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Programming the Web with
High-Level Programming Languages

Paul Graunke

Abstract

Concepts from high-level languages can greatly simplify the design and implementa-
tion of CGI programs. This dissertation develops two systems for implementing these
programs.

The first technique® relies on a custom Web server that dynamically loads CGI
programs using the operating system-style services of MrEd, an extension of Scheme.
The server implements programming mechanisms using continuations that allow the
CGI program to interact with the user in a natural manner.

The second technique relies on program transformations from functional language
compilation.! It allows the use of standard servers and alleviates most of the memory
consumption on the server.

In my thesis I discuss the advantages and disadvantages of each approach. I

conclude with suggestions for further investigations into this topic.

*The first technique previously appeared at the European Symposium on Programming, 2001
A.D., in a paper with the same title as this dissertation, coauthored with Shriram Krishnamurthi,
Steve van der Hoeven, and Matthias Felleisen.

tThe compilation based technique was submitted to the International Conference on Functional
Programming in a paper titled, "How to Design and Generate CGI Programs: Applying Func-
tional Compiler Techniques to the Real World,” coauthored with Robert Bruce Findler, Shriram
Krishnamurthi, and Matthias Felleisen.
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Chapter 1

Introduction

The Web’s growing significance as a distributed computing platform forces us to un-
derstand its underlying computational nature. Some researchers study the nature of
data on the Web, especially their type systems. We conduct research on control as-
pects for Web programs. Here we focus on the Common Gateway Interface (CGI) [35]
protocol for generating dynamic Web content.!

The need for generating Web information on demand is obvious. One page may
need the current time and date; another page may display the current status of the
server; and a third page may include results from a database query. Since such CGI
programs compute small pieces of information and produce not much more than a
single Web page, people call them scripts.

Following a long-standing tradition in computing, Web scripting has grown up.
These scripts have now turned into serious, maintained programs that sometimes
represent the raison d’étre of a commercial establishment. Consumers can find on-line
stores, customer interviews, interactive games, and more implemented via the CGI
interface. In other words, instead of writing CGI scripts, programmers now design,
implement, and maintain interactive CGI programs with complex and multi-layered
interface protocols.

The designers of complex, interactive CGI programs face a serious design prob-
lem. CGI programs halt after producing the first Web page. Most dialogs, however,
consist of many interactions, and each interaction presents a form and processes a re-

sponse. Thus, to reconcile the interactive nature of programs with the CGI standard,

1Qur work applies to Java servlets as well.



an interaction is implemented by having a script deliver a Web page, wait for the
consumer to submit a response, and process the response with a(nother) CGI script.
Complicating matters even more, the CGI programs must accommodate consumers
who backtrack in their interactions, clone their browser windows, re-submit the same
or different answers for any given form, and so on. In short, a CGI program and a
consumer make up a pair of multiply resumable coroutines, but due to the lack of
coroutines or similar constructs in most Web scripting languages, the designer cannot
match the structure of the program to the structure of the interaction.?

Hughes [27] and Queinnec [40] recognized this structure clash problem. They
suggest a solution based on the (more or less explicit) manipulation of continuations.
That is, when a CGI script queries a consumer, it grabs the current continuation
and preserves it for future uses. When a consumer submits answers to a form query,
the server resumes the continuation with the bindings from the form. Due to the
capabilities of Web browsers, a consumer may also backtrack in an interaction, and

thus trigger several invocations of one and the same continuation.

1.1 Web Servers and High-Level Operating Systems

One way to implement additional language constructs that ease the development of
interactive CGI programs involves a custom Web server. The server dynamically
loads code into the server itself. Since the underlying operating system no longer
manages the CGI programs, the server must compensate.

The Web server provides operating system-style services. Like an operating sys-
tem, the server runs programs (e.g., CGI scripts). Like an operating system, the
server protects these programs from each other. And, like an operating system, the

server manages resources (e.g., network connections) for the programs it runs.

2Java serviets have a similar problem. They contain a single method for GET or POST requests,

and cannot wait for additional submissions or resubmissions from the consumer.



Some existing Web servers rely on the underlying operating system to implement
these services. Others fail to provide services due to shortcomings of the implemen-
tation languages. The second chapter of this dissertation shows that implementing
a Web server in a suitably extended functional programming language is straight-
forward and satisfies three major properties. First, the server delivers static content
at a performance level comparable to a conventional CGI server. Second, the Web
server delivers dynamic content at five times the rate of a conventional server. Con-
sidering the explosive growth of dynamically created Web pages [8], this performance
improvement is important. Finally, our server provides programming mechanisms for
the dynamic generation of Web content that are difficult to support in a conventional
server architecture.

The basis of our experiment is MrEd [18], an extension of Scheme [30]. The
implementation of the server heavily exploits four extensions: first-class modules,
which help structure the server and represent server programs; preemptive threads;
which are needed to execute server programs; custodians, which manage the resource
consumption of server programs; and parameters, which control stateful attributes
of threads. The server programs also rely on Scheme’s capabilities for manipulating
continuations as first-class values. The second chapter also shows which role each

construct plays in the construction of the server.

1.2 Designing CGI Programs

Although building a custom Web server yields high performance and supports a more
natural style of programming, it has several drawbacks. The third chapter addresses
these problems by examining the process of writing CGI programs by hand, which
leads to a series of transformations that compile interactive programs into CGI pro-
grams automatically.

If the implementation language of a CGI program supports first-class continuations—

such as Scheme’s call/cc or Haskell’s continuation monads—the design and implemen-



tation of a CGI program reduces to the design and implementation of a sequential
program whose interactions with the consumer are implemented with continuations.
As Hughes points out in his work on arrows, a CGI program grabs a continuation,
produces a textual representation, sends this representation to the client (in a hidden
form field), and waits for the client to resume the dialog. Few languages support this
kind of operation on continuations, however.

Worse, the continuation solution leaves open the problem of where to place the
stores of (internally) imperative CGI programs. Placing the store on the server and
providing (symbolic) pointers to these values to the consumer creates a problem of
distributed garbage collection where remote pointers may be in bookmark files, human
minds, and other media. It also makes the consumer depend on the reliability of the
server. Monads (or arrows) also do not solve the problem. They turn the store into
a lexical variable that is threaded through the program. When an arrow-based CGI
script suspends its operation, it stores the lexical variables of the continuation in a
hidden field [27]. Thus, if a consumer clones a browser window, the store is copied,
which introduces coherence problems. In short, the problem is how to provide the
power of, say, continuation operations to the designer of CGI programs in all languages
and how/where to save the store of a suspended program.

The third chapter of this dissertation describes how CGI programmers can use ez-
isting design methods to develop interactive programs and that well-known, automat-
able transformations can generate CGI scripts from these programs. Specifically, we
extend a programming language with a primitive for CGI interactions and show how
this extension simplifies the design and development of interactive CGI programs;
how it allows programmers to migrate legacy programs to the Web; how our imple-
mentation addresses the store problem; and how we can adapt existing programming
environments in support of this development style.

We have implemented our ideas in Scheme, so that we can test each development

stage. The work does not rely on Scheme’s continuation mechanism, however. We



discuss in the last chapter how our ideas carry over to all kinds of programming
languages and how they are useful even in the absence of tool support.
The fourth chapter relates this dissertation to the work of others. The fifth chapter

proposes future directions for further research. The final chapter concludes with a

summary.



Chapter 2

Web Servers are Operating Systems

The following section is a brief introduction to MrEd. Section 2.2 explains the core of
our server implementation. In section 2.3 we show how the server can be extended to
support Scheme CGI scripts and illustrate how programming in the extended Scheme
language facilitates the implementation of scripts. Sections 2.2 and 2.3 also present

performance results. Section 2.4 discusses the internal structure of the server.

