Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Alfant, Rachael M"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemEmbargo
    Applications of Mixed Integer Programming to Cloud Computing: Modeling and Computation
    (2024-05-10) Alfant, Rachael M; Perez-Salazar, Sebastian; Schaefer, Andrew J
    Demand for computing capacity in the cloud is generally not easily forecast; however, sub-optimal pricing and mis-allocation of cloud computing resources both have negative consequences for users and providers of cloud computing. This thesis approaches pricing and capacity allocation in cloud computing through the lens of stochastic mixed integer programming (SMIP), which provides a particularly useful framework for solving large, complex decision-making problems under uncertainty. Often, the uncertainty inherent to SMIPs manifests in the right-hand side (demand) vector. Thus, it is important to have a framework by which to assess a mixed integer programming (MIP) model’s quality over unknown or stochastic right-hand sides. As such, this thesis explores both theoretical and practical applications of SMIPs and MIPs with unknown right-hand sides. In particular, this thesis develops theoretical evaluative metrics for MIPs over multiple right-hand sides via gap functions, presents several stochastic optimization approaches to optimal pricing in the cloud, and formulates waste-minimizing (revenue-maximizing) SMIP models that optimize capacity allocation in the cloud.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892