Browsing by Author "Antunes, Dinler A."
Now showing 1 - 15 of 15
Results Per Page
Sort Options
Item APE-Gen: A Fast Method for Generating Ensembles of Bound Peptide-MHC Conformations(MDPI, 2019) Abella, Jayvee R.; Antunes, Dinler A.; Clementi, Cecilia; Kavraki, Lydia E.The Class I Major Histocompatibility Complex (MHC) is a central protein in immunology as it binds to intracellular peptides and displays them at the cell surface for recognition by T-cells. The structural analysis of bound peptide-MHC complexes (pMHCs) holds the promise of interpretable and general binding prediction (i.e., testing whether a given peptide binds to a given MHC). However, structural analysis is limited in part by the difficulty in modelling pMHCs given the size and flexibility of the peptides that can be presented by MHCs. This article describes APE-Gen (Anchored Peptide-MHC Ensemble Generator), a fast method for generating ensembles of bound pMHC conformations. APE-Gen generates an ensemble of bound conformations by iterated rounds of (i) anchoring the ends of a given peptide near known pockets in the binding site of the MHC, (ii) sampling peptide backbone conformations with loop modelling, and then (iii) performing energy minimization to fix steric clashes, accumulating conformations at each round. APE-Gen takes only minutes on a standard desktop to generate tens of bound conformations, and we show the ability of APE-Gen to sample conformations found in X-ray crystallography even when only sequence information is used as input. APE-Gen has the potential to be useful for its scalability (i.e., modelling thousands of pMHCs or even non-canonical longer peptides) and for its use as a flexible search tool. We demonstrate an example for studying cross-reactivity.Item Coarse-Grained Conformational Sampling of Protein Structure Improves the Fit to Experimental Hydrogen-Exchange Data(Frontiers Media S.A., 2017) Devaurs, Didier; Antunes, Dinler A.; Papanastasiou, Malvina; Moll, Mark; Ricklin, Daniel; Lambris, John D.; Kavraki, Lydia E.Monitoring hydrogen/deuterium exchange (HDX) undergone by a protein in solution produces experimental data that translates into valuable information about the protein's structure. Data produced by HDX experiments is often interpreted using a crystal structure of the protein, when available. However, it has been shown that the correspondence between experimental HDX data and crystal structures is often not satisfactory. This creates difficulties when trying to perform a structural analysis of the HDX data. In this paper, we evaluate several strategies to obtain a conformation providing a good fit to the experimental HDX data, which is a premise of an accurate structural analysis. We show that performing molecular dynamics simulations can be inadequate to obtain such conformations, and we propose a novel methodology involving a coarse-grained conformational sampling approach instead. By extensively exploring the intrinsic flexibility of a protein with this approach, we produce a conformational ensemble from which we extract aᅠsingleᅠconformation providing a good fit to the experimental HDX data. We successfully demonstrate the applicability of our method to four small and medium-sized proteins.Item Current progress and open challenges for applying deep learning across the biosciences(Springer Nature, 2022) Sapoval, Nicolae; Aghazadeh, Amirali; Nute, Michael G.; Antunes, Dinler A.; Balaji, Advait; Baraniuk, Richard; Barberan, C.J.; Dannenfelser, Ruth; Dun, Chen; Edrisi, Mohammadamin; Elworth, R.A. Leo; Kille, Bryce; Kyrillidis, Anastasios; Nakhleh, Luay; Wolfe, Cameron R.; Yan, Zhi; Yao, Vicky; Treangen, Todd J.Deep Learning (DL) has recently enabled unprecedented advances in one of the grand challenges in computational biology: the half-century-old problem of protein structure prediction. In this paper we discuss recent advances, limitations, and future perspectives of DL on five broad areas: protein structure prediction, protein function prediction, genome engineering, systems biology and data integration, and phylogenetic inference. We discuss each application area and cover the main bottlenecks of DL approaches, such as training data, problem scope, and the ability to leverage existing DL architectures in new contexts. To conclude, we provide a summary of the subject-specific and general challenges for DL across the biosciences.Item DINC 2.0: A New Protein–Peptide Docking Webserver Using an Incremental Approach(AACR, 2017) Antunes, Dinler