Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Beattie, Christopher A."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Convergence of Polynomial Restart Krylov Methods for Eigenvalue Computation
    (2003-08) Beattie, Christopher A.; Embree, Mark; Sorensen, D.C.
    The convergence of Krylov subspace eigenvalue algorithms can be robustly measured by the angle the approximating Krylov space makes with a desired invariant subspace. This paper describes a new bound on this angle that handles the complexities introduced by non-Hermitian matrices, yet has a simpler derivation than similar previous bounds. The new bound reveals that ill-conditioning of the desired eigenvalues has little impact on convergence, while instability of unwanted eigenvalues plays an essential role. Practical computations usually require the approximating Krylov space to be restarted for efficiency, whereby the starting vector that generates the subspace is improved via a polynomial filter. Such filters dynamically steer a low-dimensional Krylov space toward a desired invariant subspace. We address the design of these filters, and illustrate with examples the subtleties involved in restarting non-Hermitian iterations.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892