Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Anderson, G. Leigh"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    An Adaptive Orthogonal-Series Estimator for Probability Density Functions
    (1978-02-20) Anderson, G. Leigh; de Figueiredo, Rui J.P.
    Given a sample set X1,...,XN of independent identically distributed real-valued random variables, each with the unknown probability density function f(â ¢), the problem considered is to estimate f from the sample set. The function f is assumed to be in L2(a,b); f is not assumed to be in any parametric family. This paper constructs an adaptive "two-pass" solution to the problem: In a pre-processing step (the first pass), a preliminary rough estimate of f is obtained by means of a standard orthogonal-series estimator. In the second pass, the preliminary estimate is used to transform the orthogonal series. The new, transformed orthogonal series is then used to obtain the final estimate. The paper establishes consistency of the estimator and derives asymptotic (large sample set) estimates of the bias and variance. It is shown that the adaptive estimator offers reduced bias (better resolution) in comparison to the conventional orthogonal series estimator. computer simulations are presented which demonstrate the small sample set behavior. A case study of a bimodal density confirms the theoretical conclusions.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892