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Mixed Finite Element Methods for Variably
Saturated Subsurface Flow

Carol A. San Soucie

Abstract

The flow of water through variably saturated subsurface media is commonly mod-
eled by Richards’ equation, a nonlinear and possibly degenerate partial differential
equation. Due to the nonlinearities, this equation is difficult to solve analytically
and the literature reveals dozens of papers devoted to finding numerical solutions.
However, the literature also reveals a lack of two important research topics. First, no
a priori error analysis exists for one of the discretization schemes most often used in
discretizing Richards’ equation, cell-centered finite differences. The expanded mixed
finite element method reduces to cell-centered finite differences for the case of the
lowest-order discrete space and certain quadrature rules. Expanded mixed methods
are useful because this simplification occurs even for the case of a full coefficient
tensor. There has been no analysis of expanded mixed methods applied to Richards’
equation. Second, no results from parallel computer codes have been published. With
parallel computer technology, larger and more computationally intensive problems can
be solved. However, in order to get good performance from these machines, programs
must be designed specifically to take advantage of the parallelism. We present an
analysis of the mixed finite element applied to Richards’ equation accounting for the
two types of degeneracies that can arise. We also consider and analyze a two-level
method for handling some of the nonlinearities in the equation. Lastly, we present
results from a parallel Richards’ equation solve code that uses the expanded mixed

method for discretization.
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Chapter 1

Introduction

1.1 Introductory Remarks

Recent years have seen an increase in attention to modeling the flow of water through
variably saturated porous media. This increase arises from heightened interest in find-
ing appropriate sites for waste facilities and in evaluating the impact of current sites
on local groundwater systems. One way to gain an understanding of the groundwater
systems at these sites is through computer simulations of subsurface flow.

A commonly accepted mathematical model of water flow through variably satu-
rated porous media is Richards’ equation, a nonlinear parabolic partial differential
equation well known in hydrology and related sciences. Richards’ equation is ex-

pressed as,

a0(h) . Ok ) ~ |
-'aT+555Z—V‘]\(h)Vh-—-f, (11)

where & is the hydraulic head, 0 is the moisture content of the soil, S, is the specific
storage of the medium, K is the hydraulic conductivity and f is a water source/sink
term. The highly nonlinear nature of this equation makes analytical solutions difficult
to find, so this equation is most often solved numerically.

In this thesis we formulate efficient discretization schemes based on the mixed
finite element method for the solution of Richards’ equation, prove a priori error
estimates for these methods and show results from a computer program developed
for parallel platforms which solves Richards’ equation.

1.2 Previous Work

Before presenting the results of this thesis, a brief summary of previous work on the
analysis and numerical solution of Richards’ equation is in order. We first consider
reasons for choosing mixed finite element methods and some results pertaining to
these methods. We then mention previous work anaylyzing Richards’ equation, and

lastly, we discuss the literature pertaining to numerical solutions of the equation.



Mixed methods are considered for this work because they conserve mass on a cell-
by-cell basis. This conservation of mass means that at any time, the flux out of each
cell is equal to the flux into the cell plus any source. Galerkin finite elements only
guarantee a global conservation of mass, meaning that the flux out of the domain is
equal to that into the domain plus any source. Since Richards’ equation is actually
a conservation equation, mixed methods in some sense require the solution to hold
cell-by-cell.

Mixed finite element methods for linear elliptic problems have been well studied
[17, 56, 9]. Element spaces have been developed for both two and three dimensions and
for many different element shapes [54, 50, 14, 15, 16]. For these equations analysis has
shown that if A is the maximal mesh spacing, then optimal convergence of the lowest
order mixed method is O(h) for both the scalar and velocity variables. Moreover,
superconvergence of O(h?) has been shown for the pressure and velocity variables at
certain points [49, 62, 29, 25].

In the case of linear elliptic equations, Russell and Wheeler [59] have shown that
for the lowest order Raviart-Thomas-Nedelec [54, 50] spaces on rectangles and for a
diagonal tensor K, the use of certain quadrature rules simplifies the mixed method
into a cell-centered finite difference scheme with a 5 point stencil in two dimensions
and a 7 point stencil in three dimensions. Weiser and Wheeler [62] showed that this
simpler scheme retains the convergence and superconvergence rates of the original
method for both the pressure and velocity.

Although much analysis has been done on mixed finite element methods, most of
it assumes that K is a diagonal and invertible tensor. However, a full tensor can arise
when computing “effective permeabilities” as in upscaling from fine to coarse data
[26] or when mapping a rectangular grid into a logically rectangular grid [7). When
the tensor is full it is not possible to derive a finite difference scheme equivalent to
the mixed method. Recently, methods have been developed to handle a full, possibly
noninvertible tensor [8, 19, 44]. In particular, Arbogast, Wheeler and Yotov have
analyzed the expanded mixed finite element method [8]. This method simultaneously
approximates the pressure, its gradient and the flux. Arbogast, Wheeler and Yotov
showed that for the lowest order Raviart-Thomas-Nedelec space on parallelepipeds,
a cell-centered finite difference scheme results from this method. In certain discrete
norms and for linear elliptic equations, this scheme exhibits superconvergence of O(h?)
for the scalar variable and of O(h*/?) for its gradient and flux. However, in the interior

of the domain, they show O(%?) for the last two of these.
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There has been relatively little analysis of the mixed method applied to nonlinear
equations. Milner [48] developed a mixed method for the solution of two-dimensional
second order quasi-linear elliptic equations. He was able to show existence and unique-
ness of a solution to his scheme as well as optimal convergence. Dawson and Wheeler
[22] in the course of analyzing a two-grid scheme for three-dimensional problems de-
rived optimal order estimates for the expanded mixed method applied to the nonlinear
heat equation.

Richards’ equation is particularly difficult to analyze since it can be degenerate,
i.e. the K(h) term can be 0 as can the time derivative of §. There has been some re-
cent work on the analysis of degenerate parabolic equations. Rose [57) considered the
porous medium equation, which admits solutions lacking the regularity of classical
solutions. He developed continuous and discrete time Galerkin finite element ap-
proximations and derived estimates based on assumed rates of degeneracy. Nochetto
and Verdi [51] also considered degenerate parabolic equations and developed linear
Galerkin finite element schemes with error estimates. Arbogast, Wheeler and Zhang
[6] made use of the Kirchhoff transformation in order to develop estimates of the
mixed method applied to degenerate parabolic equations but they assume a linear
time derivative term.

