Browsing by Author "Alvarez Jerez, Pilar"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Characterizing a complex CT-rich haplotype in intron 4 of SNCA using large-scale targeted amplicon long-read sequencing(Springer Nature, 2024) Alvarez Jerez, Pilar; Daida, Kensuke; Grenn, Francis P.; Malik, Laksh; Miano-Burkhardt, Abigail; Makarious, Mary B.; Ding, Jinhui; Gibbs, J. Raphael; Moore, Anni; Reed, Xylena; Nalls, Mike A.; Shah, Syed; Mahmoud, Medhat; Sedlazeck, Fritz J.; Dolzhenko, Egor; Park, Morgan; Iwaki, Hirotaka; Casey, Bradford; Ryten, Mina; Blauwendraat, Cornelis; Singleton, Andrew B.; Billingsley, Kimberley J.Parkinson’s disease (PD) is a common neurodegenerative disorder with a significant risk proportion driven by genetics. While much progress has been made, most of the heritability remains unknown. This is in-part because previous genetic studies have focused on the contribution of single nucleotide variants. More complex forms of variation, such as structural variants and tandem repeats, are already associated with several synucleinopathies. However, because more sophisticated sequencing methods are usually required to detect these regions, little is understood regarding their contribution to PD. One example is a polymorphic CT-rich region in intron 4 of the SNCA gene. This haplotype has been suggested to be associated with risk of Lewy Body (LB) pathology in Alzheimer’s Disease and SNCA gene expression, but is yet to be investigated in PD. Here, we attempt to resolve this CT-rich haplotype and investigate its role in PD. We performed targeted PacBio HiFi sequencing of the region in 1375 PD cases and 959 controls. We replicate the previously reported associations and a novel association between two PD risk SNVs (rs356182 and rs5019538) and haplotype 4, the largest haplotype. Through quantitative trait locus analyzes we identify a significant haplotype 4 association with alternative CAGE transcriptional start site usage, not leading to significant differential SNCA gene expression in post-mortem frontal cortex brain tissue. Therefore, disease association in this locus might not be biologically driven by this CT-rich repeat region. Our data demonstrates the complexity of this SNCA region and highlights that further follow up functional studies are warranted.Item The GIAB genomic stratifications resource for human reference genomes(Springer Nature, 2024) Dwarshuis, Nathan; Kalra, Divya; McDaniel, Jennifer; Sanio, Philippe; Alvarez Jerez, Pilar; Jadhav, Bharati; Huang, Wenyu (Eddy); Mondal, Rajarshi; Busby, Ben; Olson, Nathan D.; Sedlazeck, Fritz J.; Wagner, Justin; Majidian, Sina; Zook, Justin M.Despite the growing variety of sequencing and variant-calling tools, no workflow performs equally well across the entire human genome. Understanding context-dependent performance is critical for enabling researchers, clinicians, and developers to make informed tradeoffs when selecting sequencing hardware and software. Here we describe a set of “stratifications,” which are BED files that define distinct contexts throughout the genome. We define these for GRCh37/38 as well as the new T2T-CHM13 reference, adding many new hard-to-sequence regions which are critical for understanding performance as the field progresses. Specifically, we highlight the increase in hard-to-map and GC-rich stratifications in CHM13 relative to the previous references. We then compare the benchmarking performance with each reference and show the performance penalty brought about by these additional difficult regions in CHM13. Additionally, we demonstrate how the stratifications can track context-specific improvements over different platform iterations, using Oxford Nanopore Technologies as an example. The means to generate these stratifications are available as a snakemake pipeline at https://github.com/usnistgov/giab-stratifications. We anticipate this being useful in enabling precise risk-reward calculations when building sequencing pipelines for any of the commonly-used reference genomes.Item Profiling complex repeat expansions in RFC1 in Parkinson’s disease(Springer Nature, 2024) Alvarez Jerez, Pilar; Daida, Kensuke; Miano-Burkhardt, Abigail; Iwaki, Hirotaka; Malik, Laksh; Cogan, Guillaume; Makarious, Mary B.; Sullivan, Roisin; Vandrovcova, Jana; Ding, Jinhui; Gibbs, J. Raphael; Markham, Androo; Nalls, Mike A.; Kesharwani, Rupesh K.; Sedlazeck, Fritz J.; Casey, Bradford; Hardy, John; Houlden, Henry; Blauwendraat, Cornelis; Singleton, Andrew B.; Billingsley, Kimberley J.A biallelic (AAGGG) expansion in the poly(A) tail of an AluSx3 transposable element within the gene RFC1 is a frequent cause of cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS), and more recently, has been reported as a rare cause of Parkinson’s disease (PD) in the Finnish population. Here, we investigate the prevalence of RFC1 (AAGGG) expansions in PD patients of non-Finnish European ancestry in 1609 individuals from the Parkinson’s Progression Markers Initiative study. We identified four PD patients carrying the biallelic RFC1 (AAGGG) expansion and did not identify any carriers in controls.