Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Alemany, Lawrence B."

Now showing 1 - 5 of 5
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Cross-Linking Amine-Rich Compounds into High Performing Selective CO2 Absorbents
    (Nature Publishing Group, 2014) Andreoli, Enrico; Dillon, Eoghan P.; Cullum, Laurie; Alemany, Lawrence B.; Barron, Andrew R.; Shared Equipment Authority
    Amine-based absorbents play a central role in CO2 sequestration and utilization. Amines react selectively with CO2, but a drawback is the unproductive weight of solvent or support in the absorbent. Efforts have focused on metal organic frameworks (MOFs) reaching extremely high CO2 capacity, but limited selectivity to N2 and CH4, and decreased uptake at higher temperatures. A desirable system would have selectivity (cf. amine) and high capacity (cf. MOF), but also increased adsorption at higher temperatures. Here, we demonstrate a proof-of-concept where polyethyleneimine (PEI) is converted to a high capacity and highly selective CO2 absorbent using buckminsterfullerene (C60) as a cross-linker. PEI-C60 (CO2 absorption of 0.14 g/g at 0.1 bar/90°C) is compared to one of the best MOFs, Mg-MOF-74 (0.06 g/g at 0.1 bar/90°C), and does not absorb any measurable amount of CH4 at 50 bar. Thus, PEI-C60 can perform better than MOFs in the sweetening of natural gas.
  • Loading...
    Thumbnail Image
    Item
    Fluorinated h-BN as a magnetic semiconductor
    (American Association for the Advancement of Science, 2017) Radhakrishnan, Sruthi; Das, Deya; Samanta, Atanu; de los Reyes, Carlos A.; Deng, Liangzi; Alemany, Lawrence B.; Weldeghiorghis, Thomas K.; Khabashesku, Valery N.; Kochat, Vidya; Jin, Zehua; Sudeep, Parambath M.; Martí, Angel A.; Chu, Ching-Wu; Roy, Ajit; Tiwary, Chandra Sekhar; Singh, Abhishek K.; Ajayan, Pulickel M.
    We report the fluorination of electrically insulating hexagonal boron nitride (h-BN) and the subsequent modification of its electronic band structure to a wide bandgap semiconductor via introduction of defect levels. The electrophilic nature of fluorine causes changes in the charge distribution around neighboring nitrogen atoms in h-BN, leading to room temperature weak ferromagnetism. The observations are further supported by theoretical calculations considering various possible configurations of fluorinated h-BN structure and their energy states. This unconventional magnetic semiconductor material could spur studies of stable two-dimensional magnetic semiconductors. Although the high thermal and chemical stability of h-BN have found a variety of uses, this chemical functionalization approach expands its functionality to electronic and magnetic devices.
  • Loading...
    Thumbnail Image
    Item
    Light-activated molecular machines are fast-acting broad-spectrum antibacterials that target the membrane
    (AAAS, 2022) Santos, Ana L.; Liu, Dongdong; Reed, Anna K.; Wyderka, Aaron M.; van Venrooy, Alexis; Li, John T.; Li, Victor D.; Misiura, Mikita; Samoylova, Olga; Beckham, Jacob L.; Ayala-Orozco, Ciceron; Kolomeisky, Anatoly B.; Alemany, Lawrence B.; Oliver, Antonio; Tegos, George P.; Tour, James M.; Smalley-Curl Institute; NanoCarbon Center; Welch Institute for Advanced Materials
    The increasing occurrence of antibiotic-resistant bacteria and the dwindling antibiotic research and development pipeline have created a pressing global health crisis. Here, we report the discovery of a distinctive antibacterial therapy that uses visible (405 nanometers) light-activated synthetic molecular machines (MMs) to kill Gram-negative and Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus, in minutes, vastly outpacing conventional antibiotics. MMs also rapidly eliminate persister cells and established bacterial biofilms. The antibacterial mode of action of MMs involves physical disruption of the membrane. In addition, by permeabilizing the membrane, MMs at sublethal doses potentiate the action of conventional antibiotics. Repeated exposure to antibacterial MMs is not accompanied by resistance development. Finally, therapeutic doses of MMs mitigate mortality associated with bacterial infection in an in vivo model of burn wound infection. Visible light–activated MMs represent an unconventional antibacterial mode of action by mechanical disruption at the molecular scale, not existent in nature and to which resistance development is unlikely.
  • Loading...
    Thumbnail Image
    Item
    Rapid, Ambient Temperature Synthesis of Imine Covalent Organic Frameworks Catalyzed by Transition-Metal Nitrates
    (American Chemical Society, 2021) Zhu, Dongyang; Zhang, Zhuqing; Alemany, Lawrence B.; Li, Yilin; Nnorom, Njideka; Barnes, Morgan; Khalil, Safiya; Rahman, Muhammad M.; Ajayan, Pulickel M.; Verduzco, Rafael
    Covalent organic frameworks (COFs) are crystalline, porous organic materials that are promising for applications including catalysis, energy storage, electronics, gas storage, water treatment, and drug delivery. Conventional solvothermal synthesis approaches require elevated temperatures, inert environments, and long reaction times. Herein, we show that transition-metal nitrates can catalyze the rapid synthesis of imine COFs under ambient conditions. We first tested a series of transition metals for the synthesis of a model COF and found that all transition-metal nitrates tested produced crystalline COF products even in the presence of oxygen. Fe(NO3)3·9H2O was found to produce the most crystalline product, and crystalline COFs could be produced within 10 min by optimizing the catalyst loading. Fe(NO3)3·9H2O was further tested as a catalyst for six different COF targets varying in linker lengths, substituents, and stabilities, and it effectively catalyzed the synthesis of all imine COFs tested. This catalyst was also successful in the synthesis of 2D imine COFs with different geometries, 3D COFs, and azine-linked COFs. This work demonstrates a simple, low-cost approach for the synthesis of imine COFs and will significantly lower the barrier for the development of imine COFs for applications.
  • Loading...
    Thumbnail Image
    Item
    Three-dimensional covalent organic frameworks with pto and mhq-z topologies based on Tri- and tetratopic linkers
    (Springer Nature, 2023) Zhu, Dongyang; Zhu, Yifan; Chen, Yu; Yan, Qianqian; Wu, Han; Liu, Chun-Yen; Wang, Xu; Alemany, Lawrence B.; Gao, Guanhui; Senftle, Thomas P.; Peng, Yongwu; Wu, Xiaowei; Verduzco, Rafael
    Three-dimensional (3D) covalent organic frameworks (COFs) possess higher surface areas, more abundant pore channels, and lower density compared to their two-dimensional counterparts which makes the development of 3D COFs interesting from a fundamental and practical point of view. However, the construction of highly crystalline 3D COF remains challenging. At the same time, the choice of topologies in 3D COFs is limited by the crystallization problem, the lack of availability of suitable building blocks with appropriate reactivity and symmetries, and the difficulties in crystalline structure determination. Herein, we report two highly crystalline 3D COFs with pto and mhq-z topologies designed by rationally selecting rectangular-planar and trigonal-planar building blocks with appropriate conformational strains. The pto 3D COFs show a large pore size of 46 Å with an extremely low calculated density. The mhq-z net topology is solely constructed from totally face-enclosed organic polyhedra displaying a precise uniform micropore size of 1.0 nm. The 3D COFs show a high CO2 adsorption capacity at room temperature and can potentially serve as promising carbon capture adsorbents. This work expands the choice of accessible 3D COF topologies, enriching the structural versatility of COFs.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892