In [4], Arbogast developed error estimates for Galerkin finite elements applied to
Richards’ equation. He allowed for the time derivative of § to be 0 but assumed
K > 0. Arbogast, Obeyeskere and Wheeler [5] developed estimates for the Galerkin
method applied to Richards’ equation in the case that both the time derivative of 0
and the hydraulic conductivity are not 0.

When considering previous numerical work on Richards’ equation, it is helpful to
be familiar with some common formulations of the equation. Different formulations
of Richards’ equation have various advantages and disadvantages depending on the
physical situation and the numerical scheme. Various formulations are possible due
to a constitutive relationship between pressure head and water content. Probably the
most common expression of the equation is formulated in terms of the pressure head
only,

oh N
(Ss + C’(h))—a—t— -V -K(h)Vh=f,
where C(h) = 00/0h is the water capacity. While this formulation gives the solution
as pressure head, due to the way the time derivative is expressed, numerical schemes

based on this form tend to be nonconservative. Another form is based on the water
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content,
00
5~V DOVI=],

where D(0) = K(0)/(00/0h). This form is advantageous in that it is in conservative
form. However, for saturated media, § becomes constant, D approaches infinity, and
this form is no longer applicable. Furthermore, 0 is not continuous across interfaces
separating layers of two different soils. The pressure head is continuous across these
discontinuities which makes head-based methods better suited for modeling flow in
layered soils. However, researchers have found that schemes for the head-based formu-
lation produce large mass balance errors [18, 39]. The formulation in equation (1.1)
is the mixed form. This formulation is also mass conserving and gives the solution in
terms of pressure.

Many papers have been published discussing numerical solutions to Richards’
equation. The most common approaches use a low-order finite difference or finite
element method in space with backward Euler or Crank-Nicholson time discretization
and Newton or Picard iteration for the nonlinearities. We now briefly describe some
of this work.

Allen and Murphy [2] in the context of collocation methods and Celia, Bouloutas
and Zarba [18] in the context of finite differences and finite elements have formulated
the modified Picard method for handling nonlinearities in the mixed form of Richards’
equation. This method applies Picard iteration to the nonlinearities in the hydraulic
conductivity, but uses a first order Taylor expansion of 6 about the previous value
for the time derivative term. This expansion results in the same linear system as
the standard head-based scheme except that the right hand side also contains the
time derivative of § at the previous iteration for the given time level. Numerical
results show this term helps to preserve mass balance that is lost with the standard
head-based schemes.

Much work on the solution of the head-based form of the equation has focused on
developing mass-conservative schemes for this nonconservative form. In [47), Milly
formulated a mass-conservative scheme by using an average value of the water capacity
over each time step. This averaging reduced error associated with evaluation of the
function at a fixed point which may or may not represent the behavior over the
entire time step. Kirkland, Hills and Wierenga [43] employ an update for  based
on computed flux values. This new # update removes the nonconservative nature

of the head-based scheme and preserves mass balance. Rathfelder and Abriola [53]




developed mass-conservative numerical solutions of the head-based form with both
finite elements and finite differences. They make use of a chord-slope approximation
of the water capacity term, C. In the finite difference case, their scheme for the
head-based form results in the same discrete system as the scheme of Celia, et.al. for
the mixed form of the equation.

Hills, Porro, Hudson and Wierenga [39] developed a scheme for the 0-based form.
They modeled the discontinuities of § by adding an additional source term expressed
as a jump in 0 values across interfaces. Comparisons between their water content-
based and head-based forms show that the f-based scheme is far better at conserving
mass and is less sensitive to time step size in dry conditions than the pressure-based
form. They point out that the main disadvantage of the 0-based scheme is its inap-
plicability to saturated flow.

Some authors have considered the Kirchhoff transform to numerically handle de-
generacies. Haverkamp and Vauclin [37] compared a finite difference solution of the
Kirchhoff transformed equation with the head-based form. They found that the trans-
formed equation gave more accurate results but required much more compute time
due to the need for integrated values of the transformation. Ross and Bristow [58]
have discussed the transformation in the case of discontinuous hydraulic conductiv-
ities. They apply the Kichhoff transformation element-by-element, then couple the
elements together through the continuous pressure head at element boundaries.

Some authors have looked at variable transformations to switch between saturated
and unsaturated conditions thereby using the 0-based form in unsaturated regions
and the head-based form in saturated regions. Kirkland, Hills and Wierenga [43]
transform Richards’ equation in terms of a single variable which is defined as water
content in dry conditions and pressure head otherwise. With this transformation the
scheme generates very little mass balance errors, and is stable over a wide range of
conditions. However, they find degradation in accuracy near the interface between
saturated and unsaturated regions. Forsyth, Wu and Pruess [33] developed a similar
scheme in that they switch from head-based to 6-based schemes depending on water
saturation values. Their scheme differs from Kirkland et.al. in that the change in
variables is performed after the equation is discretized, as opposed to rewriting the
original equation in terms of a new, more general variable. Forsyth et.al. switch
between pressure and water content by substituting the appropriate variable in the
equation for each grid point. Numerical results show a significant improvement in

computational speed by using this variable substitution method instead of standard




head-based methods for dry conditions. The reason for this improvement is that they
are able to take larger time steps when the domain is unsaturated.

Huyakorn, Thomas and Thompson [40] compared the Newton and Picard meth-
ods. For a Galerkin method applied to the head-based form of the equation, they
have found that even though the Newton iterations are each slower than the Picard
iterations, in general, significantly fewer Newton iterations are required for conver-
gence.

One difficulty with solving Richards’ equation numerically is that despite the fact
that the equation is parabolic, steep water saturation fronts can occur when modeling
flow of water into very dry media. The saturation fronts can be very difficult to
simulate numerically and common methods such as Galerkin finite element methods
can produce sharp nonphysical oscillations near these fronts. Forsyth and Kropinski
[32] have given monotonicity conditions for a head-based scheme. If these conditions
are met, the solution will be non-oscillatory near steep fronts. They further indicate
that only upstream weighting [61] for the K term as opposed to central weighting
will give nonoscillatory solutions. Abriola and Lang [1] have shown that adding more
degrees of freedom by using a higher order method near the front gives more accuracy
than if the same number of new unknowns were introduced solely by grid refinement.