A.; Moll, Mark; Devaurs, Didier; Jackson, Kyle; Lizée, Gregory; Kavraki, Lydia E.Molecular docking is a standard computational approach to predict binding modes of protein–ligand complexes by exploring alternative orientations and conformations of the ligand (i.e., by exploring ligand flexibility). Docking tools are largely used for virtual screening of small drug-like molecules, but their accuracy and efficiency greatly decays for ligands with more than 10 flexible bonds. This prevents a broader use of these tools to dock larger ligands, such as peptides, which are molecules of growing interest in cancer research. To overcome this limitation, our group has previously proposed a meta-docking strategy, called DINC, to predict binding modes of large ligands. By incrementally docking overlapping fragments of a ligand, DINC allowed predicting binding modes of peptide-based inhibitors of transcription factors involved in cancer. Here, we describe DINC 2.0, a revamped version of the DINC webserver with enhanced capabilities and a more user-friendly interface. DINC 2.0 allows docking ligands that were previously too challenging for DINC, such as peptides with more than 25 flexible bonds. The webserver is freely accessible at http://dinc.kavrakilab.org, together with additional documentation and video tutorials. Our team will provide continuous support for this tool and is working on extending its applicability to other challenging fields, such as personalized immunotherapy against cancer.Item DINC-COVID: A webserver for ensemble docking with flexible SARS-CoV-2 proteins(Elsevier, 2021) Hall-Swan, Sarah; Devaurs, Didier; Rigo, Mauricio M.; Antunes, Dinler A.; Kavraki, Lydia E.; Zanatta, GeancarloAn unprecedented research effort has been undertaken in response to the ongoing COVID-19 pandemic. This has included the determination of hundreds of crystallographic structures of SARS-CoV-2 proteins, and numerous virtual screening projects searching large compound libraries for potential drug inhibitors. Unfortunately, these initiatives have had very limited success in producing effective inhibitors against SARS-CoV-2 proteins. A reason might be an often overlooked factor in these computational efforts: receptor flexibility. To address this issue we have implemented a computational tool for ensemble docking with SARS-CoV-2 proteins. We have extracted representative ensembles of protein conformations from the Protein Data Bank and from in silico molecular dynamics simulations. Twelve pre-computed ensembles of SARS-CoV-2 protein conformations have now been made available for ensemble docking via a user-friendly webserver called DINC-COVID (dinc-covid.kavrakilab.org). We have validated DINC-COVID using data on tested inhibitors of two SARS-CoV-2 proteins, obtaining good correlations between docking-derived binding energies and experimentally-determined binding affinities. Some of the best results have been obtained on a dataset of large ligands resolved via room temperature crystallography, and therefore capturing alternative receptor conformations. In addition, we have shown that the ensembles available in DINC-COVID capture different ranges of receptor flexibility, and that this diversity is useful in finding alternative binding modes of ligands. Overall, our work highlights the importance of accounting for receptor flexibility in docking studies, and provides a platform for the identification of new inhibitors against SARS-CoV-2 proteins.Item General Prediction of Peptide-MHC Binding Modes Using Incremental Docking: A Proof of Concept(Springer Nature, 2018) Antunes, Dinler A.; Devaurs, Didier; Moll, Mark; Lizée, Gregory; Kavraki, Lydia E.The class I major histocompatibility complex (MHC) is capable of binding peptides derived from intracellular proteins and displaying them at the cell surface. The recognition of these peptide-MHC (pMHC) complexes by T-cells is the cornerstone of cellular immunity, enabling the elimination of infected or tumoral cells. T-cell-based immunotherapies against cancer, which leverage this mechanism, can greatly benefit from structural analyses of pMHC complexes. Several attempts have been made to use molecular docking for such analyses, but pMHC structure remains too challenging for even state-of-the-art docking tools. To overcome these limitations, we describe the use of an incremental meta-docking approach for structural prediction of pMHC complexes. Previous methods applied in this context used specific constraints to reduce the complexity of this prediction problem, at