Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Bamberger, Alain"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A Domain Decomposition Method for the Acoustic Wave Equation Allowing for Discontinuous Coefficients and Grid Change
    (1994-01) Bamberger, Alain; Glowinski, Roland; Tran, Quang Huy
    A domain decomposition technique is proposed for the computation of the acoustic wave equation, in which the bulk modulus and density fields are allowed to be discontinuous at the interfaces. Inside each subdomain, the method presented coincides with the second order finite difference schemes traditionally used in geophysical modelling. However, the possibility of assigning to each subdomain its own space-step makes numerical simulations much less expensive. Another interest of the method lies in the fact that its hybrid variational formulation naturally leads to exact equations for gridpoints on the interfaces. Transposing Babuska-Brezzi's formalism on mixed and hybrid finite elements provides a suitable functional framework for this domain decomposition formulation and shows that the inf-sup condition remains the basic requirement for convergence to occur.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892