1.3 Present Work

Until now, there have been no estimates of the mixed finite element method applied to
Richards’ equation. This thesis will present a number of estimates for the expanded
mixed method applied to the equation. We first present a continuous time analysis
for the case where ' > 0 and the time derivative of § may be zero. This is the
case for partially to fully saturated flow. For this situation, bounds of the error in
approximating ¢ and the negative gradient of hydraulic head are derived in terms of a

Hélder continuity parameter. Furthermore, an optimal bound for the nonlinear form,

T
([ @) -ocp),p- Prar)™,
where p is the hydraulic head, is derived. The bound is optimal since it is equal to the
order of truncation error for approximation with the same degree polynomial as the
approximating space used in the method. In addition, this nonlinear form is bounded
below by the error in 6 and above by the error in p.
Next, we consider the case where K > 0 and the time derivative of 8 is strictly

nonzero. This is the case of strictly partially saturated flow. For this situation,




optimal convergence of the hydraulic head and its negative gradient are shown for a
fully discrete time scheme.

The third case considered occurs when the tensor coefficient is positive semi-
definite, and 90/9p > 0. This is the case of unsaturated to fully saturated. For this
possibly degenerate situation, the Kirchhoff transform,

R(p) = [ k(0(p))dg,

is used, where p is the hydraulic head and k(0(p)) is the relative permeability. As seen
below, this transformation moves the nonlinearity from the K term to the gradient. In
the situation when K = 0, the problem solution lacks enough regularity to formulate
a variational problem involving the time derivative of 0, with trial functions in L2.
Thus, we follow the technique of Arbogast, Wheeler and Zhang [6] and formulate an
integrated in time scheme. The error estimates for the resulting scheme applied to
Richards’ equation are optimal in the sense that they reduce to approximation error.

Having analyzed the expanded mixed method applied to Richards’ equation, we
turn to methods of handling the nonlinearities at the level of discretization. The
approach used is that of J. Xu [63, 64] and Dawson and Wheeler [22]. In these
works, the discretization scheme is applied to the nonlinear equation on a coarse
grid, and the equation is then linearized about the coarse grid solution on the fine
grid. Xu analyzed this scheme for Galerkin methods applied to nonlinear elliptic
equations, and Dawson and Wheeler analyzed the scheme for the expanded mixed
method applied to the nonlinear heat equation. As a first step in applying this scheme
to Richards’ equation, we analyze the scheme for a superconvergent cell-centered finite
difference method also applied to the nonlinear heat equation. Then the scheme for
the expanded mixed method applied to Richards’ equation is discussed.

Although much computational work has been done in finding efficient ways of
solving Richards’ equation, to this author’s knowledge there have been no published
results from a parallel computer code. Results are given from a parallel, three-
dimensional Richards’ equation code, PREQS. This code uses a cell-centered finite dif-
ference scheme equivalent to the expanded mixed method with quadrature. One point
upstream weighting is used to more accurately model the moving fronts. Parallelism
is achieved by spatially decomposing the domain into subdomains and assigning one
subdomain to each processor, and extra unknowns are introduced along subdomain

interfaces in order to reduce communication requirements.




Results are given from a variety of test cases. The first case is a nonlinear
parabolic equation with a source term chosen to guarantee a specific solution. A
three-dimensional convergence analysis is done which indicates a spatial rate of con-
vergence of almost O(h?). The second test case is a one-dimensional Richards’ equa-
tion problem from Celia, Bouloutas and Zarba [18]. Celia et.al. measure the mass
balance ratio which is the total amount of water entering at the boundaries of the
domain divided into the time rate of change in water mass. For a mass conserving
numerical method, this ratio should always be unity. Celia et.al. report a ratio of 1
for a mixed formulation scheme and ratios significantly less than 1 for a head-based
scheme. The PREQS code always gives a ratio of 1, indicating conservation of mass.
Lastly, results are given for a three-dimensional full tensor Richards’ equation case
using the general geometry techniques of Arbogast, Wheeler and Yotov [7]. These re-
sults indicate that the code predicts reasonable solutions to flow problems on general
domains.

The rest of this document is organized as follows. In the next chapter an overview
of the physical flow problem and assumptions leading to Richards’ equation are given.
In chapter 3, notation and discretization schemes are introduced. We summarize the
mixed and expanded mixed finite element methods as well as discuss the Raviart-
Thomas-Nedelec approximating spaces. In the following chapter an a priori errvor
analysis of the expanded mixed method applied to Richards’ equation is presented.
Chapter 5 discusses a novel two-level method for handling the nonlinearities in the
equation and chapter 6 presents the parallel Richards’ equation code and numerical
results. Lastly, chapter 7 gives a brief summary of the thesis and indicates directions

for future work.



Chapter 2

Physical Background

In this chapter we give a brief description of the physical laws that lead to Richards’
equation for flow of water through variably saturated porous media. For information
beyond that presented here, the reader is referred to the books of Bear [11, Chapter
9], Fetter [31, Chapter 4] and Freeze and Cherry [34, Chapter 2.

The physical situation we are modeling is that of water flowing into a porous
medium filled with air and a small amount of water.

Water saturation measures the amount of water in the medium and is defined
as the fraction of total pore space that is filled with water. The term “variably
saturated” refers to the possibility that the water saturation, s, can vary between
some residual water saturation, s,, and s, a fully saturated medium. The medium is
called unsaturated if water saturation is less than s, and saturated otherwise. Water
saturation is closely related to the volumetric water content of the soil, 8, which is
the fraction of total volume that is filled with water. The relationship between 6 and
s is,

0 = ¢s,

where ¢ is the porosity, or amount of pore space per unit volume of the medium, and
s is the water saturation.

In unsaturated flow, the driving force of the flow is the matric potential, ¥, which
has units of Newtons per square meter (N/m?). This potential is caused by sur-
face tension creating a negative pressure on the pore water and is a function of the
volumetric water content of the soil, 0.