2.1 MrEd: a High-Level Operating System

MrEd [18] is a safe implementation of Scheme (30]; it is one of the fastest existing
Scheme interpreters. Following the tradition of functional languages, a Scheme pro-
gram specifies a computation in terms of values and legitimate primitive operations
on values (creation, selection, mutation, predicative tests). The implementation of
the server exploits traditional functional language features, such as closures and stan-
dard data structures, and also Scheme’s ability to capture and restore continuations,
possibly multiple times.

MrEd extends Scheme with structures, exceptions, and modules. The module
system [17] permits programmers to specify atomic units and compound units. An
atomic unit is a closed collection of definitions. Each unit has an import and an export
signature. The import signature specifies what names the module expects as imports;
the export signature specifies which of the locally defined names will become visible
to the rest of the world. Units are first-class values. There are two operations on unit
values: invocation and linking. A unit is invoked via the invoke-unit/sig special

form, which must supply the relevant imports from the lexical scope. MrEd permits



tcp-listen : Nat [Nat] & Tcp-listener
;; reserves a port to accept connections, optionally specifying the
;; maximum number of clients that may wait for a connection

tcp-accept : Tcp-listener —* Input-port Output-port
;; creates I/O ports for a connection request via the listener

thread : (— Void) & Thread
;; spawns a thunk as a thread

make-semaphore : Nat - Semaphore
;; creates a semaphore with specified number of tokens

semaphore-post : Semaphore — Void
;; posts a semaphore and releases waiting threads

semaphore-wait : Semaphore — Void
;; waits (and possibly suspends) for a semaphore

make-custodian : — Custodian
;; creates a custodian

custodian-shutdown-all : Custodian — Void
;; shuts down all threads in custodian and reclaims all resources

Figure 2.1 : MrEd’s TCP, thread and custodian primitives

units to be loaded and invoked at run-time. A unit is linked—or compounded—via
the compound-unit /sig mechanism. Programmers compound units by specifying a
(possibly cyclic) graph of connections among units, including references to the import
signature; the result is a unit.

The extended language also supports the creation of threads and thread synchro-
nization. Figure 2.1 specifies the relevant primitives. Threads are created from 0-ary
procedures (thunks); they synchronize via counting semaphores. For communication
between parent and child threads, however, synchronization via semaphores is too
complex. For this purpose, MrEd provides (thread) parameters. The form

(parameterize ([parameter! valuel]...) bodyl ...)

sets parameter! to valuel for the dynamic extent of the computation body! ...; when



this computation ends, the parameter is reset to its original value. New threads inherit
copies of their parent’s parameter bindings, though the parameter values themselves
are not copied. That is, when a child sets a parameter, it does not affect a par-
ent; when it mutates the state of a parameter, the change is globally visible. The
server deals with only two of MrEd’s standard parameters: current-custodian and
exit-handler. The default ezit-handler halts the entire Scheme system. Setting this
parameter to another function that raises an exception or performs clean up opera-
tions will manage calls to ezit appropriately.

Finally, MrEd provides a mechanism for managing resources, such as threads (with
associated parameter bindings), TCP listeners, file ports, and so on. When a resource
is allocated, it is placed in the care of the current custodian, the value of the current-
custodian parameter. Figure 2.1 specifies the only relevant operation on custodians:
custodian-shutdown-all. It accepts a custodian and reaps the associated resources:
it kills the threads in its custody, closes the ports, reclaims the TCP listeners, and

recursively shuts down all child custodians.

2.2 Serving Static Content

A basic Web server satisfies HTTP requests by reading Web pages from files. High-
level languages ease the implementation of such a server, while retaining efficiency
comparable to widely used servers. The first section explains the core of our server
implementation. The second section compares performance figures of our server to

Apache [2], a widely-used, commercially-deployed server.

2.2.1 Implementation of the Web Server’s Core

The core of a Web server is a wait-serve loop. It waits for requests on a particular

TCP port. For each request, it creates a thread that serves the request. Then the



server recurs:!
;; server-loop : Tcp-listener — Void
(define (server-loop listener)
(let-values ([(ip op) (tcp-accept listener)])
(thread (lambda () (serve-connection ip op))))
(server-loop listener))

For each request, the server parses the first line and the optional headers:

;; serve-connection : Input-port Output-port — Void
(define (serve-connection ip op)
(let-values ([(meth url-string major-version minor-version)
(read-request ip op)))
(let* ([headers (read-headers ip op)]
[url (string—url url-string))
[host (find-host (url-host url) headers)|)
(dispatch meth host port url headers ip op))))

;; read-request : Input-port Output-port —* Symbol String String String

;; to read a request from ip, to parse it, and to determine the

;; request method (get, put), URL, and protocol versions

;; effect: raises an exception and closes the ports, if parsing fails

(define (read-request ip op) ...)

A dispatcher uses this information to find the correct file corresponding to the
given URL. If it can find and open the file, the dispatcher writes the file’s contents
to the output port; otherwise it writes an error message. In either case, it closes the

ports before returning.?

2.2.2 Performance

It is easy to write compact implementations of systems with high-level constructs,
but we must demonstrate that we do not sacrifice performance for abstraction. More
precisely, we would like our server to serve content from files at about the same rate

as Apache [2]. We believed that this goal was within reach because most of the

llet-values binds names to the values returned by multiple-valued computations such as tcp-
accept, which returns input and output ports.

2The server may actually loop to handle multiple requests per connection. This dissertation does
not explore this possibility further.
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Connections/Second

1kB file 10kB file 100kB file
Clients | MrEd | Apache | Ratio | MrEd | Apache | Ratio | MrEd | Apache | Ratio
21 967.5 | 15579 | 62.1% | 655.1 771.6 | 84.9% | 105.2 113.2 | 92.9%
4| 986.7 | 1623.4 | 60.8% | 772.0 | 1084.4 | 71.2% | 110.2 115.7 | 95.2%
8| 997.9 | 1607.0 | 62.1% | 752.9 | 1099.0 | 68.5% | 116.0 115.8 | 100.2%
16 | 982.8 | 1597.0 | 61.5% | 782.6 | 1101.3 | 71.1% | 116.5 116.1 | 100.3%
32| 923.8 | 1551.0 | 59.6% | 760.7 | 1104.0 | 68.9% | 116.7 116.3 | 100.3%
64 | 917.6 | 1577.2 | 58.2% | 787.1 | 1093.0 | 72.0% | 115.1 116.5 | 98.8%
128 | 946.3 | 1547.8 [ 61.1% | 769.4 | 1104.1 | 69.7% | 116.7 116.5 | 100.2%

Ratio = MrEd/Apache

The client and server software each ran on an AMD Athlon 800MHz processor with
192 Mbytes of memory, running FreeBSD 4.1.1-STABLE, connected by a standard 100
Mbit/s Ethernet connection.

Figure 2.2 : Performance for static content server

computational work involves parsing HTTP requests, reading data from disk, and
copying bytes to a (network) port.}

To verify this conjecture, we compared our server’s performance to that of Apache
on files of three different sizes. For each test, the client requested a single file repeat-
edly. This minimized the impact of disk speed; the underlying buffer cache should
keep small files in memory. Requests for different files would even out the perfor-
mance numbers according to Amdahl’s law because the total response time would
include an extra disk access component that would be similar for both servers.

The results in figure 2.2 show that we have essentially achieved our goal. The
results were obtained using the S-client measuring technology [5]. For the historically
most common case [4]|—files between six and thirteen kB—our server performs at a

rate of 60% to 80% of Apache. For larger files, which are now more common due to

3This assumes that the server does not have a large in-memory cache for frequently-accessed

documents.
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increased uses of multimedia documents, the two servers perform at the same rate.
In particular, for one and ten kB files, more than four pending requests caused both
servers to consume all available CPU cycles. For the larger 100 kB files, both servers

drove the network card at full capacity.