the expense of generality. Our strategy makes no assumption and can potentially be used to predict binding modes for any pMHC complex. Our method has been tested in a re-docking experiment, reproducing the binding modes of 25 pMHC complexes whose crystal structures are available. This study is a proof of concept that incremental docking strategies can lead to general geometry prediction of pMHC complexes, with potential applications for immunotherapy against cancer or infectious diseases.Item HLA-Arena: A Customizable Environment for the Structural Modeling and Analysis of Peptide-HLA Complexes for Cancer Immunotherapy(ASCO, 2020) Antunes, Dinler A.; Abella, Jayvee R.; Hall-Swan, Sarah; Devaurs, Didier; Conev, Anja; Moll, Mark; Lizée, Gregory; Kavraki, Lydia E.PURPOSE: HLA protein receptors play a key role in cellular immunity. They bind intracellular peptides and display them for recognition by T-cell lymphocytes. Because T-cell activation is partially driven by structural features of these peptide-HLA complexes, their structural modeling and analysis are becoming central components of cancer immunotherapy projects. Unfortunately, this kind of analysis is limited by the small number of experimentally determined structures of peptide-HLA complexes. Overcoming this limitation requires developing novel computational methods to model and analyze peptide-HLA structures. METHODS: Here we describe a new platform for the structural modeling and analysis of peptide-HLA complexes, called HLA-Arena, which we have implemented using Jupyter Notebook and Docker. It is a customizable environment that facilitates the use of computational tools, such as APE-Gen and DINC, which we have previously applied to peptide-HLA complexes. By integrating other commonly used tools, such as MODELLER and MHCflurry, this environment includes support for diverse tasks in structural modeling, analysis, and visualization. RESULTS: To illustrate the capabilities of HLA-Arena, we describe 3 example workflows applied to peptide-HLA complexes. Leveraging the strengths of our tools, DINC and APE-Gen, the first 2 workflows show how to perform geometry prediction for peptide-HLA complexes and structure-based binding prediction, respectively. The third workflow presents an example of large-scale virtual screening of peptides for multiple HLA alleles. CONCLUSION: These workflows illustrate the potential benefits of HLA-Arena for the structural modeling and analysis of peptide-HLA complexes. Because HLA-Arena can easily be integrated within larger computational pipelines, we expect its potential impact to vastly increase. For instance, it could be used to conduct structural analyses for personalized cancer immunotherapy, neoantigen discovery, or vaccine development.Item Interpreting T-Cell Cross-reactivity through Structure: Implications for TCR-Based Cancer Immunotherapy(Frontiers Media S.A., 2017) Antunes, Dinler A.; Rigo, Maurício M.; Freitas, Martiela V.; Mendes, Marcus F.A.; Sinigaglia, Marialva; Lizée, Gregory; Kavraki, Lydia E.; Selin, Liisa K.; Cornberg, Markus; Vieira, Gustavo F.Immunotherapy has become one of the most promising avenues for cancer treatment, making use of the patient’s own immune system to eliminate cancer cells. Clinical trials with T-cell-based immunotherapies have shown dramatic tumor regressions, being effective in multiple cancer types and for many different patients. Unfortunately, this progress was tempered by reports of serious (even fatal) side effects. Such therapies rely on the use of cytotoxic T-cell lymphocytes, an essential part of the adaptive immune system. Cytotoxic T-cells are regularly involved in surveillance and are capable of both eliminating diseased cells and generating protective immunological memory. The specificity of a given T-cell is determined through the structural interaction between the T-cell receptor (TCR) and a peptide-loaded major histocompatibility complex (MHC); i.e., an intracellular peptide–ligand displayed at the cell surface by an MHC molecule. However, a given TCR can recognize different peptide–MHC (pMHC) complexes, which can sometimes trigger an unwanted response that is referred to as T-cell cross-reactivity. This has become a major safety issue in TCR-based immunotherapies, following reports of melanoma-specific T-cells causing cytotoxic damage to healthy tissues (e.g., heart and nervous system). T-cell cross-reactivity has been extensively studied in the context of viral immunology and tissue transplantation. Growing evidence