In unsaturated media, the matric potential is negative and is equal to the negative
of capillary pressure, P, also having units of N/m? The capillary pressure is related

to the pressures of the other phases by,
P =p, — Pw,

where p, and p,, are the air and water pressures, respectively. For the case of a single

water phase flowing into a porous medium, it is assumed that the air phase pressure
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remains constant at atmospheric pressure. Thus, the capillary pressure is no longer
a function of p,. In this case, we will consider the water pressure as a gage pressure,
i.e. pu = py, +po where p, is the absolute water pressure. Thus, — P, = p,,. Capillary
pressure can also be experimentally measured as a function of water saturation. The
resulting curves exhibit hysteresis; they are different depending on whether water is
flowing into (imbibition) or out of (drainage) the medium. In the work considered
here, hysteresis will be neglected. Due to the relationship between capillary pressure

and water saturation, we can write

s = Pc_l(pa - pw),

where p, is constant. This relation shows s as a function of p,.
Van Genuchten [38] derived an empirical formula for the water content as a func-

tion of matric potential. This relationship is,

0, — 0,
0 = 01- + W, (2.1)
1
n=r—r, (2.2)
1 -m
o= E(gl/’" — 1), (2.3)

where 0 is the volumetric water content, 0, is the volumetric water content at s = s,,
0, is the irreducible minimum water content at s = s,, ¥ is the matric potential, m
is an experimental parameter based on the soil type and hj is the bubbling pressure
(defined below). For a typical soil-water system, m =~ 0.5,0, ~ 0.1,0, ~ 0.5 and
hy =~ —355¢cm. Thus, n &~ 2.0 and o = 0.005. A typical curve of water content vs.
matric potential for these parameters is given in Figure 2.1.

The bubbling pressure can be defined as follows. At atmospheric pressure, the
medium is saturated with § = 0,, where 0, is the highest value 0 can take. Now
consider decreasing the matric potential. The medium will remain saturated as the
matric potential is decreased until the potential is negative enough that the water
will begin to drain. The potential value at which this drainage starts to occur is the
bubbling pressure.

For saturated flow, the driving force is again a pressure potential. However, the
pressure is now positive and the potential ¥ > 0.

If water is allowed to be slightly compressible, the density is not constant and is

related to the water pressure through an equation of state, for example,

p = poellP=ro), (2.4)



11

Water Content vs. Matric Potential
T T T

10

Matric Potential (~cm)
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Water Content (dimensionless)

Figure 2.1 Typical van Genuchten curve of
water content vs. matric potential.

where pg is water density at atmospheric pressure pg, and 3 is a small constant. The
water compressibility constant, 3, is defined as the negative of change in water volume

per unit volume per change in pressure, or,

/
B = _% ~ 4.4 x 1071°m?/N. (2.5)

The total soil-moisture potential, T, is the sum of the matric potential and a
gravity potential. The gravity potential can be expressed as the product of the water
density, p, the acceleration of gravity, g, and the height, z, above some reference level.

Thus, the total soil-moisture potential is,
T, ="+ pgz.

If this equation is divided by pg, the result is the soil moisture potential expressed as
energy per unit weight, commonly measured in cm. This potential is,

Th=—\£+z
pg
=h+ 2z,
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where % is the matric potential expressed in units of length. The matric potential
expressed as a length is often referred to as pressure head, and the soil-moisture
potential expressed as a length is referred to as hydraulic head.

Darcy’s Law for saturated flow and the Buckingham flux law for unsaturated flow
relate the flow of water to the gradient of the hydraulic head through the relation,

q=—K(h)VTs, (2.6)

where q is the soil moisture flux (cm/s) and K'(h) is the hydraulic conductivity of the
soil. The hydraulic conductivity (cm/s) measures the ability of the soil to transmit
water. For a saturated medium, the pore space is filled with water and all the pores
participate in the transmission of water. Thus, the hydraulic conductivity is a function
of position only. However, for an unsaturated medium, some of the pore space is filled
with air. Water will only travel through wetted areas, so for an unsaturated medium,
the hydraulic conductivity is a function of the moisture content as well as position.
Experiments conducted with ideal, uniform porous media have indicated that the

hydraulic conductivity can be written as,

K(0) = kkrw(o)f)g,
7

where k is the intrinsic permeability of the medium (measured in Darcy’s where 1
darcy = 10"%cm?), k() is the relative permeability of water to air (dimensionless)
and g is the dynamic viscosity of water (N -s/cm?). The relative permeability is
the ratio of the unsaturated hydraulic conductivity evaluated at 8 to the saturated
hydraulic conductivity, evaluated at 0,. The value of k., is simply a number between
0 and 1. The hydraulic conductivity can also be expressed as a function of the matric
potential.

Van Genuchten [38] derived expressions relating the hydraulic conductivity to
both the water content and the pressure head. The relationship between K and 0 is

expressed as,
K(0) = K.S;/*[1 — (1 - S3/m)m P,

where S, = (0 — 0,)/(0s — 0,) 1s an effective saturation between 0 and 1, K is the
saturated hydraulic conductivity and m is the van Genuchten soil parameter. For the

typical parameters discussed above, this curve is given in Figure 2.2. The relationship
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Relative Permeability vs. Water Content
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Figure 2.2 Typical van Genuchten curve of
hydraulic conductivity vs. water content.

between K and h is,

(1= (ah)™1[1 + (ah)™]™™)?

[]_ + (ah)n]mﬂ (27)

K(h) = K,

Figure 2.3 shows this curve for the above described parameters. Note that the relative
permeability is just, K(0)/K, or K(h)/K,, so these curves also give the relative
permeability function.

Conservation of mass for flow of water in a porous medium requires that the net
rate of water mass flow into a small control volume be equal to the time rate of
change of water mass storage within the volume plus any source terms. Combining

this statement with equation (2.6) gives,
d .
%ﬁjﬂ =V (pK(R)VTa) = f,

where f is a source term. This is Richards’ equation [55).

The time derivative term can he written as,

Asdp) _ 90 | 400 05
TR TR TR TS (2.8)
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Relative Permeabllity vs. Pressure Head

-
OO

-
(=]
L

-
o
)
»
T

]
]
T

-
o

1
>
T

Relative Permeability K/K_s (dimensionless)
o)

-
o
1
L]
T

1 162
Pressure Head {-cm)

10

Figure 2.3 Typical van Genuchten curve of
hydraulic conductivity vs. pressure head.

Assuming an incompressible medium, ¢ is constant in time and the first term is zero.
For unsaturated flow, the second term is small relative to the third and the time
derivative is just,
d(s¢p) 0s ao(h)
Rppa =p—p
ot ot ot

For saturated flow, s is a constant equal to s,, and the second term in (2.8) is the

only applicable term. Thus,

dspp) _ Op oh

_ Op _ o0k
ot =38 a‘ —53¢prg;?7—psaata

where f is a the water compressibility constant in (2.4), and S is the specific storage
of the aquifer. The specific storage is defined as the volume of water that a unit
of aquifer releases from storage under a unit decline in the hydraulic head. In the
present work, the component of S, related to the compressibility of the medium will
be ignored. The derivation of S, is as follows. By equation (2.5),

dVyy = —BVydp.
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The water volume is just ¢s,Vp where Vi is the total volume. Assuming Vp =1 and
using the relation p = pgh,

dVy = —Pdsspgdh.
Taking a unit decline in &, dh = —1, gives,

dVy = Bdsspg = Ss.

