Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Athanasiades, Athanasios"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Respiratory function: A systems approach
    (2000) Athanasiades, Athanasios; Ghorbel, Fathi H.; Clark, John W., Jr.
    Metabolic production of CO2 varies according to task (exercise, speaking, etc.). The human body maintains homeostasis (i.e., a constant CO2 content in blood), by varying alveolar ventilation, V˙A. The regulatory mechanism involves the breathing apparatus (lungs, airways, diaphragm), affecting V˙A, and the medullary pontine respiratory center (MPRC) in the brain stem. The MPRC is responsible for generating the basic rhythm of breathing and corrects for disturbances. Neurons inside the MPRC are organized into a central pattern generator (CPG), the functionality of which is not clearly understood. Although intracellular recordings have established the stimulus-induced response of isolated respiratory neurons in specific locales of the brain stem, the emerging properties of the CPG have not been directly correlated with intrinsic neuronal behavior. We develop computer-based models that emulate the regulatory operation of respiration. We adopt a systems view of the process, whereby the breathing apparatus (mechanics model) represents the plant, actuated by the respiratory muscles and controlled by the CPG. The mechanics model has two degrees of freedom (for lung and airway motion) and exhibits hysteresis and other nonlinearities. A frequency domain analysis of a linearized model is used to estimate parameters. The mechanics model is validated against data (lung volume and intrapleural pressure) collected from volunteer human subjects in a pulmonary function lab. The CPG is modeled as a neuronal network. We develop and validate a Hodgkin-Huxley type neuronal model that can mimic, with biophysical realism, the response of isolated neurons in the ventral Nucleus Tractus Solitarius and Nucleus Ambiguus of experimental animals. Characteristic nonlinearities of neuronal behavior, such as spike frequency adaptation, delayed excitation and postinhibitory rebound are captured successfully. The proposed network generates a stable, realistic breathing rhythm and responds successfully to disturbances. Moreover, individual firing patterns of experimentally identified respiratory neurons (early-I, ramp-I, late-I, post-I, E2 and pre-I) mimic data closely. Computer simulations show that adaptation in the firing rate of specific neurons dictates the duration of respiratory phases (inspiration, post-inspiration and expiration) and provides a mechanism for phase switching.
  • Loading...
    Thumbnail Image
    Item
    The energy of breathing in a nonlinear model of the human lung
    (1997) Athanasiades, Athanasios; Ghorbel, Fathi H.; Clark, John W., Jr.
    A Lagrangian approach is used to perform an energy analysis on a nonlinear model of the human lung. Energy functions associated with the mechanics of breathing are obtained. Analytical expressions are derived for the work of breathing (WOB) and are subsequently evaluated for a typical pulmonary function laboratory test that includes tidal breathing, panting and the forced vital capacity maneuvers. The analysis successfully mimics information presented in the conventional Campbell diagram, which is often used to graphically estimate the work of breathing. In addition, it reveals dynamic aspects of muscular effort during a breathing cycle that are not immediately apparent in the Campbell diagram. Additional simulations, based on an expanded model that accounts for gas compressibility, reveal that WOB is underestimated during forceful breathing maneuvers when compressibility effects are ignored. The energy analysis provides valuable insight into the mechanics of respiration, and, in particular, the significance of individual model components.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892