2.3 Dynamic Content Generation

Over the past few years, the Web'’s content has become increasingly dynamic. USA
Today, for instance, finds that as of the year 2000 A.D., more than half of the Web’s
content is generated dynamically [8]. Servers no longer retrieve plain files from disk
but use auxiliary programs to generate a document in response to a request. These
Web programs often interact with the user and with databases. This section explains
how small changes to the code of section 2.2 accommodate dynamic extensions, that
the performance of the revised server is superior to that of Apache,® and that it
supports a new programming paradigm that is highly useful in the context of dynamic

Web content generation.

2.3.1 Simple Dynamic Content Generation

Since a single server satisfies different requests with different content generators, we
implement a generator as a module that is dynamically invoked and linked into the
server context. More specifically, a CGI program in our world is a unit:

(unit/sig () (import cgi”) (def+ezp) ... (ezp))

It exports nothing; it imports the names specified in the cgi " signature. The result
of its final expression (and of the unit invocation) is an HTML page.’
Here is a trivial CGI program using quasiquote [39] to create an HTML page

with unquote (a comma) allowing references to the TITLE definition.

4 Apache outperforms most other servers for CGl-based content generation [1].
5To be precise, it generates an X-expression, which is an S-expression representation of an XML

document. The server handles other media types also; we do not discuss these in this dissertation.
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(unit/sig () (import cgi ")
(define TITLE "My first Web page")
‘(html (head (title ,TITLE))
(body
(p (center ,TITLE))
(p "Hello, World!")}))

The script defines a title and produces a simple Web page containing a message.
The imports of a content generator supply the request method, the URL, the
optional headers, and the bindings:

(define-signature cgi " (

method ; (union ’get ’post)

url ; Url

headers ; (listof (cons Symbol String))
bindings  ; (listof (cons Symbol String))
-))

To add dynamic content generation to our server, we modify the dispatch function
from section 2.2 to redirect requests for URLs starting with " /cgi-bin/". More con-
cretely, instead of responding with the contents of a file, dispatch loads a unit from
the specified location in the file system. Before invoking the unit, the function installs
a new current-custodian and a new erit-handler via a parameterize expression:

;3 in dispatch:

(if (cgi-url? url)
(let ([cust (make-custodian)])
(parameterize
([current-custodian cust]
[ezit-handler (lambda () (custodian-shutdoun-all cust))])
(let ([cgi-program (cached-load (url-path url))])
(output-zhtml (invoke-unit/sig cgi-program cgi”)))))

o)
The newly installed custodian is shut down on termination of the CGI script.
This halts child threads, closes ports, and reaps the script’s resources. The new

ezit-handler is necessary so that erronious content generators shut down only the

custodian not the entire server.
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2.3.2 Content Generators are First-Class Values

Since units are first-class values in MrEd, the server can store content generators in
a cache. Introducing a cache avoids some I/O overhead but, more importantly, it
introduces new programming capabilities. In particular, a content generator can now

maintain local state across invocations. Here is an example:
(let ([count 0])
(unit/sig () (import cgi”)
(set! count (addl count))
‘(html (head (title "Testing Persistent State of Counter"))
(body (p "This is a cgi generated Web page.")
(p "The current count is " ,(number—string count))))))
This generator maintains a local count that is incremented each time the unit is
invoked to satisfy an HTTP request. Its output is an HTML page that contains the

current value of count.

2.3.3 Exchanging Values between Content Generators

In addition to maintaining persistent state across invocations, content generators may
also need to interact with each other. Conventional servers force server programs to
communicate via the file system or other mechanisms based on character streams.
This requires marshaling and unmarshaling data, a complex and error prone process.
In our server architecture, dynamic content generators can naturally exchange high-
level forms of data through the common heap.

Our dynamic content generation model features a simple extension that permits
multiple generators to be defined within a single lexical scope. The current unit of
granularity in the implementation is a file. That is, one file may yield an expression
that contains multiple generators. The expression may perform arbitrary operations
to define and initialize the shared scope. To distinguish between the generators, the
server’s interface requires that the file return an association list of type

(listof (cons Symbol Content-generator))
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For instance, a file contain two content generators:
(letx ([data-file ...]
[lock (make-semaphore 1)])
‘((add . ,(Content-generator), )
(delete . ,(Content-generator);)))
This yields two generators that share a lock to a common file. The distinguishing

name in the association is treated as part of the URL in a CGI request.

2.3.4 Interactive Generation of Content

Christian Queinnec suggested in his ICFP article [40], that Web browsing in the pres-
ence of dynamic Web content generation can be understood as the process of capturing
and resuming continuations.® For example, a user can bookmark a generated page
that contains a form and (try to) complete it several times. This action corresponds
to the resumption of the content generator’s computation after the generation of the
first form.

Ordinarily, programming this style of computation is a complex task. Each time
the computation requires interaction (responses to queries, inspection of intermediate
results, and so forth) from the user, the programmer must split the program into
two fragments. The first generates the request for interaction, typically as a form
whose processor is the remainder of the computation. The first program must store
its intermediate results externally so the second program can access and use them.
The staging and marshaling are cumbersome, error-prone, slow, and inhibit the reuse
of existing non-CGI programs that are being refitted with Web-based interfaces. To
support this common programming paradigm, our server links content generators to
the three additional primitives in figure 2.3.

The send/suspend function allows the content generator to send an HTML form to
the client for further input. The function captures the continuation and suspends the

computation of the content generator. When the user responds, the server resumes

This idea also appears in Hughes'’s paper on arrows [27].
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send/suspend : (Url - Html-page) -* Method
Url
(listof (cons Symbol String))
(listof (cons Symbol String))
send/finish : Html-page — Void
adjust-timeout : Nat — Void

Figure 2.3 : Additional content generator primitives

the continuation with four values: the request method, the URL, the optional headers,
and the form bindings.

To implement this functionality, send/suspend consumes a function of one argu-
ment. This function, in turn, consumes a unique URL and generates a form whose
action attribute refers to the URL. When the user submits the form, the suspended
continuation is resumed. Consider figure 2.4, which presents a simple example of an
interactive content generator. This script implements curried multiplication, asking
for one number with one HTML page at a time. The two underlined expressions
represent the intermediate stops where the script displays a page and waits for the
next set of user inputs. Once both sets of inputs are available it produces a page with
the product.

In general, this paradigm produces programs that naturally correspond to the
flow of information between client and server. These programs are easier to match
to specifications, to validate, and to maintain. The paradigm also causes problems,
however. The first problem, as Queinnec points out, concerns garbage collection of
the suspended continuations. By invoking send/suspend, a content generator hands
out a reference to its current continuation. Although these references to continuations
are symbolic links in the form of unique URLs, they are nevertheless references to
values in the server’s heap. Without further restrictions, garbage collection cannot
be based on reachability. To make matters worse, these continuations also hold on

to resources, such as open files or TCP connections, which the server may need for
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(unit/sig () (import cgi”)

;7 get-input-w/-short-form : String — (String — Html-page)
(define (get-input-w/-short-form which-one)
(let-values ([(method url headers bindings)
(send/suspend
(lambda ((k-url})
‘(html (head (title ,which-one " number"))
(body
(form ((method "post") (action ,)
"Enter the " ,which-one " number:" nbsp
(input ((type "text") (name ,which-one)))
(input ((type "submit") (name "submit"))))))))))
(eztract which-one bindings)))

;3 string-multiply : String String — String

‘(html (head (title "Product"))
(body (p "The product is: "
,(string-multiply (get-input-w/-short-form “first")
(get-input-w/-short-form "second"))))))

Figure 2.4 : An interactive CGI program

other programs.

