mani, Sendurai A.; Pienta, Kenneth J.; Ben-Jacob, Eshel; Levine, Herbert; Bioengineering; Biosciences; Physics and Astronomy; Center for Theoretical Biological Physics; Systems, Synthetic, and Physical Biology
    Epithelial-to-Mesenchymal Transition (EMT) and its reverse - Mesenchymal to Epithelial Transition (MET) - are hallmarks of cellular plasticity during embryonic development and cancer metastasis. During EMT, epithelial cells lose cell-cell adhesion and gain migratory and invasive traits either partially or completely, leading to a hybrid epithelial/mesenchymal (hybrid E/M) or a mesenchymal phenotype respectively. Mesenchymal cells move individually, but hybrid E/M cells migrate collectively as observed during gastrulation, wound healing, and the formation of tumor clusters detected as Circulating Tumor Cells (CTCs). Typically, the hybrid E/M phenotype has largely been tacitly assumed to be transient and 'metastable'. Here, we identify certain 'phenotypic stability factors' (PSFs) such as GRHL2 that couple to the core EMT decision-making circuit (miR-200/ZEB) and stabilize hybrid E/M phenotype. Further, we show that H1975 lung cancer cells can display a stable hybrid E/M phenotype and migrate collectively, a behavior that is impaired by knockdown of GRHL2 and another previously identified PSF - OVOL. In addition, our computational model predicts that GRHL2 can also associate hybrid E/M phenotype with high tumor-initiating potential, a prediction strengthened by the observation that the higher levels of these PSFs may be predictive of poor patient outcome. Finally, based on these specific examples, we deduce certain network motifs that can stabilize the hybrid E/M phenotype. Our results suggest that partial EMT, i.e. a hybrid E/M phenotype, need not be 'metastable', and strengthen the emerging notion that partial EMT, but not necessarily a complete EMT, is associated with aggressive tumor progression.
  • Loading...
    Thumbnail Image
    Item
    The motility-proliferation-metabolism interplay during metastatic invasion
    (Nature Publishing Group, 2015) Hecht, Inbal; Natan, Sari; Zaritsky, Assaf; Levine, Herbert; Tsarfaty, Ilan; Ben-Jacob, Eshel; Center for Theoretical Biological Physics
    Metastasis is the major cause for cancer patients’ death, and despite all the recent advances in cancer research it is still mostly incurable. Understanding the mechanisms that are involved in the migration of the cells in a complex environment is a key step towards successful anti-metastatic treatment. Using experimental data-based modeling, we focus on the fundamentals of metastatic invasion: motility, invasion, proliferation and metabolism, and study how they may be combined to maximize the cancer’s ability to metastasize. The modeled cells’ performance is measured by the number of cells that succeed in migration in a maze, which mimics the extracellular environment. We show that co-existence of different cell clones in the tumor, as often found in experiments, optimizes the invasive ability in a frequently-changing environment. We study the role of metabolism and stimulation by growth factors, and show that metabolism plays a crucial role in the metastatic process and should therefore be targeted for successful treatment.
  • Loading...
    Thumbnail Image
    Item
    The physics of bacterial decision making
    (Frontiers, 2014) Ben-Jacob, Eshel; Lu, Mingyang; Schultz, Daniel; Onuchic, José Nelson; Center for Theoretical Biological Physics
    The choice that bacteria make between sporulation and competence when subjected to stress provides a prototypical example of collective cell fate determination that is stochastic on the individual cell level, yet predictable (deterministic) on the population level. This collective decision is performed by an elaborated gene network. Considerable effort has been devoted to simplify its complexity by taking physics approaches to untangle the basic functional modules that are integrated to form the complete network: (1) A stochastic switch whose transition probability is controlled by two order parameters—population density and internal/external stress. (2) An adaptable timer whose clock rate is normalized by the same two previous order parameters. (3) Sensing units which measure population density and external stress. (4) A communication module that exchanges information about the cells' internal stress levels. (5) An oscillating gate of the stochastic switch which is regulated by the timer. The unique circuit architecture of the gate allows special dynamics and noise management features. The gate opens a window of opportunity in time for competence transitions, during which the circuit generates oscillations that are translated into a chain of short intervals with high transition probability. In addition, the unique architecture of the gate allows filtering of external noise and robustness against variations in circuit parameters and internal noise. We illustrate that a physics approach can be very valuable in investigating the decision process and in identifying its general principles. We also show that both cell-cell variability and noise have important functional roles in the collectively controlled individual decisions.
  • Loading...
    Thumbnail Image
    Item
    The three-way switch operation of Rac1/RhoA GTPase-based circuit controlling amoeboid-hybrid-mesenchymal transition
    (Nature Publishing Group, 2014) Huang, Bin; Lu, Mingyang; Jolly, Mohit Kumar; Tsarfaty, Ilan; Onuchic, José Nelson; Ben-Jacob, Eshel; Bioengineering; Biosciences; Chemistry; Physics and Astronomy; Center for Theoretical Biological Physics
    Metastatic carcinoma cells exhibit at least two different phenotypes of motility and invasion - amoeboid and mesenchymal. This plasticity poses a major clinical challenge for treating metastasis, while its underlying mechanisms remain enigmatic. Transitions between these phenotypes are mediated by the Rac1/RhoA circuit that responds to external signals such as HGF/SF via c-MET pathway. Using detailed modeling of GTPase-based regulation to study the Rac1/RhoA circuit's dynamics, we found that it can operate as a three-way switch. We propose to associate the circuit's three possible states to the amoeboid, mesenchymal and amoeboid/mesenchymal hybrid phenotype. In particular, we investigated the range of existence of, and the transition between, the three states (phenotypes) in response to Grb2 and Gab1 - two downstream adaptors of c-MET. The results help to explain the regulation of metastatic cells by c-MET pathway and hence can contribute to the assessment of possible clinical interventions.
  • Loading...
    Thumbnail Image
    Item
    Tumor Invasion Optimization by Mesenchymal-Amoeboid Heterogeneity
    (Springer Nature, 2015) Hecht, Inbal; Bar-El, Yasmin; Balmer, Frederic; Natan, Sari; Tsarfaty, Ilan; Schweitzer, Frank; Ben-Jacob, Eshel; Center for Theoretical Biological Physics
    Metastasizing tumor cells migrate through the surrounding tissue and extracellular matrix toward the blood vessels, in order to colonize distant organs. They typically move in a dense environment, filled with other cells. In this work we study cooperative effects between neighboring cells of different types, migrating in a maze-like environment with directional cue. Using a computerized model, we measure the percentage of cells that arrive to the defined target, for different mesenchymal/amoeboid ratios. Wall degradation of mesenchymal cells, as well as motility of both types of cells, are coupled to metabolic energy-like resource level. We find that indirect cooperation emerges in mid-level energy, as mesenchymal cells create paths that are used by amoeboids. Therefore, we expect to see a small population of mesenchymals kept in a mostly-amoeboid population. We also study different forms of direct interaction between the cells, and show that energy-dependent interaction strength is optimal for the migration of both mesenchymals and amoeboids. The obtained characteristics of cellular cluster size are in agreement with experimental results. We therefore predict that hybrid states, e.g. epithelial-mesenchymal, should be utilized as a stress-response mechanism.
  • «
  • 1 (current)
  • 2
  • »
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892