For the spatial derivatives, we have V - (pq). This term can be written as,
V-(pq)=Vp-q+pV-q.

Since we assume that water is slightly compressible as in (2.4), Vp is very small
and the first term may be neglected. Canceling the density, we can write Richards’

equation as,

Wgh) n Ssaarth — V- (K(h)VY,) = f, in Q, (2.9)

where the w subscript has been dropped and Q is the flow domain. For purposes of
analysis, 0 and K are considered functions of T), = h + z. Boundary conditions can

be stated as,

Y,=Tp, onT'P, (2.10)
—K(Th)VTh ‘n =gy, On FN, (2.11)

where TPUTN = 90, T'P # 0, and n is an outward pointing, unit, normal vector to ().
This is the mixed form of Richards’ equation. The second term in (2.9) is neglected for
unsaturated flow, and the first term does not apply for saturated flow. Note here that
due to the constant (or passive) air phase pressure assumption, Richards’ equation
ignores the air phase except through its effects on the hydraulic conductivity, /. An

initial condition,
Th="T%%), t =0, (2.12)

completes the specification of the problem.

Owing to the fact that 8 is a function of &, we can write equation (2.9) as,

(S, + C(T) Tt = V- (K(TWVT) = f, i, (2.13)
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where C(Y,) = 00/07), denotes the specific moisture capacity. This form is the

head-based form of the equation. Lastly, equation (2.9) may be written as,

% — V(DO = f, inQ, (2.14)

where D(0) = K(0)/C(0) is the soil-moisture diffusivity. This is the §-based form of
the equation.

We have now presented a complete mathematical model of partially saturated
subsurface flow for a single water phase. In the remaining chapters, we will analyze

and solve this model.
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Chapter 3

Discretization

In this chapter we present a discussion of spatial and temporal discretization tech-
niques employed in this work. We begin by introducing notation, then presenting
variational formulations of Richards’ equation. Formulations corresponding to both
the mixed and expanded mixed finite element methods will be presented. Discrete ap-
proximating spaces and approximation schemes will be discussed. Lastly, comments

are made on the time discretization method used.

3.1 Notation

Let © be a domain in R? with boundary I' = 89, and let I'® be the portion of the
boundary where Dirichlet conditions are specified and I'V the portion where Neumann
conditions are specified. We assume that I' = TPUTV. Let L2() be the set of square
integrable functions on {2, i.e., L*(Q) = {w]| fo w?dQ < co}. Let (L*(2))¢ denote the
space of d-dimensional vectors which have all components in L?(Q). Furthermore, let
(-1.) denote the L?() inner product, scalar and vector, i.e. for f,g € L*(Q),

(f.9)= [ f-gdn.

Let (.,.)an denote the L*(90) inner product and ||.||aq its associated norm.
Let H(Q, div) be the space of vectors in (L*(€2)) which have divergence in L2(Q),
ie. H(Q,div) ={ve (LXQ)*:V-ve LV} If fe H(Q,div), then,

1/2
I @i = (I ey + 1V Fla) -
Let W¥(Q) be the standard Sobolev space [12, p. 27],
W) ={f : Iflwk@ < oo},

where,

1/p
||f||w,§(n) = ( Z ”Dafl ll)m(n)) .

la|<k
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Let H,(Q) for s a positive integer be the Sobolev space, W§(£2). Denote the inner
product for the H, Sobolev space as,

(1,90 = 3 [ D°f-Dogag,
|a|<s
where f,g € Hy(2). Let H_, be the dual space of H, with norm,
<g,¥>
lgll-s = sup JT— (3.1)
(veHgvzo) [

where < .,. > is the duality pairing between H, and H_,. We will make use of the
fractional Sobolev space H'/?(dQ) with norm [17],

lgll1/2,00 = 1o/l 1 0)-

inf
{veHY(Q); vlan=9g}

Let V = H(Q,div), V = (L}(Q))%, W = L2(22) and A = HY%(HQ). Let VN and V°
denote subspaces of V with functions whose normal traces on T'V are equal to gy

from equation (2.11) and 0, respectively.

3.2 Variational Formulations

To avoid confusion, in this and all following chapters, p will denote hydraulic head.

Introducing a velocity variable uyy = —IK(p)Vp and writing equation (2.9) as a
system of first order equations gives,

aaa(t P) s, g’t’ +Vouy =/, (3.2)

uy = —K(p)Vp, (3.3)

p=pp, I'?, (3.4)

uy -n =gy, IV, (3.5)

where n is an outward pointing, unit, normal vector. Multiplying (3.2) by w € W
then integrating and multiplying (3.3) by K(p)~! and v € V°, then integrating by
parts, the problem is formulated as finding (par,upr) € (W, VV) such that,

(ao(azzM) )+(S aIIW, )+(V'UM,U)) = (faw), (36)

(K(pm)~ IUM, v) = (pm,V V) = —(pp,v - n)po. (3.7)

Equations (3.6)-(3.7) define the variational formulation of the mixed form of Richards’

equation corresponding to the mixed finite element method.
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For the expanded mixed finite element method we consider a different formulation

of the problem,

%+Ss—aa—’t—)+v.u=f, (3.8)
u=-Vp, (3.9)

u = K(p)a, (3.10)

p=pp,TP, (3.11)

u-n=gy,I'V, (3.12)

where two additional unknowns, @ and u have been introduced. Multiplying (3.8)
by w € W, multiplying (3.9) by v € V° and multiplying (3.10) by v € V, then
integrating each of the resulting equations, the problem can be formulated as finding
(p,,u) € (W, V,VN) such that,

(R 0) + (S 2,0) +(V - u,0) = (), (.13
(i,v)— (p, V-v)+ (pp,v-n)ro =0, (3.14)

(u,v) = (K(p)id, v). (3.15)

Thus, for the expanded mixed method, a set of three equations in three unknowns is

solved,

3.3 Approximating Spaces

For mixed finite element methods, the scalar variable p and its velocity are simultane-
ously approximated. Thus, two approximating spaces are necessary, one for hydraulic
head unknowns and one for velocity unknowns. Ideally, these spaces are chosen so
that the resulting method has a unique solution.

