Computational Applied Mathematics and Operations Research
Permanent URI for this community
Browse
Browsing Computational Applied Mathematics and Operations Research by Author "Aiden, Erez Lieberman"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item A rapid, low-cost, and highly sensitive SARS-CoV-2 diagnostic based on whole-genome sequencing(Public Library of Science, 2023) Adastra, Per A.; Durand, Neva C.; Mitra, Namita; Pulido, Saul Godinez; Mahajan, Ragini; Blackburn, Alyssa; Colaric, Zane L.; Theisen, Joshua W. M.; Weisz, David; Dudchenko, Olga; Gnirke, Andreas; Rao, Suhas S. P.; Kaur, Parwinder; Aiden, Erez Lieberman; Aiden, Aviva Presser; Center for Theoretical Biological PhysicsEarly detection of SARS-CoV-2 infection is key to managing the current global pandemic, as evidence shows the virus is most contagious on or before symptom onset. Here, we introduce a low-cost, high-throughput method for diagnosing and studying SARS-CoV-2 infection. Dubbed Pathogen-Oriented Low-Cost Assembly & Re-Sequencing (POLAR), this method amplifies the entirety of the SARS-CoV-2 genome. This contrasts with typical RT-PCR-based diagnostic tests, which amplify only a few loci. To achieve this goal, we combine a SARS-CoV-2 enrichment method developed by the ARTIC Network (https://artic.network/) with short-read DNA sequencing and de novo genome assembly. Using this method, we can reliably (>95% accuracy) detect SARS-CoV-2 at a concentration of 84 genome equivalents per milliliter (GE/mL). The vast majority of diagnostic methods meeting our analytical criteria that are currently authorized for use by the United States Food and Drug Administration with the Coronavirus Disease 2019 (COVID-19) Emergency Use Authorization require higher concentrations of the virus to achieve this degree of sensitivity and specificity. In addition, we can reliably assemble the SARS-CoV-2 genome in the sample, often with no gaps and perfect accuracy given sufficient viral load. The genotypic data in these genome assemblies enable the more effective analysis of disease spread than is possible with an ordinary binary diagnostic. These data can also help identify vaccine and drug targets. Finally, we show that the diagnoses obtained using POLAR of positive and negative clinical nasal mid-turbinate swab samples 100% match those obtained in a clinical diagnostic lab using the Center for Disease Control’s 2019-Novel Coronavirus test. Using POLAR, a single person can manually process 192 samples over an 8-hour experiment at the cost of ~$36 per patient (as of December 7th, 2022), enabling a 24-hour turnaround with sequencing and data analysis time. We anticipate that further testing and refinement will allow greater sensitivity using this approach.Item Chromatin architecture transitions from zebrafish sperm through early embryogenesis(Cold Spring Harbor Laboratory Press, 2021) Wike, Candice L.; Guo, Yixuan; Tan, Mengyao; Nakamura, Ryohei; Shaw, Dana Klatt; Díaz, Noelia; Whittaker-Tademy, Aneasha F.; Durand, Neva C.; Aiden, Erez Lieberman; Vaquerizas, Juan M.; Grunwald, David; Takeda, Hiroyuki; Cairns, Bradley R.; Center for Theoretical Biological PhysicsChromatin architecture mapping in 3D formats has increased our understanding of how regulatory sequences and gene expression are connected and regulated in a genome. The 3D chromatin genome shows extensive remodeling during embryonic development, and although the cleavage-stage embryos of most species lack structure before zygotic genome activation (pre-ZGA), zebrafish has been reported to have structure. Here, we aimed to determine the chromosomal architecture in paternal/sperm zebrafish gamete cells to discern whether it either resembles or informs early pre-ZGA zebrafish embryo chromatin architecture. First, we assessed the higher-order architecture through advanced low-cell in situ Hi-C. The structure of zebrafish sperm, packaged by histones, lacks topological associated domains and instead displays “hinge-like” domains of ∼150 kb that repeat every 1–2 Mbs, suggesting a condensed repeating structure resembling mitotic chromosomes. The pre-ZGA embryos lacked chromosomal structure, in contrast to prior work, and only developed structure post-ZGA. During post-ZGA, we find chromatin architecture beginning to form at small contact domains of a median length of ∼90 kb. These small contact domains are established at enhancers, including super-enhancers, and chemical inhibition of Ep300a (p300) and Crebbpa (CBP) activity, lowering histone H3K27ac, but not transcription inhibition, diminishes these contacts. Together, this study reveals hinge-like domains in histone-packaged zebrafish sperm chromatin and determines that the initial formation of high-order chromatin architecture in zebrafish embryos occurs after ZGA primarily at enhancers bearing high H3K27ac.Item Depletion of lamins B1 and B2 promotes chromatin mobility and induces differential gene expression by a mesoscale-motion-dependent mechanism(Springer Nature, 2024) Pujadas Liwag, Emily M.; Wei, Xiaolong; Acosta, Nicolas; Carter, Lucas M.; Yang, Jiekun; Almassalha, Luay M.; Jain, Surbhi; Daneshkhah, Ali; Rao, Suhas S. P.; Seker-Polat, Fidan; MacQuarrie, Kyle L.; Ibarra, Joe; Agrawal, Vasundhara; Aiden, Erez Lieberman; Kanemaki, Masato T.; Backman, Vadim; Adli, Mazhar; Center for Theoretical Biological PhysicsB-type lamins are critical nuclear envelope proteins that interact with the three-dimensional genomic architecture. However, identifying the direct roles of B-lamins on dynamic genome organization has been challenging as their joint depletion severely impacts cell viability. To overcome this, we engineered mammalian cells to rapidly and completely degrade endogenous B-type lamins using Auxin-inducible degron technology.Item Predicting A/B compartments from histone modifications using deep learning(Elsevier, 2024) Zheng, Suchen; Thakkar, Nitya; Harris, Hannah L.; Liu, Susanna; Zhang, Megan; Gerstein, Mark; Aiden, Erez Lieberman; Rowley, M. Jordan; Noble, William Stafford; Gürsoy, Gamze; Singh, RitambharaThe three-dimensional organization of genomes plays a crucial role in essential biological processes. The segregation of chromatin into A and B compartments highlights regions of activity and inactivity, providing a window into the genomic activities specific to each cell type. Yet, the steep costs associated with acquiring Hi-C data, necessary for studying this compartmentalization across various cell types, pose a significant barrier in studying cell type specific genome organization. To address this, we present a prediction tool called compartment prediction using recurrent neural networks (CoRNN), which predicts compartmentalization of 3D genome using histone modification enrichment. CoRNN demonstrates robust cross-cell-type prediction of A/B compartments with an average AuROC of 90.9%. Cell-type-specific predictions align well with known functional elements, with H3K27ac and H3K36me3 identified as highly predictive histone marks. We further investigate our mispredictions and found that they are located in regions with ambiguous compartmental status. Furthermore, our model’s generalizability is validated by predicting compartments in independent tissue samples, which underscores its broad applicability.