Giving the user the flexibility to bookmark intermediate continuations and explore
various choices creates another problem. Once the program finishes interacting with
the user, it records the final outcome by updating persistent state on the server. These
updates must happen at most once to prevent catastrophes such as double billing or
shipping too many items.

Based on this analysis, our server implements the following policy. When the
content generator returns or calls the send/finish primitive, all the continuations as-
sociated with this generator computation are released. Generators that wish to keep
the continuations active can suspend instead. When a user attempts to access a re-

claimed continuation, a page directs them to restart the computation. Furthermore,
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each instance of a content generator has a predetermined lifetime after which contin-
uations are disposed. Each use of a continuation updates this lifetime. A running
continuation may also change this amount by calling adjust-timeout. This mechanism
for shutting down the generator only works because the reaper and the content gener-
ator’s thread share the same custodian. This illustrates why custodians, or resource

management in general, cannot be identified with individual threads.

2.3.5 Implementing Interactive Generation of Content

The implementation of the interactive CGI policy is complicated by the (natural)
MrEd restriction that capturing a continuation is local to a thread and that a contin-
uation can only be resumed by its original thread. To comply with this restriction,
send/suspend captures a continuation, stores it in a table indexed by the current
content generator, and causes the thread to wait for input on a channel. When a new
request shows up on the channel, the thread looks up the matching continuation in
its table and resumes it with the request information in an appropriate manner. A

typical continuation URL looks like this:
http://www/cgi-bin/send-test.ss;id38+k3-839800468

This URL has two principle pieces of information for resuming computation: the
thread (1d38) and the continuation itself (k3). The random number at the end serves
as a password preventing other users from guessing continuation URLs.

The table for managing the continuations associated with a content generator
actually has two tiers. The first tier associates instance identifiers for content gen-
erators with a channel and a continuation table. This continuation table associates

continuation identifiers with continuations. Here is a rough sketch:
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generator instance table

instance-id | channel x continuations-table

instance-id | channel x continuations-table
\_‘ continuations table
b continuation-id | continuation

continuation-id | continuation

When a thread processes a request to resume its generator’s continuation, it looks

up the content generator in one table, and extracts the channel and continuation
table for that generator. The server then looks up the desired continuation in this
second table and passes it through the channel to the suspended thread along with
the request information and the ports for the current connection.

The two-tier structure of the tables also facilitates clean-up. When the time limit
for an instance of a content generator expires or when the content generator compu-
tation terminates, the instance is removed from the generator instance table. This
step, in turn, makes the continuation instance table inaccessible and thus available

for garbage collection.

2.3.6 Performance

We expect higher performance from our Web server than from conventional servers
that use the Common Gateway Interface (CGI) [35]. A conventional server starts a
separate OS process for each incoming request, creating a new address space, load-
ing code, etc. Our server eliminates these costs by avoiding the use of OS process
boundaries and by caching CGI programs.

Our experiments confirm that our server handles more connections per second
than CGI programs written in C. For example, for the comparison in figure 2.5, we

clock a C program’s binary in CGI and FastCGI against a Scheme script producing
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the same data. The table does not contain performance figures for responses of 100
kB and larger because for those sizes the network bandwidth becomes the dominant
factor just as with static files.

The table also indicates that both the standard CGI implementation and our
server scale much better relative to response size than FastCGI does. We conjecture
that this is because FastCGI copies the response twice, and is thus much more sen-
sitive to the response size. Of course, as computations become more intensive, the
comparison becomes one of compilers and interpreters rather than of servers and their

protocols.

CGI FastCGI MrEd Full MrEd Lite
Clients | 1kB | 10kB | 1kB | 10kB | 1kB | 10kB | 1kB | 10kB
8 | 161.1 | 158.7 | 742.7 } 551.6 | 766.5 | 665.9 | 851.4 | 742.6
16 | 157.6 | 156.9 | 728.8 | 547.2 | 759.6 | 659.3 | 847.3 | 727.9
32 | 153.4 | 153.1 | 720.7 | 544.4 | 733.8 | 627.4 | 837.8 | T21.4

MrEd Full is the server described in this chapter. It includes the continuation reaper
described at the end of section 2.3.4, whose implementation is currently quite inefficient.
MrEd Lite disables this reaper (rendering send/suspend less usable), making its services
more directly comparable to those of CGI and FastCGIL.

Figure 2.5 : Performance for dynamic content generation

2.4 Modularity of the Server

Web servers must not only be able to load Web programs (e.g., CGI scripts) but
also load new modules in order to extend their capabilities. For example, requiring
password authentication for specific URLs affects serving content from files and from
all dynamic content generators. In order to facilitate billing various groups hosted by
the server, the administrator may find it helpful to produce separate log files for each
client instead of a monolithic one. A flexibly structured server will split key tasks into

separate modules, which can be replaced at link time with alternate implementations.
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Apache’s module system [46] allows the builder of the Web server to replace pieces
of the server’s response process, such as those outlined above, with with their own
code. The builder installs structures with function pointers into a Chain of Command
pattern [21]. Using this pattern provides the necessary extensibility but it imposes a
complex protocol on the extension programmer, and it fails to provide static guaran-
tees about program composition.

In contrast, our server is constructed in a completely modular fashion using the
unit system [17]. This provides the flexibility of the Apache module system in a less ad
hoc, more hierarchical manner. To replace part of how the server responds to requests,
the server builder writes a compound unit that links the provided units and the
replacement units together, forming an extended server. Naturally, the replacement
units may link in the original units and delegate to them as desired.

Using units instead of dynamic protocols has several benefits. First, the server
does not need to traverse chains of structures, checking for a module that wants to
handle the request. Second, the newly linked server and all the replacement units are
subject to the same level of static analysis as the original server. (Our soft-typing
tool [16] revealed several easily corrected premature end-of-file bugs in the original

server.)
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Chapter 3
Compiling CGI Programs

3.1 CGI Programs

A typical interactive program performs a series of computations interspersed with
interactions with the user. An interaction presents a request for information and
waits for the user’s response. When the computation completes, the program produces
the final result. Figure 3.1 presents a trivial interactive program that requests two
numbers, adds them, and displays the result.

Converting even this simple program to function as a Web script complicates the
code tremendously. According to the CGI standard, every time the program sends an
HTML form to the consumer’s browser, the CGI program terminates. When the user
submits a response to the form, the server starts the CGI script that the form specified
as its processor. That is, if an interactive program contains a single input request, its
equivalent CGI script consists of two separate pieces. The problem is, however, even
more complex than that because the consumer may use the back-button to return
to a page and may re-submit the same or different answers. Worse, using the clone
functionality of a browser, the consumer can submit two responses to a form (more
or less) simultaneously.