The approximating spaces used in this work are the Raviart-Thomas-Nedelec
spaces on rectangles and parallelepipeds, which are now briefly described. Use of
these spaces for linear elliptic problems guarantees a unique solution to the mixed
method system [13, 45, 54].

Let 7), denote a quasi-uniform triangulation of ) into rectangles with diameter
O(h) in two dimensions or parallelepipeds also with diameter O(%) in three dimen-

sions.
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The Raviart-Thomas-Nedelec (RTN) [54, 50] approximating space of order & on
a rectangular element I € T is,
Vi(E) = Pep1,4(E) X Popy1(E), d =2,
Vi(E) = Peyrek(B) X Prgsip X Poppsr(E), d =3,
where P, is the space of polynomials of degree r in the @ direction, s in the y

direction and ¢ in the z direction. Raviart and Thomas developed these spaces for
two dimensions, and Nedelec for three-dimensions. The space L#(f) is approximated

by,
Wi (E) = P(E).
For the finite difference scheme presented in Chapter 5, we consider the lowest
order RTN space, i.e. £ =0, on parallelepipeds,
Vi(E) = {(e121 + pr, a2 + B, a3 + f3)T : o, fi € R},
Wi(E) ={a:a € R},
where the last component in Vj, should be deleted in two dimensions. We also define
a hybrid space, AP C L%(09Q), of Lagrange multipliers for the pressure restricted to
9% and corresponding to the above RTN spaces [9, 17]. So, on an edge or face e,
AB(e) ={a:a € R}.

The standard nodal basis is used, where for V,, and A, the nodes are at the
midpoints of edges or faces of the elements, and for W, the nodes are at the centers

of the elements. Denote the grid points by
($i+l/2ayj+l/2))i =0,..., N.'ca J =0,... aNya
and define

(-’L'i+1/2 + -'l’i—l/2)a i = L... aN:m

T =

N o] —

Yi = 5(Wi1/2 + Yj-172)s 3= 1,..., Ny,
hf+1/2 =X -, t=1,..., Ny = 1,
]lg+1/2 =Yir1— Y J=1,...,N, = 1,
hi =ip1y2 — @icyje, i=1,..., Ny,
B =yir12 = Yjmijas T=1,..., Ny,

h = mc}x(hf, h¥),

4




21

with corresponding notation for a third dimension.
Define discrete inner products corresponding to applications of the midpoint (M),
trapezoidal (T) and midpoint by trapezoidal (TM) quadrature rules by

N.’l.‘ NJ
(rys)m = ZZh hY TR
=1 j=1
N_»;- Ny N:r Ny
(Vi@ = Y D hfy1johiofiyjoiafia s + PP DAY IR Ay
i=0 j=1 i=1 j=0
Nz Nv
(v,q)r = Z Z h.+1/2hg 2( i+1/25- 1/2(1:+1/2J -2+ Uz+1/2;+1/2‘1:+1/2;+1/2)
i=0 j=1
N.r N!I
+ Z Z hw”;+1/2 Y- 1/2j+1/2‘1iJ—1/2j+1/2 + ”?+1/2j+1/2‘1iJ+1/2j+1/2),
i=17=0

where a third sum in each is added for the case of three dimensions. We denote
the associated norms by ||.||lr, where R = M, T or TM and by Eg(q,r), the error in
approximating an integral by the given rule, i.e. Ex(q,r) = (q,r)—(q,r)s. The error
in approximating an integral by either the trapezoidal or the trapezoidal by midpoint
rule is [20],

Fa(@v<C Y ¥ o (4 Vb’ (3.16)
EeT;, |a|=2

For any ¢ € L*(Q) let é denote the L? projection of ¢ onto Wy, i.e.
(4,0) = ($,w), Yw € Wy (3.17)

In a similar manner, define an L*(I") projection onto Ay. These two L? projection
operators have the following approximation properties for ¢ € H*(Q) and ¢ €
H*Y(T),

16— ¢ll < Cligll-h7, 0 < r < k+1, (3.18)
I = %llr < Cllsbllerh”, 0 <7 < k+1, (3.19)
19 — ¥llrm < Ch2. (3.20)

Associated with the RTN mixed finite element spaces is the projection operator

IT: (H'(22))* — Vy, such that for q € H*1(Q),

(V. Ilq,w) = (V - q,w), Yw € Wy, (3.21)
(Ilg-n, )e = (q -0, pt)e, Y € Ay, (3.22)
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where n is an outward pointing, unit, normal vector. The following approximation

properties hold for the IT projection,

la—Iq| < Cllqll:h", 0 <r <k +1, (3.23)
IV - (a-Tq)|| <OV ql|,k", 0<r < k+1, (3.24)

where e is any element edge or face. Note that IIq-n = § - n on any boundary edge
e.
We will use the following estimate [25] which is true on rectangular or paral-

lelepiped elements. For u and @ defined by equations (3.13)-(3.15),
ITTu — ul|rm -+ ||T6 - d||rm < ChE (3.25)

The following inverse estimate for discrete polynomial spaces [12, p. 111] will be
used extensively in the following analysis,

Theorem 3.1 Let 7, be a quasi-uniform triangulation of . Let E be
a reference element. Let P be a space of approximating polynomials and
Yw={y : ylg € PeVE € T;}. Then if P(E) C Mﬁ(E) N W:‘(E) where
1 <p<oo,l1<qg< o0and0<m < then there exists a constant @

such that,

1/p 1/q
—14min(0,4-4¢
(Z “y”a,")(E)) S Chm min( r q) (Z “y“({,‘/&n(g)) )
EeT, EeTy

for all y € Vj. For s = oo, interpret the expressi i)

or all y € V). For s = oo, interpret the expression, (ZEET,, “y”w,"'(E))

as maxget;, ||¥(|lwe, (5)-

Let Wy, and 'V, be discrete subspaces of W and V, respectively. Define V? =

VonV, and V;¥ = VNN V,. Then, the continuous time mixed finite element method
is to find (Par, Unr) € (Wi, VYY) satisfying,

J0( P, OP
( 59 tM),w) +(Se 5t 0) + (V- Unyw) = (fyw), we Wi, (3.26)
(K (Pr)™ Uty V) = (Pat, V- V) + (pp, v - )po = 0, v € V). (3.27)

Choosing w in equation (3.26) to be the basis function associated with cell 4, j, &,
i.e.,

1, incell i, j,k,
w = (3.28)

0, otherwise,
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then equation (3.26) implies that mass is conserved within cell 7, j, k. For this reason,
the mixed method is known to conserve mass on a cell-by-cell basis.