suggests that it is largely driven by structural similarities of seemingly unrelated pMHC complexes. Here, we review recent reports about the existence of pMHC “hot-spots” for cross-reactivity and propose the existence of a TCR interaction profile (i.e., a refinement of a more general TCR footprint in which some amino acid residues are more important than others in triggering T-cell cross-reactivity). We also make use of available structural data and pMHC models to interpret previously reported cross-reactivity patterns among virus-derived peptides. Our study provides further evidence that structural analyses of pMHC complexes can be used to assess the intrinsic likelihood of cross-reactivity among peptide-targets. Furthermore, we hypothesize that some apparent inconsistencies in reported cross-reactivities, such as a preferential directionality, might also be driven by particular structural features of the targeted pMHC complex. Finally, we explain why TCR-based immunotherapy provides a special context in which meaningful T-cell cross-reactivity predictions can be made.Item Large-Scale Structure-Based Prediction of Stable Peptide Binding to Class I HLAs Using Random Forests(Frontiers, 2020) Abella, Jayvee R.; Antunes, Dinler A.; Clementi, Cecilia; Kavraki, Lydia E.; Center for Theoretical Biological PhysicsPrediction of stable peptide binding to Class I HLAs is an important component for designing immunotherapies. While the best performing predictors are based on machine learning algorithms trained on peptide-HLA (pHLA) sequences, the use of structure for training predictors deserves further exploration. Given enough pHLA structures, a predictor based on the residue-residue interactions found in these structures has the potential to generalize for alleles with little or no experimental data. We have previously developed APE-Gen, a modeling approach able to produce pHLA structures in a scalable manner. In this work we use APE-Gen to model over 150,000 pHLA structures, the largest dataset of its kind, which were used to train a structure-based pan-allele model. We extract simple, homogenous features based on residue-residue distances between peptide and HLA, and build a random forest model for predicting stable pHLA binding. Our model achieves competitive AUROC values on leave-one-allele-out validation tests using significantly less data when compared to popular sequence-based methods. Additionally, our model offers an interpretation analysis that can reveal how the model composes the features to arrive at any given prediction. This interpretation analysis can be used to check if the model is in line with chemical intuition, and we showcase particular examples. Our work is a significant step toward using structure to achieve generalizable and more interpretable prediction for stable pHLA binding.Item PepSim: T-cell cross-reactivity prediction via comparison of peptide sequence and peptide-HLA structure(Frontiers Media S.A., 2023) Hall-Swan, Sarah; Slone, Jared; Rigo, Mauricio M.; Antunes, Dinler A.; Lizée, Gregory; Kavraki, Lydia E.IntroductionPeptide-HLA class I (pHLA) complexes on the surface of tumor cells can be targeted by cytotoxic T-cells to eliminate tumors, and this is one of the bases for T-cell-based immunotherapies. However, there exist cases where therapeutic T-cells directed towards tumor pHLA complexes may also recognize pHLAs from healthy normal cells. The process where the same T-cell clone recognizes more than one pHLA is referred to as T-cell cross-reactivity and this process is driven mainly by features that make pHLAs similar to each other. T-cell cross-reactivity prediction is critical for designing T-cell-based cancer immunotherapies that are both effective and safe.MethodsHere we present PepSim, a novel score to predict T-cell cross-reactivity based on the structural and biochemical similarity of pHLAs.Results and discussionWe show our method can accurately separate cross-reactive from non-crossreactive pHLAs in a diverse set of datasets including cancer, viral, and self-peptides. PepSim can be generalized to work on any dataset of class I peptide-HLAs and is freely available as a web server at pepsim.kavrakilab.org.Item Revealing Unknown Protein Structures Using Computational Conformational Sampling Guided by Experimental Hydrogen-Exchange Data(MDPI, 2018) Devaurs, Didier; Antunes, Dinler A.; Kavraki, Lydia E.Both experimental and computational methods are available to gather information about a protein's conformational space and interpret