To accommodate these uses, a programmer must—at least conceptually—turn
an interactive program into a coroutine; the consumer plays the role of the second
coroutine. One way to accomplish this is to separate the program into several pieces,
one per interaction and one for the last step. When a piece has finished its task,
the execution stops. All information from one piece of the program required by some

other piece must be explicitly turned over to the next piece. There are several different
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;3 prompt-read : String & Value
;; read an S-expression as a Scheme value
(define (prompt-read question)

(display question)

(read))

(display ],

(+ | (prompt-read "Enter the first number to add:") |

(prompt-read "Enter the second number to add:") | ))

Figure 3.1 : An Interactive Addition Program

;3 produce-html : String String (listof Value) — void
;; effect: to write a CGI-compatible HTTP header and HTML Web form
(define (produce-html question mark free-values)

)

(define FIRST-STOP “first number done")
(define SECOND-STOP “second number done")
(define bindings (get-bindings))
(cond
[(null? bindings)
(produce-html “Enter the first number to add:" FIRST-STOP () |i]
(string=? (eztract-binding/single 'cont bindings) FIRST-STOP)

(produce-html "Enter the second number to add: * SECOND-STOP
‘((first-number ,(eztract-binding/single 'response bindings)))) bl

(string="? (eztract-binding/single 'cont bindings) SECOND-STOP)
(show (+ (string—number (eztract-binding/single *first-number bindings))
(string—number (extract-binding/single 'response bindings)))) &)

Figure 3.2 : An Equivalent CGI Version

methods, but in each case the data is marshaled into a string and placed in a hidden

HTML field, a cookie, or into a file on the server.
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Figure 3.2 shows the addition program converted into a CGI program. Because the
former contains two interactions, the latter consists of three pieces, re-integrated into
a single program via a conditional. Technically, the CGI program gets the bindings

from the Web form and then tests three conditions:

1. If there are no bindings, the program is called without inputs. It creates a Web
page with a question, a hidden field that specifies the current continuation, and

the list of values that are supposed to be hidden in the Web page.

2. If the program can extract a binding for 'cont, then it was invoked with a first

input. It produces a second form and queries the consumer for another number.

3. Finally, if the program extracts a different binding for 'cont, it has obtained

both numbers and can produce the sum.

As the computation unfolds, all necessary values are passed explicitly from one stage
to the next as in a bucket brigade.

Clearly, the structure of the CGI program radically differs from that of the original
version—indeed, it is basically inverted!—yet their behavior per se is identical. The
inverted structure of the second program is necessary because of the constraints of
the CGI standard and the capabilities of the browsers. In particular, a consumer can
create a “curried adder” using the back button. The situation only grows more grim
as the number of interactions increases. In general, the program may loop, requesting
an arbitrary number of inputs. This necessitates constructing a single branch that
handles many responses, remembering the state of the iteration and an unbounded

number of intermediate values.

M. Jackson [28] recognized a similar structural problem in the early 1970s. When COBOL
programs consume tree-shaped data in one file and produce a different tree-shaped form of data
in a another file, it is best to think of the program as two coroutines. Since COBOL does not
support coroutines, he invented program inversion, a technique for providing simple coroutine-like

procedures in programs that do not support such forms of control.



24

Still, in principle, the CGI programs are systematically related to the “direct
style” interactive programs that use plain input and output primitives. While CGI
programmers currently produce their scripts in an ad hoc fashion, we propose that
the development process should take advantage of this relationship. We show in the

following sections how this can be done.

3.2 Generating CGI Programs

Programmers have learned how to develop and maintain sequential interactive pro-
grams. Hence, if they could develop interactive programs and use them as CGI scripts,
they could reuse the design methods for interactive programs for this chaotic world of
Web programming. In this section, we first explain briefly how we can accomplish this
goal with a custom Web server and what the problems of this solution are. Second,
we explain how we can use this idea as the starting point for the development of a

pre-processor that restructures interactive programs into CGI programs.

3.3 Direct-Style CGI Programs

Since CGI programs run in the context of a Web server, a custom server can provide
CGI programs with re-implementations of primitives such as display or prompt-read.
A specialized version of prompt-read can capture the current continuation, using
call/cc, and can store this continuation in the server.

We have implemented this approach, as has Queinnec [40]. The previous chapter
demonstrates that this approach has distinct advantages. Most importantly, the
modified Web server yields superior speed for CGI scripts compared to several existing
methods.

Unfortunately, the approach has three severe problems. First, it requires a server
written in a language with advanced control features such as continuations. Second,
the programmer must modify existing CGI programs to use the server’s new and

non-standard CGI interface. Third, the URLs for continuations act as persistent
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(define-struct closure (code env))
;3 Closure = (make-closure Int Env)
;1 Env = (listof Value)

;3 apply-closure : Closure (listof Value) * — Value
(define (apply-closure f . args)
(apply (apply (vector-ref closures (closure-code f)) (closure-env f)) args))

;; the converted functions and continuations
(define closures
(vector
(lambda ()
(lambda (responsel)
(prompt-read-k "Enter the second number to add:"
[make-closure 1 (list responsel)})))

(lambda (responsel)
(lambda (response2)
(display (+ responsel response2))))))

;; prompt-read-k : String Closure — void
(define (prompt-read-k s k)

(display 3)

(apply-closure k (read)))

(prompt-read-k "Enter the first number to add:" [make-closure 0 ’()])

Figure 3.3 : The Compiled Version of Figure 3.1

references to storage within the server. This results in a distributed garbage collection
problem with no support from the browser. One way to address this problem is to
impose timeouts. That is, the server disposes of unused continuations after some given
amount of time. Unfortunately, timeouts do not solve the problem. If a timeout is too
large, the server consumes too much memory. If it is too short, it forces consumers
to restart computations from the beginning.

Our experience using the server for the TeachScheme! project’s registration pro-
gram highlighted the problem of timeouts further. A timeout of 24 hours sufficed for

most teachers; a few, however, had to request an extension due to a snow-storm that
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interfered with their Internet access. Unfortunately, not even the site operator can
resurrect a continuation that the server has discarded. On another occasion, i copied
the first page generated by the registration program to a different file, referenced by
a different URL. Testing indicated that the copied page worked, yet during the next
day several TeachScheme! administrators indicated otherwise. Even though none of

the code nor static pages changed, the links ceased to function due to the timeout.

3.4 Functional CGI Programs

The key problem with our custom Web server is that its CGI scripts critically rely
on Scheme’s capability to capture a continuation with call/cc. To eliminate the uses
of call/cc, we turn to techniques for compiling functional programming languages.

More specifically, we employ three well-known transformations:

The Continuation Passing Style [20] eliminates call/cc by representing the con-
trol state of a program explicitly. In particular, each function of the program
now consumes one additional argument: the continuation function. A function
that must grab the continuation and store it for future uses can therefore just
refer to this new argument. In our case, a re-implementation of prompt-read
can turn its new argument into a resumption point, that is, a point from where

the program can be restarted.

Lambda lifting turns the resumption points into independent functions that can

be moved to the top level.

Closure conversion changes the representation of closures into a first-order form.
Using this new form, the script can write a continuation closure into a hidden

field of a Web form and use it later to restart a computation.

Once we have CPS’ed, lambda lifted, and closure-converted an interactive program,

we can turn it into a CGI script by adding some primitives and replacing others.
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(define-struct closure (code env))
;s Closure = (make-closure Int Env)
;7 Env = (listof Value)

;; apply-closure : Closure (listof Value) + — Value
(define apply-closure ...) ; as in figure 3.3

(define closures ...) ; as in figure 3.3

;; replaced:
(define (prompt-read-k s k)
(produce-html s (closure-code k) (closure-env k)))

;; added:

;; produce-html : String String (listof Value) — void

:; effect: to write a CGI-compatible HTTP header and HTML Web form
(define (produce-html question mark free-values)

..)
(define bindings (get-bindings))

(cond
((null? bindings)
(prompt-read-k “Enter the first number to add:" (make-closure 0 °()))]
[(string=? (eztract-bindings/single 'cont bindings) "0")
(apply-closure (make-closure 0 (create-env-from-strings
(extract-bindings/single 'env bindings)))
(eztract-binding/single 'response bindings)))
[(string=¥¢ (eztract-bindings/single 'cont bindings) "1")
(apply-closure (make-closure 1 (create-env-from-strings
(extract-bindings/single ’env bindings))
(eztract-binding/single ’response bindings))])

