Browsing by Author "Argall, M. R."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Advanced Methods for Analyzing in-Situ Observations of Magnetic Reconnection(Springer Nature, 2024) Hasegawa, H.; Argall, M. R.; Aunai, N.; Bandyopadhyay, R.; Bessho, N.; Cohen, I. J.; Denton, R. E.; Dorelli, J. C.; Egedal, J.; Fuselier, S. A.; Garnier, P.; Génot, V.; Graham, D. B.; Hwang, K. J.; Khotyaintsev, Y. V.; Korovinskiy, D. B.; Lavraud, B.; Lenouvel, Q.; Li, T. C.; Liu, Y.-H.; Michotte de Welle, B.; Nakamura, T. K. M.; Payne, D. S.; Petrinec, S. M.; Qi, Y.; Rager, A. C.; Reiff, P. H.; Schroeder, J. M.; Shuster, J. R.; Sitnov, M. I.; Stephens, G. K.; Swisdak, M.; Tian, A. M.; Torbert, R. B.; Trattner, K. J.; Zenitani, S.; Rice Space InstituteThere is ample evidence for magnetic reconnection in the solar system, but it is a nontrivial task to visualize, to determine the proper approaches and frames to study, and in turn to elucidate the physical processes at work in reconnection regions from in-situ measurements of plasma particles and electromagnetic fields. Here an overview is given of a variety of single- and multi-spacecraft data analysis techniques that are key to revealing the context of in-situ observations of magnetic reconnection in space and for detecting and analyzing the diffusion regions where ions and/or electrons are demagnetized. We focus on recent advances in the era of the Magnetospheric Multiscale mission, which has made electron-scale, multi-point measurements of magnetic reconnection in and around Earth’s magnetosphere.Item Temporal, Spatial, and Velocity-Space Variations of Electron Phase Space Density Measurements at the Magnetopause(Wiley, 2023) Shuster, J. R.; Gershman, D. J.; Giles, B. L.; Bessho, N.; Sharma, A. S.; Dorelli, J. C.; Uritsky, V.; Schwartz, S. J.; Cassak, P. A.; Denton, R. E.; Chen, L.-J.; Gurram, H.; Ng, J.; Burch, J.; Webster, J.; Torbert, R.; Paterson, W. R.; Schiff, C.; Viñas, A. F.; Avanov, L. A.; Stawarz, J.; Li, T. C.; Liu, Y.-H.; Argall, M. R.; Afshari, A.; Payne, D. S.; Farrugia, C. J.; Verniero, J.; Wilder, F.; Genestreti, K.; da Silva, D. E.Temporal, spatial, and velocity-space variations of electron phase space density are measured observationally and compared for the first time using the four magnetospheric multiscale (MMS) spacecraft at Earth's magnetopause. Equipped with these unprecedented spatiotemporal measurements offered by the MMS tetrahedron, we compute each term of the electron Vlasov equation that governs the evolution of collisionless plasmas found throughout the universe. We demonstrate how to use single spacecraft measurements to improve the resolution of the electron pressure gradient that supports nonideal parallel electric fields, and we develop a model to intuit the types of kinetic velocity-space signatures that are observed in the Vlasov equation terms. Furthermore, we discuss how the gradient in velocity-space sheds light on plasma energy conversion mechanisms and wave-particle interactions that occur in fundamental physical processes such as magnetic reconnection and turbulence.