Browsing by Author "Bejarano Chavez, Oscar"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Limits and Capabilities of Cooperative Diversity: A Network and Protocol Perspective(2011) Bejarano Chavez, Oscar; Knightly, Edward W.Physical-layer cooperation has been demonstrated to vastly improve wireless link reliability and end-to-end throughput by exploiting spatial diversity. Nevertheless, its performance in operational networking environments is uncertain. Cooperative link gains can be potentially diminished by factors such as i) increased transmission footprint due to the activity of the cooperative relay, ii) non-ideal node location due to the structure of a planned network, or iii) the inability of cooperation protocols to recognize the channel's global state, hence leading to increased congestion. In this work, we identify and evaluate these key factors affecting the performance of cooperative techniques in small- and large-scale topologies. Our evaluation reveals that throughput gains from cooperation achieved in atomic, isolated topologies, decrease significantly when implemented at network-scale scenarios. Furthermore, our study provides a deeper understanding of the regimes in which cooperation performs poorly, and can help in the design of effective protocol solutions for such cases.Item Protocol Design and Experimental Evaluation for Efficient Multi-User MIMO Wireless Networks(2015-04-24) Bejarano Chavez, Oscar; Knightly, Edward W.; Sabharwal, Ashutosh; Aazhang, Behnaam; Ng, T.S. EugeneInformation theoretic results on Multi-User MIMO (MU-MIMO) have demonstrated a many-fold increase in capacity compared to Single-Input Single-Output. By leveraging multiple antennas at the Access Point (AP) and beamforming techniques, MU-MIMO enables simultaneous transmissions of multiple independent streams on the downlink. Ideally, with sufficient antennas at the AP, MU-MIMO can attain capacity gains proportional to the number of streams. However, the cost required to enable efficient and robust multi-stream transmissions is much higher than that for the single-stream case and worsens with increasing number of streams. More specifically, two key factors hinder the potential gains that can be attained via MU-MIMO: (i) To serve multiple users simultaneously, the AP needs to collect Channel State Information (CSI) from all users to be served (i.e., sounding). Sounding overhead reduces the effective data airtime utilization of the overall system. (ii) Multi- stream transmissions are highly susceptible to inter-stream interference originated due to inaccurate or outdated CSI, thereby reducing packet reception performance. I demonstrate that in practice, the costs of MU-MIMO not only decrease the gains demonstrated by theory but can completely outweigh the benefits. I identify those adverse situations and propose several techniques that alleviate the negative impact caused by sounding overhead and CSI inaccuracies. First, I design CUiC and MUTE, two protocols that address MU-MIMO sounding overhead by performing overhead compression along spatial and temporal domains, respectively. CUiC exploits the available Degrees-of-Freedom (DoF) at the AP to allow multiple users to reply with their control messages (e.g., channel estimates and acknowledgements) simultaneously, therefore reducing the time required for users to reply, to a constant. MUTE exploits epochs characterized by slowly moving channels to reduce the frequency of channel sounding. Second, I design CHRoME, a protocol that addresses interference-leakage caused by outdated and inaccurate CSI as well as out-of-cell interference. CHRoME proposes a bit rate selection strategy that re-tunes the selection according to current channel and interference conditions. Additionally, if necessary, CHRoME realizes a fast soundless retransmission that exploits liberated DoF at the AP to minimize retransmission overhead. I implement and evaluate all three schemes using a combination of WARP FPGA-based transceivers, and custom emulation platforms.