Figure 3.4 : The CGI Version

We explain the process with the trivial but illustrative example from figure 3.1.
The result of the three compilation steps is shown in figure 3.3. This interactive
program requires one final step to become a CGI program. The revision in figure 3.4
demonstrates the result of systematically transforming the compiled version into a

CGI script. The result is structurally almost identical to the hand-coded version of
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figure 3.2.
The details of the process are as follows. The first step produces a CPS’ed version

of the program. Here is our running example:

(prompt-read-k "Enter ... first ... "
(lambda (res?)
(prompt-read-k “Enter ... second ...:"
(lambda (res2)
(display (+ res! res2))))))

where
;; prompt-read-k : String (Value — Value) —» Value

(define (prompt-read-k s k)
(display s)
(k (read)))

In other words, the CPS converter must supply alternate implementations of prim-
itives. For higher-order primitives, such as map, it must add CPS’ed versions so that
the call-backs are applied to a continuation, which may after all represent resumption
points. External modules that accept function arguments must be transformed as
well. We use the CPS conversion of Danvy and Filinski to avoid introducing admin-
istrative beta redexes [12, 43].

Lambda lifting turns anonymous functions into globally defined functions. It thus
allows the compiled CGI program to resume a continuation with a call to a global
function. Each expression

‘(lambda ,args ,body . ..)

is replaced with

‘((lambda ,fv (lambda ,args ,body ...)) ,fv)

where fv is the list of free variables in body .... This new function is closed, so it can

be safely lifted to the outermost lexical scope.
For our running example, this step yields

(define closurel
(lambda ()
(lambda (res?)
(prompt-read-k "Enter ... second ...:"
[closure2 resl]))))
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(define closure2
(lambda (res?)
(lambda (res2)
(display (+ resl res2)))))

(prompt-read-k "Enter ... first ...:" [closurel])

Using closurel and closure2 we can now run the program from different resump-
tion points, turning the original program into a curried adder just as the back button
on a Web browser does.

Figure 3.3 shows the result of the final compilation step, namely of converting
closures into structs; function applications are performed by apply-closure. The
step is necessary for two reasons. First, Web forms must refer to a specific resump-
tion point (closure) within a program, but Web forms can only contain strings. A
unique symbolic code, such as an index into a vector of closures, satisfies this require-
ment. Second, some closures may survive an interaction with the consumer, which
means that their environment must be marshaled into strings for hidden fields and
unmarshalled upon resumption. Since all closures have been converted into first-order
closure structures, a function such as prompt-read can write a closure into the hidden
field of a Web form and the CGI program can read this closure and apply it. Specif-
ically, the code pointer of the continuation describes what (sub) program to invoke
next. The continuation’s environment captures any values needed by the next sub
program instead of explicitly passing them in hidden fields.

Up to this point, the transformation produced a semantically equivalent program,
so that the result is a normal interactive program. To produce a CGI program, we
replace two pieces of the lambda-lifted closure-converted program. The definition of
prompt-read changes and now marshals the continuation into a Web form, asks the
supplied question, and then exits. The expression changes to the text of figure 3.4.
In other words, the program first checks the form bindings for the continuation from
prompt-read. If it exists, the continuation is resumed via a closure application. If

not, the invocation starts from the beginning.
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3.5 Compiling Stateful CGI Programs

(define boz-0 (boz 0))
(define boz-1 (boz 0))

(begin (set-boz! boz-0 (prompt-read "Enter the first number to add: "))
(set-boz! boz-1 (prompt-read "Enter the second number to add: "))
(show (+ (unboz boz-0) (unboz boz-1))))

Figure 3.5 : A Stateful Interactive Program

While generating CGI programs from interactive functional programs is almost a
routine task with functional compilation techniques, internal® mutations in the in-
teractive program pose an interesting challenge. The first problem is due to plain
variable assignments—set! in Scheme—because lambda lifting and closure conver-
sion assume that copying bindings is acceptable. We must therefore eliminate all
assignment statements with a transformation that replaces mutable variables by cells
(boxes in Scheme), assignments to variables with assignments to cells, and references
to such variables with dereferences of cells. Furthermore, the CGI program generator
must know all cells that the original program uses (or implicitly introduces).

The second problem is much more severe. Semantically, mutations introduce an
additional element: the store. Roughly speaking, the store is threaded through the
program, independently of the control state. In particular, when a Scheme program
invokes the same continuation twice, the store of the second invocation is different
from the store of the first one. Modifications of the store survive continuation capture
and invocation.

A consumer who invokes the same continuation twice via a Web form should also

see that the store modifications of the first invocation survive till the second invocation

2We ignore mutations of external entities, say the server file system or a database, because this

topic is well-understood.
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is launched. This requirement implies that a CGI program must deal with the store
differently than with the environment of a closure. In particular, it is wrong to place
the current store into a hidden field of a Web form. After all, if the consumer cloned
the page with the form, the browser would also copy the store, and two submissions
of the form would submit the same store twice.

Still, we must choose where to remember the current store when we suspend a
CGI program. We could either place the store on the server or on the client machine.
As we already know from the discussion of the placement of continuations, the server
is ill-suited for this purpose. Hence, we must turn the store into a datum that is send
to, and then stored on, the consumer’s machine—but not inside the Web page.

This reasoning leaves us with the single choice of turning the store into a browser
“cookie” and placing this marshaled form into the consumer’s cookie file. Unlike hid-
den fields, they are independent from any particular page, so changing continuations
via the back button does not affect the store.

Although this naive cookie solution sounds straightforward, it has two imperfec-
tions. The first one, which is minor, is a the restriction that Web browsers have a
limit of 80kB of storage for cookies per host name [36]. In principle, a limit like this is
no different than a limit on heap space for a conventional program, but the small size
of the limit may be problematic for some programs. As security research improves,
we expect these simplistic limitations to be lifted. The second, more important, one
arises because browsers transmit cookies at the time they submit the Web request. If
the user submits simultaneous requests, one of the cookie transmissions may contain
an out-of-date store. A naive implementation may thus lose updates to the store.

Our solution is to include a sequence number [41] with the cookie store. A sequence
number allows the CGI program to detect race conditions. More specifically, the CGI
stub code stores a sequence number for each original invocation (“session”) of a CGI
program and uses this sequence number to manage access to the store. If it ever

obtains a store with a sequence number less than the current one, it asks the consumer
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to resubmit the Web form. Unfortunately, the use of sequence numbers re-introduces
the server side storage management problem, though because the storage needs for
numbers are small, the problem is probably negligible.

In summary, the inventors of browsers created two mechanisms for threading infor-
mation through Web computations. The two mechanisms are analogous to the two
ways information flows in a programming language semantics: continuations with
environments and stores. Our CGI compiler can therefore use the browsers’ mech-
anisms to implement the separate storage requirements for continuations and stores
in a systematic manner. In this context, it is interesting to note that the size limita-
tions for cookies almost forces CGI programmers to design their programs in a mostly

functional style, whether or not they use functional languages.

3.6 Developing CGI Scripts

Developing a conventional CGI program in standard programming environments is
difficult. To debug the program properly, the developer should run the program as a
CGI script and interact with it through a browser. This is, however, a poor debugging
environment. Instead of a proper error message, the programmer sees responses such

as

Internal Server Error....More information about this error may

be available in the server error log.
The server’s error log contains a corresponding report such as
Premature end of script headers

followed by the name of the program. From this, the programmer can infer that
the CGI program did not output a valid response before terminating, but little more
about the error.

Our compilation process introduces the additional problem that the code that is

executed as a CGI script is not the direct-style code that the programmer wrote.
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Instead, the programmer’s code is first transformed and then run under the server’s
control.

