Browsing by Author "Augustin, Mathias"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Magnetic Field Effect on Topological Spin Excitations in CrI3(American Physical Society, 2021) Chen, Lebing; Chung, Jae-Ho; Stone, Matthew B.; Kolesnikov, Alexander I.; Winn, Barry; Garlea, V. Ovidiu; Abernathy, Douglas L.; Gao, Bin; Augustin, Mathias; Santos, Elton J. G.; Dai, PengchengThe search for topological spin excitations in recently discovered two-dimensional (2D) van der Waals (vdW) magnetic materials is important because of their potential applications in dissipationless spintronics. In the 2D vdW ferromagnetic (FM) honeycomb lattice CrI3 (TC=61 K), acoustic and optical spin waves are found to be separated by a gap at the Dirac points. The presence of such a gap is a signature of topological spin excitations if it arises from the next-nearest-neighbor (NNN) Dzyaloshinskii-Moriya (DM) or bond-angle-dependent Kitaev interactions within the Cr honeycomb lattice. Alternatively, the gap is suggested to arise from an electron correlation effect not associated with topological spin excitations. Here, we use inelastic neutron scattering to conclusively demonstrate that the Kitaev interactions and electron correlation effects cannot describe spin waves, Dirac gaps, and their in-plane magnetic field dependence. Our results support the idea that the DM interactions are the microscopic origin of the observed Dirac gap. Moreover, we find that the nearest-neighbor (NN) magnetic exchange interactions along the c axis are antiferromagnetic (AF), and the NNN interactions are FM. Therefore, our results unveil the origin of the observed c-axis AF order in thin layers of CrI3, firmly determine the microscopic spin interactions in bulk CrI3, and provide a new understanding of topology-driven spin excitations in 2D vdW magnets.Item The Magnetic Genome of Two-Dimensional van der Waals Materials(American Chemical Society, 2022) Wang, Qing Hua; Bedoya-Pinto, Amilcar; Blei, Mark; Dismukes, Avalon H.; Hamo, Assaf; Jenkins, Sarah; Koperski, Maciej; Liu, Yu; Sun, Qi-Chao; Telford, Evan J.; Kim, Hyun Ho; Augustin, Mathias; Vool, Uri; Yin, Jia-Xin; Li, Lu Hua; Falin, Alexey; Dean, Cory R.; Casanova, Fèlix; Evans, Richard F.L.; Chshiev, Mairbek; Mishchenko, Artem; Petrovic, Cedomir; He, Rui; Zhao, Liuyan; Tsen, Adam W.; Gerardot, Brian D.; Brotons-Gisbert, Mauro; Guguchia, Zurab; Roy, Xavier; Tongay, Sefaattin; Wang, Ziwei; Hasan, M. Zahid; Wrachtrup, Joerg; Yacoby, Amir; Fert, Albert; Parkin, Stuart; Novoselov, Kostya S.; Dai, Pengcheng; Balicas, Luis; Santos, Elton J.G.Magnetism in two-dimensional (2D) van der Waals (vdW) materials has recently emerged as one of the most promising areas in condensed matter research, with many exciting emerging properties and significant potential for applications ranging from topological magnonics to low-power spintronics, quantum computing, and optical communications. In the brief time after their discovery, 2D magnets have blossomed into a rich area for investigation, where fundamental concepts in magnetism are challenged by the behavior of spins that can develop at the single layer limit. However, much effort is still needed in multiple fronts before 2D magnets can be routinely used for practical implementations. In this comprehensive review, prominent authors with expertise in complementary fields of 2D magnetism (i.e., synthesis, device engineering, magneto-optics, imaging, transport, mechanics, spin excitations, and theory and simulations) have joined together to provide a genome of current knowledge and a guideline for future developments in 2D magnetic materials research.