Chemical and Biomolecular Engineering
Permanent URI for this community
Browse
Browsing Chemical and Biomolecular Engineering by Author "Agrawal, Aditya"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Dynamic Self-Stiffening in Liquid Crystal Elastomers(Nature Publishing Group, 2013) Agrawal, Aditya; Chipara, Alin C.; Shamoo, Yousif; Patra, Prabir K.; Carey, Brent J.; Ajayan, Pulickel M.; Chapman, Walter G.; Verduzco, RafaelBiological tissues have the remarkable ability to remodel and repair in response to disease, injury and mechanical stresses. Synthetic materials lack the complexity of biological tissues, and man-made materials that respond to external stresses through a permanent increase in stiffness are uncommon. Here we report that polydomain nematic liquid crystal elastomers increase in stiffness by up to 90% when subjected to a low-amplitude (5%), repetitive (dynamic) compression. Elastomer stiffening is influenced by liquid crystal content, the presence of a nematic liquid crystal phase and the use of a dynamic as opposed to static deformation. Through rheological and X-ray diffraction measurements, stiffening can be attributed to a mobile nematic director, which rotates in response to dynamic compression. Stiffening under dynamic compression has not been previously observed in liquid crystal elastomers and may be useful for the development of self-healing materials or for the development of biocompatible, adaptive materials for tissue replacement.Item Preparation of Monodomain Liquid Crystal Elastomers and Liquid Crystal Elastomer Nanocomposites(JoVE, 2016) Kim, Hojin; Zhu, Bohan; Chen, Huiying; Adetiba, Oluwatomiyin; Agrawal, Aditya; Ajayan, Pulickel; Jacot, Jeffrey G.; Verduzco, RafaelLCEs are shape-responsive materials with fully reversible shape change and potential applications in medicine, tissue engineering, artificial muscles, and as soft robots. Here, we demonstrate the preparation of shape-responsive liquid crystal elastomers (LCEs) and LCE nanocomposites along with characterization of their shape-responsiveness, mechanical properties, and microstructure. Two types of LCEs — polysiloxane-based and epoxy-based — are synthesized, aligned, and characterized. Polysiloxane-based LCEs are prepared through two crosslinking steps, the second under an applied load, resulting in monodomain LCEs. Polysiloxane LCE nanocomposites are prepared through the addition of conductive carbon black nanoparticles, both throughout the bulk of the LCE and to the LCE surface. Epoxy-based LCEs are prepared through a reversible esterification reaction. Epoxy-based LCEs are aligned through the application of a uniaxial load at elevated (160 °C) temperatures. Aligned LCEs and LCE nanocomposites are characterized with respect to reversible strain, mechanical stiffness, and liquid crystal ordering using a combination of imaging, two-dimensional X-ray diffraction measurements, differential scanning calorimetry, and dynamic mechanical analysis. LCEs and LCE nanocomposites can be stimulated with heat and/or electrical potential to controllably generate strains in cell culture media, and we demonstrate the application of LCEs as shape-responsive substrates for cell culture using a custom-made apparatus.Item Thermoresponsive PNIPAAM bottlebrush polymers with tailored side-chain length and end-group structure(The Royal Society of Chemistry, 2014) Li, Xianyu; ShamsiJazeyi, Hadi; Pesek, Stacy L.; Agrawal, Aditya; Hammouda, Boualem; Verduzco, RafaelWe explore the phase behaviour, solution conformation, and interfacial properties of bottlebrush polymers with side-chains comprised of poly(N-isopropylacrylamide) (PNIPAAM), a thermally responsive polymer that exhibits a lower critical solution temperature (LCST) in water. PNIPAAM bottlebrush polymers with controlled side-chain length and side-chain end-group structure are prepared using a モgrafting-throughヤ technique. Due to reduced flexibility of bottlebrush polymer side-chains, side-chain end-groups have a disproportionate effect on bottlebrush polymer solubility and phase behaviour. Bottlebrush polymers with a hydrophobic end-group have poor water solubilities and depressed LCSTs, whereas bottlebrush polymers with thiol-terminated side-chains are fully water-soluble and exhibit an LCST greater than that of PNIPAAM homopolymers. The temperature-dependent solution conformation of PNIPAAM bottlebrush polymers in D2O is analyzed by small-angle neutron scattering (SANS), and data analysis using the Guinier-Porod model shows that the bottlebrush polymer radius decreases as the temperature increases towards the LCST for PNIPAAM bottlebrush polymers with relatively long 9 kg mol1 sidechains. Above the LCST, PNIPAAM bottlebrush polymers can form a lyotropic liquid crystal phase in water. Interfacial tension measurements show that bottlebrush polymers reduce the interfacial tension between chloroform and water to levels comparable to PNIPAAM homopolymers without the formation of microemulsions, suggesting that bottlebrush polymers are unable to stabilize highly curved interfaces. These results demonstrate that bottlebrush polymer side-chain length and flexibility impact phase behavior, solubility, and interfacial properties.