We can overcome both problems with a minor modification of existing program-
ming environments. The idea is to provide a library that re-implements primitives
such as prompt-read so that the execution of the direct-style program functions as if
the CGI script were run. In particular, the primitive communicates the given Web
page to a browser, and the browser communicates the submission of a Web form to
the these primitives. Furthermore, the new library keeps track of the continuations
of prompt-read so that the developer can truly simulate a consumer’s actions on the
browser.

To test this idea, we wrote a small library (technically, a Teachpack [15]) of inter-
action functions for DrScheme, our programming environment (15} for Scheme. The
re-implemented prompt-read primitive accepts HTML pages (with forms); it grabs the
current continuation, stores it, and manages the communication with the browser.

Without further ado, all of DrScheme’s tools are now available to the developer of
a CGI script. For example, DrScheme’s error reporting works properly. Suppose the
developer forgets to deal with illegal inputs explicitly and instead relies on Scheme’s
primitives to read the submitted strings (all Web inputs are strings) as numbers.
Then the program raises an exception for ill-formed S-expressions, and DrScheme
highlights the place where the program raised the exception as if the program were
an ordinary interactive program. See figure 3.7 for an illustration.

Consider the more complex example of DrScheme’s stepper tool [9]. The tool re-
duces Scheme programs according to Scheme’s reduction semantics {14]. A developer
may wish to use the stepper to understand the actions on a step-by-step basis. The
stepper already accounts for library calls as atomic function calls, so that it prop-
erly displays transitions of CGI programs—including input and output steps. See

figure 3.8 for an illustration of this capability.
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In general, our methodology for developing CGI programs permits the use of
conventional design methods for interactive programs and the use of systematically
enriched programming environments. We believe that our ideas thus bring rigorous

order to the world of CGI programming.

3.7 Implementation Status

Both the CGI compiler and the CGI Teachpack for DrScheme exist in prototype
form. We have developed a number of examples in this context, plus one full-fledged
application: the teacher enrollment dialog for our TeachScheme! outreach project.

Our prototype CGI compiler operates on R4RS [10] programs without global de-
fines and without multiple values. The compiler accepts a single expression, typically
a letrec expression prefixed with PLT Scheme library specifications. Currently the
compiler accepts only letrecs with values on the right-hand side.

The marshaling primitives use the standard Scheme printer, which automatically
takes care of sharing and cycles in the reading and writing of environments and
cookies. Higher-order data, including continuations and closures, marshal correctly
since closure conversion represents them as vectors. The encoding could benefit from
a compression step [29] to reduce network traffic and the amount of data that is stored

in cookies.
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(define-struct closure (code env))
;; Closure = (make-closure Int Env)
;7 Env = (listof Value)

;; apply-closure : Closure (listof Value) * — Value
(define apply-closure ...) ; as in figure 3.3
(define closures (vector ...))

;; replaced:
(define (prompt-read-k s k)
(produce-html s (closure-code k) (closure-env k)))

;; added:
;3 produce-html : String String (listof Value) = wvoid
;; effect: to write a CGI-compatible HTTP header and HTML Web form
;; including a cookie containing the-bozes
(define (produce-html question mark free-values)
... (write-bozes-to-cookie the-bozes)...)

(define bindings (get-bindings))

;; the-bozes : (vectorof Value), the current store
(define the-bozes
(if (null? bindings)
(initialize-the-bozes)
(read-bozes-from-cookie)))

;; initialize-the-bozes : —» (vectorof Value)

;; create a new store plus a sequence number

;; read-bozes-from-cookie : = (vectorof Value)

;3 turn a cookie into a store, check sequence number using a lock file

;3 write-bozes-to-cookie : (vectorof Value) — void

;; turn a store into a cookie, increment sequence number using a lock file

(cond

[(null? bindings)

(apply-closure (make-closure 0 ’()) (boz 0))]

[else

(apply-closure (make-closure (string—number
(ezxtract-bindings/single 'cont bindings))

(create-env-from-strings
(eztract-bindings/single ’env bindings)))
(eztract-binding/single ’response bindings))])

Figure 3.6 : A Stateful CGI Version
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Figure 3.7 : CGI Error Reporting
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Figure 3.8 : CGI Stepping
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Chapter 4

Related Work

Others laid the ground work for developing interactive CGI programs. Hughes [27]
developed arrows as a generalization of monads. One of his example sections describes
how to implement interactive CGI programs using arrows. His key insight is to
provide a mechanism that turns the current continuation into a datum for the Web
page. Similarly, Queinnec [40] advocates using call/cc to implement interactions
between Web servers and consumers. His method requires extending the server to
store continuations.

Each approach suffers from a shortcoming: the arrow solution deals with stores
improperly, while storing continuations in a Web server induces time-outs. Our com-
pilation based solution overcomes both these difficulties. Furthermore, our work
demonstrates that these ideas are applicable to all kinds of languages, not only lan-
guages that support monads and arrows or functional languages with call/cc.

The performance problems of the CGI interface has led others to develop higher-
speed alternatives (37, 46]. In fact, one of the driving motivations behind the Microsoft
.NET initiative [32] appears to be the need to improve Web server performance by
eliminating process boundaries.!

Apache allows programmers to eliminate process boundaries by providing an in-
terface to modules [46] extending the server with code that, among other things,
generates content dynamically for given URLs. However, circumventing the underly-
ing operating system without providing an alternative protection mechanism within

the server opens the entire server to catastrophic failures.

1Shriram Krishnamurthi relayed his personal communication with Jim Miller to me.
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FastCGI [37] provides a safer alternative by placing each content generator in its
own process. Unlike traditional CGI, FastCGI processes handle multiple requests,
thereby avoiding the process creation overhead.

At first glance, a reader could suspect that the FastCGI protocol solves the prob-
lems of CGI program design and implementation. Since these programs specifically
wait for a request, it may appear that the programmer could do more than the typical
looping over requests at the start of the program. One could attempt to construct an
interactive program by waiting for the next request at different points in the compu-
tation. However, this approach only allows the user to proceed forward through each
interaction. Cloning windows or using the back button will send the form data to the
wrong point in the program.

Furthermore, FastCGI's use of a separate process generates bi-directional inter-
process communication cost and introduces coherence problems in the presence of
state. It also complicates the creation of cooperative CGI programs that communicate
higher-order data.

The <bigwig> system (7] also recognizes the need for designing interactive systems.
However, they claim that users should not be allowed to go back to previously visited
pages since programs don’t handle this well. Thus, similar to FastCGI, their system
delegates requests to persistant session threads that suspend at each interaction point,
as mentioned above. Instead of responding directly to requests, the system writes the
response to a file and redirects the client to that document. This purposely disables
the use of bookmarks or the back button to resume prior points in the computation
since bookmarks always return to the most recent interaction and the back button
starts the session over. We believe that people change their minds and do want to
return to prior interactions, so Web applications must handle this situation rather
than disallowing it.

The performance of <bigwig> programs does not look promising, though this is

acceptable for applications with few users. Handling a request involves creating a
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new “connector” process, thus introducing the overhead of the CGI protocol. It also
involves the extra interprocess communication overhead of FastCGI. Furthermore,
redirecting each CGI request to a file introduces extra network overhead, not to
mention the cost of reading and writing files.

On a positive note, <bigwig> provides sophisticated handling of concurrency using
Monadic Second-order Logic on Strings. Our server serializes requests for a given
session. For collaborative CGI programs our server provides the programmer with
more mundane concurency control operations based on semaphores. Their system
also compiles regular expression restrictions on HTML form fields into JavaScript
that checks the form values before submission. The server rechecks the values in case
the client bypasses the checks. Our system relies solely on server side checking.