For the expanded mixed method, we approximate the scalar variable, its velocity
and its flux. Thus, three discrete spaces are needed. Let W, V), and Vh be dis-
crete subspaces of W,V and V, respectively. Then the expanded mixed method is
formulated as finding (P, U, U) € (W,, Vy, V) which satisfy,

(agaf—),w) + (Ss%lg,u)) =+ (V ' U,w) = (f,w), w e Wha (3.29)
(ﬁ’v)_(Pav‘v)‘*‘(PD,V'n)pD = O, v EV%, (330)

(U,v) = (K(P)U),v), ve V).  (3.31)

For this method, we have the freedom to choose V not equal to V. However, for this
work V = V. Note that with w chosen as in (3.28), equation (3.29) again implies

conservation of mass over each cell.

3.4 Time Discretization

We consider finding the solution to equation (2.9) over a time interval J = (0,7,
where T' > 0 is some final time. Let 0 = t° < ¢! < -« < t¥ = T be a given sequence
of time steps, At™ = {® — ¢! and At = max, At". Further, assume that there exist

constants ¢ and C such that,

cAt* < A" < CAL, (3.32)

for all n.
For ¢ = ¢(t,.), let ¢" = ¢(t",.) and denote the discrete and continuous partial

derivatives by,

n qJ)n . ¢n-—-1
dt¢ - At" b
_ 0%
O = 50

In subsequent chapters, the following norms will be used,

Il Lo (s2()) = ess sup llll(t),

18lleeaizzay = max 116",




N 7
lollizes2(ay = (Z At”lld)"llz) .

n=1

This work will use an implicit backward Euler time discretization in order to for-
mulate a discrete time expanded mixed method for Richards’ equation. This scheme
is to find for each time step n,n = 1,..., NV, functions (P",f]",U") € (Wi, Vi, V)
satisfying,

(dO(P™),w) + (Ssdi P*,w) + (V- U™, w) = (f*,w), w € Wy, (3.33)
(G, v) = (P",V-v) + (pp,v-n)r, =0, v € VO, (3.34)
(U™, v) = (K(P")U™v), ve V, (3.35)

An implicit method is used to prevent the need for taking unnecessarily small time
steps.
The Discrete Gronwall Inequality [30] will be used in coming chapters. We present

it now for the sake of completeness,

Lemma 3.1 Let g(t), f(t) and A(t) be nonnegative functions defined on
[0,T), t =iAt,i=0,...,N — 1 and g(t) nondecreasing, If,

t—At
1)+ h(t) < (1) + CAL Y f(s), (3.30)
then,
F@) +h(t) < g(1)e". (3.37)

In conclusion, this chapter has set some notation, introduced the mixed and ex-
panded mixed methods and defined continuous and discrete time numerical schemes

for Richards’ equation. The next chapter analyzes these schemes.




Chapter 4

An a priori Error Analysis of Richards’ Equation

In this chapter, we present an error analysis of the expanded mixed finite element

method applied to Richards’ equation. For simplicity we analyze the form,

aia(lp—) + 5'8?5? - V- K((p))Vp =/, (4.1)
where we have made use of the fact that k,, is a function of water content, 8, and
have taken K(0(p)) = {k(x)krw(0(p))pg}/i. Two degenerate conditions can occur.
The first, K = 0, implies a 0 relative permeability, a condition ocurring in very dry
media. The second degeneracy occurs when §' = 0. This condition happens when the
media is fully saturated.

We first discuss the case where K > 0 for all p and allow for the possibility that
d0(p)/0t = 0. This situation corresponds to partially to fully saturated flow. For
clarity, a continuous time estimate is presented. Bounds for [|0(p) — 6(P)||eo(r2) and
I — ﬁIILz(Lz) are shown for the partially saturated case, i.e. S, = 0, and a bound
on [|[p — P||eo(r2) for the saturated case. These proofs closely follow the techniques
of Arbogast [4] who derived estimates for the case of Galerkin methods. We have
extended his work to account for the expanded mixed finite element method.

Next the case where K is bounded above 0 and the derivative of 0 is strictly
nonzero is considered. This is the case of strictly unsaturated flow. For this situation,

optimal convergence of a discrete time scheme is shown.

The next set of estimates are for the case where K > 0. This situation corresponds
to completely dry to fully saturated flow. The Kirchhoff transformation [6, 37, 58]
is used to analyze this case. A bound for the flux only is presented in the case that
90/3p can be 0 and a bound for ||p — P||n_, is presented for d9/0p # 0. When
K = 0, the solution generally does not have enough regularity to prove optimal
bounds. However, the results presented here would be optimal if the solution had the
necessary smoothness. These estimates follow the techniques of Arbogast, Wheeler
and Zhang [6] for degenerate equations. This work extends their work to the case of

the expanded mixed method and to Richards’ equation.
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In the following arguments, C' will represent a generic constant independent of

mesh and time step sizes, and its value should be assumed different at each instance.

The arithmetic-geometric inequality,

6 1
< —q2 2 4,
ab< Za?+ =20% a, b, § € R, 6 >0, (4.2)

will be used throughout the analysis.

4.1

Partially to Fully Saturated Flow

In this section, the expanded mixed finite element method applied to Richards’ equa-
tion (4.1) is considered. The following assumptions are made:

L.

2.

The tensor K is symmetric and positive definite.

The tensor K is Lipschitz in . Thus, there exists a constant Ly independent
of two numbers, 0; and 0, such that, ||K(0;) — K(62)|| < Li||6: — 02

The function @ is Lipschitz in p. Thus, there exists a constant Ly independent
of two numbers, p; and p; such that, ||0(p1) — 0(p2)|| < Lollp1 — p2]-

The function 0(p) is monotone nondecreasing in p.

The specific storage S, can be 0, i.e. S, > 0. Recall that S, = 0 in the case of
unsaturated flow and S, > 0 for saturated flow.

The derivative 9y K is bounded above, |Gy K| < C.
The derivative 0,0 is bounded above, |8,0| < C.

