Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Andrews, Sean"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A Dust-trapping Ring in the Planet-hosting Disk of Elias 2-24
    (IOP Publishing, 2024) Carvalho, Adolfo S.; Pérez, Laura M.; Sierra, Anibal; Mellado, Maria Jesus; Hillenbrand, Lynne A.; Andrews, Sean; Benisty, Myriam; Birnstiel, Tilman; Carpenter, John M.; Guzmán, Viviana V.; Huang, Jane; Isella, Andrea; Kurtovic, Nicolas; Ricci, Luca; Wilner, David J.
    Rings and gaps are among the most widely observed forms of substructure in protoplanetary disks. A gap–ring pair may be formed when a planet carves a gap in the disk, which produces a local pressure maximum following the gap that traps inwardly drifting dust grains and appears as a bright ring owing to the enhanced dust density. A dust-trapping ring would provide a promising environment for solid growth and possibly planetesimal production via the streaming instability. We present evidence of dust trapping in the bright ring of the planet-hosting disk Elias 2-24, from the analysis of 1.3 and 3 mm Atacama Large Millimeter/submillimeter Array observations at high spatial resolution (0.″029, 4.0 au). We leverage the high spatial resolution to demonstrate that larger grains are more efficiently trapped and place constraints on the local turbulence (8 × 10−4 < α turb < 0.03) and the gas-to-dust ratio (Σ g /Σ d < 30) in the ring. Using a scattering-included marginal probability analysis, we measure a total dust disk mass of . We also show that at the orbital radius of the proposed perturber the gap is cleared of material down to a flux contrast of 10−3 of the peak flux in the disk.
  • Loading...
    Thumbnail Image
    Item
    Sites of Planet Formation in Binary Systems. I. Evidence for Disk−Orbit Alignment in the Close Binary FO Tau
    (IOP Publishing, 2024) Tofflemire, Benjamin M.; Prato, Lisa; Kraus, Adam L.; Segura-Cox, Dominique; Schaefer, G. H.; Akeson, Rachel; Andrews, Sean; Jensen, Eric L. N.; Johns-Krull, Christopher M.; Zanazzi, J. J.; Simon, M.
    Close binary systems present challenges to planet formation. As binary separations decrease, so do the occurrence rates of protoplanetary disks in young systems and planets in mature systems. For systems that do retain disks, their disk masses and sizes are altered by the presence of the binary companion. Through the study of protoplanetary disks in binary systems with known orbital parameters, we seek to determine the properties that promote disk retention and therefore planet formation. In this work, we characterize the young binary−disk system FO Tau. We determine the first full orbital solution for the system, finding masses of and 0.34 ± 0.05 M ⊙ for the stellar components, a semimajor axis of au, and an eccentricity of . With long-baseline Atacama Large Millimeter/submillimeter Array interferometry, we detect 1.3 mm continuum and 12CO (J = 2–1) line emission toward each of the binary components; no circumbinary emission is detected. The protoplanetary disks are compact, consistent with being truncated by the binary orbit. The dust disks are unresolved in the image plane, and the more extended gas disks are only marginally resolved. Fitting the continuum and CO visibilities, we determine the inclination of each disk, finding evidence for alignment of the disk and binary orbital planes. This study is the first of its kind linking the properties of circumstellar protoplanetary disks to a precisely known binary orbit. In the case of FO Tau, we find a dynamically placid environment (coplanar, low eccentricity), which may foster its potential for planet formation.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892