Chemistry
Permanent URI for this community
Browse
Browsing Chemistry by Author "Adams, W. Wade"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Apparatus for Scalable Functionalization of Single-Walled Carbon Nanotubes via the Billups-Birch Reduction(MDPI, 2017) Pham, David; Zhang, Kevin S.; Lawal, Olawale; Ghosh, Saunab; Gangoli, Varun Shenoy; Ainscough, Thomas J.; Kellogg, Bernie; Hauge, Robert H.; Adams, W. Wade; Barron, Andrew R.A prototype design of a reactor for scalable functionalization of SWCNTs by the reaction of alkyl halides with Billups-Birch reduced SWCNTs is described. The Hauge apparatus is designed to allow for the safe handling of all the reagents and products under an inert atmosphere at controlled temperatures. The extent of reaction of Li/NH3 solution with the SWCNTs is measured in-situ by solution conduction, while homogenous mixing is ensured by the use of a homogenizer, and thermocouple are placed at different heights within the reactor flask. Addition of an alkyl halide yield alkyl-functionalized SWCNTs, which may be isolated by solvent extraction leaving a solid sample that is readily purified by hydrocarbon extraction. As an example, reaction of SWCNT/Li/NH3 with 1-iododecane yields dodecane-functionalized SWCNTs (C12-SWCNTs), which have been characterized by TG/DTA, XPS, and Raman spectroscopy. Sample extraction during the reaction allows for probing of the rate of the reaction in order to determine the end point of the reaction, which for C12-SWCNTs (at −78 °C) is 30 min.Item Wafer-scale monodomain films of spontaneously aligned single-walled carbon nanotubes(Springer Nature, 2016) He, Xiaowei; Gao, Weilu; Xie, Lijuan; Li, Bo; Zhang, Qi; Lei, Sidong; Robinson, John M.; Hároz, Erik H.; Doorn, Stephen K.; Wang, Weipeng; Vajtai, Robert; Ajayan, Pulickel M.; Adams, W. Wade; Hauge, Robert H.; Kono, JunichiroThe one-dimensional character of electrons, phonons and excitons in individual single-walled carbon nanotubes leads to extremely anisotropic electronic, thermal and optical properties. However, despite significant efforts to develop ways to produce large-scale architectures of aligned nanotubes, macroscopic manifestations of such properties remain limited. Here, we show that large (>cm2) monodomain films of aligned single-walled carbon nanotubes can be prepared using slow vacuum filtration. The produced films are globally aligned within ±1.5° (a nematic order parameter of ∼1) and are highly packed, containing 1 × 106 nanotubes in a cross-sectional area of 1 μm2. The method works for nanotubes synthesized by various methods, and film thickness is controllable from a few nanometres to ∼100 nm. We use the approach to create ideal polarizers in the terahertz frequency range and, by combining the method with recently developed sorting techniques, highly aligned and chirality-enriched nanotube thin-film devices. Semiconductor-enriched devices exhibit polarized light emission and polarization-dependent photocurrent, as well as anisotropic conductivities and transistor action with high on/off ratios.