IO-Lite [38] demonstrates the performance advantages of programs modified to
share immutable buffers instead of copying mutable buffers across protection domains.
Since the underlying memory model of MrEd provides safety and immutable string
buffers, our server automatically provides this memory model without the need to
alter programming styles or APlIs.

The problem of managing resources in long-running applications has been iden-
tified before in the Apache module system [46], in work on resource containers [6],
and elsewhere. The Apache system provides a pool-based mechanism for freeing both
memory and file descriptors en masse. Resource containers provide an API for sepa-
rating the ownership of resources from traditional process boundaries. The custodians
in MrEd provide similar functionality with a simpler API than those mentioned.

Shivers also implemented an extensible Web server in Scheme [44]. Instead of
exporting a function that handles each request for a URL from a replaceable unit,
his server accepts this function as an argument. His system also provides a library
of default request handling functions and a means of combining them. Although
the system provides a means of uploading code to the server and running it in a

controlled environment, it does not address resource management issues for CGI
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programs. He may not have addressed this problem because his server does not
directly support interactive programs via continuatons, which increases the need for
resource management.

The FoxNet project [25] implemented a modular Web server in the high level
language SML [33], and demonstrated that it performed well. This idea of integrating
languages and systems dates back as far as Lisp machines [42], which implemented
Lisp directly with special purpose hardware.

Like our server programs, Java servlets [11] are content-generating code that runs
in the same runtime system as the server. Without the subprocess management
facilities of MrEd’s custodians, the server relies on an explicit delete method in the
servlet to shut the subprocess down cooperatively. While this provides more flexibility
by allowing arbitrary clean-up code, the servlet is not guaranteed to comply.

Aside from the object-oriented interface and libraries for constructing HTTP re-
sponse headers, servlets provide the same programming model as standard CGI. Each
incoming request invokes a method in the servlet, leaving the task of restoring the
appropriate control context to the programmer. It may appear that servlets can avoid
moving the store into cookies by holding values in the servlet object’s fields. How-
ever, the Web server has the option of unloading a servlet and creating a new one at
any time. The server also has the option of migrating the servlet to another virtual
machine, so data may not reside in static fields between interactions either. The
HttpSession class provides a mechanism for maintaining a dictionary from Strings
to Objects on the server and storing a reference to the dictionary in a URL, cookie,
or Secure Sockets Layer session. All the problems with server side state consuming
memory and timing out remain.

The J-Server [45] runs atop Java extended with operating systems features. The
J-Server team identified and addressed the server’s need to prevent dynamic content
generators from shutting down the entire server, while allowing the server to shut-

down the content generators reliably. They too identified the need for generators to
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communicate with each other, but their solution employs remote method invocation
(which introduces both cost and coherence concerns) instead of shared lexical scope.
Their work addresses issues of resource accounting and quality of service, which is
outside the scope of this dissertation. Their version of Java lacks a powerful module
system and first-class continuations. Thus, their programming model is the same as

CGI, FastCGI, and Java servlets.



43

Chapter 5

Future Work

Two major areas of future work involve type systems and interoperability. Research
should explore how the essential additions to Scheme—dynamically linkable modules
that are first-class values, threads, custodians, and parameters—can be integrated in
typed functional languages such as ML and how the type system can be exploited to
provide even more safety guarantees. While MrEd already permits programmers to
interoperate with C programs through a foreign-function interface, we are studying
the addition of and interoperation between multiple safe languages in our operat-
ing system, so programmers can use the language of their choice and reuse existing
applications [31].

The compilation based implementation does not address security. Malicious users
could examine the hidden field containing the marshaled continuation, possibly re-
vealing confidential information the programmer intended to remain internal to the
program. Worse, the user can modify the continuation including any of its free vari-
ables. To prevent these problems, the system needs to represent the continuation in
an illegible, unforgeable manner. Some form of encryption or digital signature may
suffice.

While storing information in the client introduces security concerns, the custom
server’s strategy of keeping the data in the server's memory loses data if the server
goes down. This inconveniences the programmer with the task of explicitly storing
more important data on disk or in an external database. Instead, the system should
checkpoint the program’s state periodically or at each interaction, so maintaining

values in ordinary program variables would become robust.
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The superior performance of the custom server for dynamically generated content
should substantially outweigh performance penalties of added security or checkpoint-
ing. However, the performance of the server for static files could be improved further
by various caching techniques and by adding persistent connections. Further mea-
surements could directly compare our system’s dynamic performance to other systems
instead of indirectly comparing the other systems to CGI or to FastCGI.

In addition to relaxing the memory performance, send/finish allows the program-
mer to constrain the program’s control flow. Although adequate for tasks with one
final, irreversible action at the end of the program, it lacks the flexibility required for
other tasks. For example, the programmer may want to prevent the user from going
back prior to a given point, but still allow forward progress, similar to Prolog’s cut
operation. Many constructs such as dynamic-wind [26], F and prompt [43], shift and
reset [12], and others exist. Which operations restrict Web computations in desirable

ways remains an interesting question.
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Chapter 6

Conclusions

The content of the Web is becoming more dynamic. The next generation of Web
servers must therefore tightly integrate and support the construction of extensible and
verifiable dynamic content generators. Furthermore, they must allow programmers
to write interactive, dynamic scripts in a more natural fashion than engendered by
current Web scripting facilities. Finally, the servers must themselves become more
extensible and customizable.

This dissertation demonstrates that all these programming problems can be solved
with a high-level programming language, provided it offers OS-style services in a safe
manner. Our server accommodates both kinds of extensibility found in traditional
servers—applications, which serve data, and extensions, which adapt the behavior
of the server itself—by exploiting its underlying module system. All these features
are available on the wide variety of platforms that run MrEd (both traditional op-
erating systems and experimental kernels such as the OS/Kit [19]). The result is
a well-performing Web server that accommodates natural and flexible programming
paradigms without burdening programmers with platform-specific facilities or com-
plex, error-prone dynamic protocols.

This dissertation also demonstrates why compilation techniques from the func-
tional world matter for Web programming. It shows that one can design interactive
programs and then translate them into CGI compliant structure using CPS conver-
sion, box conversion, lambda lifting and closure conversion, followed by the generation
of a little administrative stub code. Furthermore, bringing this systematic order to

the world of CGI programming also solves the problem of developing CGI programs
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in a conventional programming environment.

Our work applies to conventional languages as well as functional languages. We
can clearly implement these transformations for languages such as Perl [48], Python [47]
and Java {22]. Indeed, since Python now supports a form of continuation operator,
we can also turn IDLE [13] into a CGI development environment.

Even in the absence of such tools, we can use the CGI example to motivate the
teaching of CPS conversion, lambda lifting, and so on in our programming languages
and compilers courses. The dissertation shows that learning such transformation
techniques is not just an idle exercise in functional programming but a valuable skill
in the world of Web programming.

The dynamic, call/cc based technique and the static, compilation based technique
each have advantages and disadvantages. The dynamic approach requires a custom
Web server, while the compilation approach produces standard CGI programs that
run on any server. Integrating the Web applications into the server dramatically
improves performance and eliminates the need for an underlying operating system.
Storing continuations on the server increases the server’s memory usage and requires
timeouts. Marshalling them onto the client introduces extra network traffic and
security concerns. Keeping a separate store on each client also precludes cooperation
among Web applications through shared lexical variables.

For non-collaborating Web applications, the best solution for constructing CGI
programs combines the two techniques. The compiler eliminates calls to send/suspend
statically, leaving the server free from storing continuations. The custom server then

dynamically extends itself with the resulting program, so the code runs quickly.
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