changes in protein structure. However, experimentally observing and computationally modeling large proteins remain critical challenges for structural biology. Our work aims at addressing these challenges by combining computational and experimental techniques relying on each other to overcome their respective limitations. Indeed, despite its advantages, an experimental technique such as hydrogen-exchange monitoring cannot produce structural models because of its low resolution. Additionally, the computational methods that can generate such models suffer from the curse of dimensionality when applied to large proteins. Adopting a common solution to this issue, we have recently proposed a framework in which our computational method for protein conformational sampling is biased by experimental hydrogen-exchange data. In this paper, we present our latest application of this computational framework: generating an atomic-resolution structural model for an unknown protein state. For that, starting from an available protein structure, we explore the conformational space of this protein, using hydrogen-exchange data on this unknown state as a guide. We have successfully used our computational framework to generate models for three proteins of increasing size, the biggest one undergoing large-scale conformational changes.Item Structural Modeling and Molecular Dynamics of the Immune Checkpoint Molecule HLA-G(Frontiers, 2020) Arns, Thais; Antunes, Dinler A.; Abella, Jayvee R.; Rigo, Maurício M.; Kavraki, Lydia E.; Giuliatti, Silvana; Donadi, Eduardo A.HLA-G is considered to be an immune checkpoint molecule, a function that is closely linked to the structure and dynamics of the different HLA-G isoforms. Unfortunately, little is known about the structure and dynamics of these isoforms. For instance, there are only seven crystal structures of HLA-G molecules, being all related to a single isoform, and in some cases lacking important residues associated to the interaction with leukocyte receptors. In addition, they lack information on the dynamics of both membrane-bound HLA-G forms, and soluble forms. We took advantage of in silico strategies to disclose the dynamic behavior of selected HLA-G forms, including the membrane-bound HLA-G1 molecule, soluble HLA-G1 dimer, and HLA-G5 isoform. Both the membrane-bound HLA-G1 molecule and the soluble HLA-G1 dimer were quite stable. Residues involved in the interaction with ILT2 and ILT4 receptors (α3 domain) were very close to the lipid bilayer in the complete HLA-G1 molecule, which might limit accessibility. On the other hand, these residues can be completely exposed in the soluble HLA-G1 dimer, due to the free rotation of the disulfide bridge (Cys42/Cys42). In fact, we speculate that this free rotation of each protomer (i.e., the chains composing the dimer) could enable alternative binding modes for ILT2/ILT4 receptors, which in turn could be associated with greater affinity of the soluble HLA-G1 dimer. Structural analysis of the HLA-G5 isoform demonstrated higher stability for the complex containing the peptide and coupled β2-microglobulin, while structures lacking such domains were significantly unstable. This study reports for the first time structural conformations for the HLA-G5 isoform and the dynamic behavior of HLA-G1 molecules under simulated biological conditions. All modeled structures were made available through GitHub (https://github.com/KavrakiLab/), enabling their use as templates for modeling other alleles and isoforms, as well as for other computational analyses to investigate key molecular interactions.Item Structure-based Methods for Binding Mode and Binding Affinity Prediction for Peptide-MHC Complexes(Bentham Science, 2018) Antunes, Dinler A.; Abella, Jayvee R.; Devaurs, Didier; Rigo, Maurício M.; Kavraki, Lydia E.Understanding the mechanisms involved in the activation of an immune response is essential to many fields in human health, including vaccine development and personalized cancer immunotherapy. A central step in the activation of the adaptive immune response is the recognition, by T-cell lymphocytes, of peptides displayed by a special type of receptor known as Major Histocompatibility Complex (MHC). Considering the key role of MHC receptors in T-cell activation, the computational prediction of peptide binding to MHC has been an important goal for many immunological applications. Sequence- based methods have become the gold standard for peptide-MHC binding affinity prediction, but structure-based methods are