Browsing by Author "Al-Shatty, Wafaa"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Interaction of Surface-Modified Alumina Nanoparticles and Surfactants at an Oil/Water Interface: A Neutron Reflectometry, Scattering, and Enhanced Oil Recovery Study(American Chemical Society, 2022) Al-Shatty, Wafaa; Campana, Mario; Alexander, Shirin; Barron, Andrew R.The evaluation of the mechanism of nanoparticle (NP)/surfactant complex adsorption at the critical oil/water interface was studied. A sophisticated technique (neutron reflectometry) was used to give a unique insight on NP/oil interactions in oil recovery systems. Herein, the adsorption of two modified alumina NPs with different degrees of hydrophobicity [hydrophilic = 2-[2-(2-methoxyethoxy)ethoxy]acetic acid and hydrophobic = octanoic acid (OCT)] stabilized with two different surfactants were studied at the oil/water interface. A thin layer of deuterated (D) and hydrogenated (H) hexadecane (contrast matching silicon substrate) oil was formed on a silicon block by a spin coating freeze process. The distribution of the NPs across the oil/water interface with the CTAB surfactant is similar between the two systems. NPs coated with CTAB have more affinity toward the oil/water interface, which explains the oil recovery increase by around 5% when flooding the core with the OCT-NP/CTAB system compared to the surfactant flooding alone. These results suggest that the NP/surfactant complexes can have potential usage in EOR recovery applications.Item Tunable Surface Properties of Aluminum Oxide Nanoparticles from Highly Hydrophobic to Highly Hydrophilic(American Chemical Society, 2017) Al-Shatty, Wafaa; Lord, Alex M.; Alexander, Shirin; Barron, Andrew R.The formation of materials with tunable wettability is important for applications ranging from antifouling to waterproofing surfaces. We report the use of various low-cost and nonhazardous hydrocarbon materials to tune the surface properties of aluminum oxide nanoparticles (NPs) from superhydrophilic to superhydrophobic through covalent functionalization. The hydrocarbon surfaces are compared with a fluorinated surface for wettability and surface energy properties. The role of NPs’ hydrophobicity on their dynamic interfacial behavior at the oil–water interface and their ability to form stable emulsions is also explored. The spray-coated NPs provide textured surfaces (regardless of functionality), with water contact angles (θ) of 10–150° based on their surface functionality. The superhydrophobic NPs are able to reduce the interfacial tension of various oil–water interfaces by behaving as surfactants.Item Tunable Surface Properties of Aluminum Oxide Nanoparticles from Highly Hydrophobic to Highly Hydrophilic(American Chemical Society, 2017) Al-Shatty, Wafaa; Lord, Alex M.; Alexander, Shirin; Barron, Andrew R.The formation of materials with tunable wettability is important for applications ranging from antifouling to waterproofing surfaces. We report the use of various low-cost and nonhazardous hydrocarbon materials to tune the surface properties of aluminum oxide nanoparticles (NPs) from superhydrophilic to superhydrophobic through covalent functionalization. The hydrocarbon surfaces are compared with a fluorinated surface for wettability and surface energy properties. The role of NPs’ hydrophobicity on their dynamic interfacial behavior at the oil–water interface and their ability to form stable emulsions is also explored. The spray-coated NPs provide textured surfaces (regardless of functionality), with water contact angles (θ) of 10–150° based on their surface functionality. The superhydrophobic NPs are able to reduce the interfacial tension of various oil–water interfaces by behaving as surfactants.