Chemical and Biomolecular Engineering
Permanent URI for this community
Browse
Browsing Chemical and Biomolecular Engineering by Author "Agrawal, Ayush"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item High-phase purity two-dimensional perovskites with 17.3% efficiency enabled by interface engineering of hole transport layer(Elsevier, 2021) Sidhik, Siraj; Wang, Yafei; Li, Wenbin; Zhang, Hao; Zhong, Xinjue; Agrawal, Ayush; Hadar, Ido; Spanopoulos, Ioannis; Mishra, Anamika; Traoré, Boubacar; Samani, Mohammad H. K.; Katan, Claudine; Marciel, Amanda B.; Blancon, Jean-Christophe; Even, Jacky; Kahn, Antoine; Kanatzidis, Mercouri G.; Mohite, Aditya D.State-of-the-art p-i-n-based 3D perovskite solar cells (PSCs) use nickel oxide (NiOX) as an efficient hole transport layer (HTL), achieving efficiencies >22%. However, translating this to phase-pure 2D perovskites has been unsuccessful. Here, we report 2D phase-pure Ruddlesden-Popper BA2MA3Pb4I13 perovskites with 17.3% efficiency enabled by doping the NiOX with Li. Our results show that progressively increasing the doping concentration transforms the photoresistor behavior to a typical diode curve, with an increase in the average efficiency from 2.53% to 16.03% with a high open-circuit voltage of 1.22 V. Analysis reveals that Li doping of NiOX significantly improves the morphology, crystallinity, and orientation of 2D perovskite films and also affords a superior band alignment, facilitating efficient charge extraction. Finally, we demonstrate that 2D PSCs with Li-doped NiOX exhibit excellent photostability, with T99 = 400 h at 1 sun and T90 of 100 h at 5 suns measured at relative humidity of 60% ± 5% without the need for external thermal management.