expected to provide more general predictions (i.e., predictions applicable to all types of MHC receptors). In addition, structural modeling of peptide-MHC complexes has the potential to uncover yet unknown drivers of T-cell activation, thus allowing for the development of better and safer therapies. In this review, we discuss the use of computational methods for the structural modeling of peptide-MHC complexes (i.e., binding mode prediction) and for the structure-based prediction of binding affinity.Item Understanding the challenges of protein flexibility in drug design(Taylor & Francis, 2015) Antunes, Dinler A.; Devaurs, Didier; Kavraki, Lydia E.Introduction: Protein–ligand interactions play key roles in various metabolic pathways, and the proteins involved in these interactions represent major targets for drug discovery. Molecular docking is widely used to predict the structure of protein–ligand complexes, and protein flexibility stands out as one of the most important and challenging issues for binding mode prediction. Various docking methods accounting for protein flexibility have been proposed, tackling problems of ever-increasing dimensionality. Areas covered: This paper presents an overview of conformational sampling methods treating target flexibility during molecular docking. Special attention is given to approaches considering full protein flexibility. Contrary to what is frequently done, this review does not rely on classical biomolecular recognition models to classify existing docking methods. Instead, it applies algorithmic considerations, focusing on the level of flexibility accounted for. This review also discusses the diversity of docking applications, from virtual screening (VS) of small drug-like compounds to geometry prediction (GP) of protein–peptide complexes. Expert opinion: Considering the diversity of docking methods presented here, deciding which one is the best at treating protein flexibility depends on the system under study and the research application. In VS experiments, ensemble docking can be used to implicitly account for large-scale conformational changes, and selective docking can additionally consider local binding-site rearrangements. In other cases, on-the-fly exploration of the whole protein–ligand complex might be needed for accurate GP of the binding mode. Among other things, future methods are expected to provide alternative binding modes, which will better reflect the dynamic nature of protein–ligand interactions.Item Using parallelized incremental meta-docking can solve the conformational sampling issue when docking large ligands to proteins(Biomed Central, 2019) Devaurs, Didier; Antunes, Dinler A.; Hall-Swan, Sarah; Mitchell, Nicole; Moll, Mark; Lizée, Gregory; Kavraki, Lydia E.Background: Docking large ligands, and especially peptides, to protein receptors is still considered a challenge in computational structural biology. Besides the issue of accurately scoring the binding modes of a protein-ligand complex produced by a molecular docking tool, the conformational sampling of a large ligand is also often considered a challenge because of its underlying combinatorial complexity. In this study, we evaluate the impact of using parallelized and incremental paradigms on the accuracy and performance of conformational sampling when docking large ligands. We use five datasets of protein-ligand complexes involving ligands that could not be accurately docked by classical protein-ligand docking tools in previous similar studies. Results: Our computational evaluation shows that simply increasing the amount of conformational sampling performed by a protein-ligand docking tool, such as Vina, by running it for longer is rarely beneficial. Instead, it is more efficient and advantageous to run several short instances of this docking tool in parallel and group their results together, in a straightforward parallelized docking protocol. Even greater accuracy and efficiency are achieved by our parallelized incremental meta-docking tool, DINC, showing the additional benefits of its incremental paradigm. Using DINC, we could accurately reproduce the vast majority of the protein-ligand complexes we considered. Conclusions: Our study suggests that, even when trying to dock large ligands to proteins, the conformational sampling of the ligand should no longer be considered an issue, as simple docking protocols using existing tools can solve it. Therefore, scoring should currently be regarded as the biggest unmet challenge in molecular docking.