The composition (8,6) 0 0~ is Hélder continuous of order 3, 0 < # < 1. Thus,
for f,g € R,

10:,0(f) = 3,0(9)| < ClO(f) = 0(9)I° (4.3)

The following analysis bounds the error in the continuous time expanded mixed

method applied to Richards’ equation given in equations (3.29)-(3.31).

We start with a lemma, proven by Arbogast in [4].



Lemma 4.1 Assume 0(z,p) is monotone and nondecreasing in p € R
for each fixed @ € 2, uniformly Lipschitz in both & and p, and uniformly
bounded from above and below. Then, for v and w in IR,

(2sup |8,0])~1(0(v) — O(w) </ w))dp
S (0(v) - 0(w))(v —w).  (44)

The following theorem holds for the convergence of the continuous time scheme.

Theorem 4.1 Let (P,U,U) € (Wy, Vi, VV) satisfy equations (3.29)-
(3.31). Then, under the assumptions given in 1-8 above and for § =

2(k4+1)/(1 4 B) with k+1 > d(1 4+ 3)/(2(38 — 1)) > 0,
10(p) ~

+”ll — LQ(J L2(Q)) <C’l ; (45)
Ssllp — P”L‘”(.I;L?(Q)) SC(h + h*1), (4.6)
18 = Oll 2z SCA° + h¥),  (4.7)

where & is the order of the approximating space.

Proof The proof will be in two parts. First, a bound for (6(p) — 0(P),p — P) is
found. Then a bound for ||0(p) —6(P)| in terms of (0(p)—8(P), p— P) will be derived.
These two pieces are put together in a continuation argument which gives the final

result.
Applying the definitions of the L? and IT projections and subtracting (3.29)-(3.31)
from (3.13)-(3.15), gives the error equations,
(at(o(p) —0(P)),w) + (Ssat(p - P),w) = —(V. (fTu - U),w), w € W), (4.8)
G-U,v)=(p-PV-v), ve V?, (4.9)
(u~U,v) — (K(0(p))i — K(0(P))U,v) =0, v € Vy. (4.10)
Rewriting (4.10) results in,
(Mu — U, v) = (Iu = u, v) + (K (0(p))(@ — &), v) + (K (0(p))(& - T),v)
+((K(0(p)) — K(0
(6

(
—((K(0(p)) — K (0(P)))(& - V), v). (4.11)
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Let y=p—-Pn= i — U and § = ITu — U. Let @, be a constant whose value
will be determined later. Then, in (4.8) let w = f} e=@%(., s)ds,

(a0t - e, | ~t3(5)s) + (5,00 ), | el s)ds)

+ (V-e,[e-%y(.,s)ds) = 0. (4.12)

Multiplying (4.9) by =@, integrating from ¢ to ¥ < T holding v fixed, then letting

v = £ gives,
t i
(/ e‘Q”n(.,s)ds,f) = (/ e~?1%y(.,5)ds, V - f) . (4.13)
t t
In (4.11), let v = ffe=@ion(., s)ds to get,

& [ (. s)as)

= (Hu —u, [ Ze-%n(., s)(ls) + (K(O(p))(ii - ), /t ?e_Q”'r)(.,s)ds)

(KO, [ ot as) + (1000 - k0ER, [0t )
- () - (0PI, e, s)ds). (4.14)
Combining (4.12)-(4.14) results in,
(a0 -0, | et a)ds) + (sa6-p). ?e-Q%(.,s)ds)

+ <Hu - u,/l?e'Q”n(.,s)ds) + (1\'(9(,)))(& - ﬁ),/tt e"len(.,s)ds)

(K00, [ nt. i) + (060000 - KD, [ Sat )

T
- (o) - o, | @en(s)is) =0 (4.15)
Since K is Lipschitz in 0,

(K (0(p)) = K (8(P)))&,v)| < Cll0(p) — 0(P)||[{i]| o= [|V]]- (4.16)



Also, by the product rule,

KO- [ e, a)ds = ok (0p) ( A e-Q”n(.,s)ds) e

+%[Q1K(9(p)) + 9, K (0(p))9.0(p)] X

(/tt e~ @1, s)ds) et (4.17)

Thus, equation (4.15) becomes,

(&(0(?) - 9(1’)),[ e‘Q”v(-,S)dS) + (Ssat(z’ - P),/t?e“Q”v(-,S)dS)

- —0;/ K(0(p) (/ Q‘”'r)(.,s)ds) e@tda
+ %Ql/ﬂK(O(P)) (/tZG_Q”ﬂ(-,S)dS) e?da
<= (ma-u,f @nte o)) ~ (KO - B), [ e, o)

t
1 ; T , 2
- J i 0200) [ - ato)ds) e

" ((K(f)(m) ~ K@Y, ‘e~Q”n(.,s)ds)

+C10) 0PI [ (., )es]. (4.18)

Now consider bounding the first four right-hand side terms. Rewriting the first of
these gives,

T t
|(Tu — u,/t e=g(., 5)ds)| < [|Tu — u||||/t e=Q(., s)ds|
T
< (Jtu — =24 (n [ eoentpasea)
t
< ¢)|Tlu — u||2e~@

+C / ~Qim(., 5)ds|| 2" (4.19)

Since K is bounded,
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u T
<Clli - il [ @ n(.,5)ds|

<e|li — a|?e~®t + || /je‘Q‘”n(., s)ds]||2e®1t, (4.20)
Since Gp/ and 8,0 are assumed to be bounded above,
3., QK OENAIEN [ ., )dstee)
<0 [ e@rn(. sl (121)
Using Theorem 3.1,

(K (0(p)) = KOP), [ e=@on(.,5)ds)

t

< Clnllz=0(p) = 0PI | =@ m(., s}
< CH= " 0(p) - 8(P)| [ e~ n(.,s)ds]
< e alPlop) - 0P) e + G [ eOm(. s, (422

Combining the above bounds with equation (4.18) results in,

Z
e~ @y(,, s)ds)

(00 —0on, [[e9atc1as) + (8.0 ), |

2
_ %a, /Q K(0(p)) ( /t ‘ e‘Q”n(.,s)d.s> ety

1 2
+ %QlanW(P)) (/t e”Q”n(.,s)ds) @ty

T
<Ol [ e @on(,s)ds|?e" + ef1 + b=l H0(p) — 0(P) e
+ el = wl + i - &7} (423

This equation is integrated in time over (0,%). The first two left-hand side terms

are handled by integration by parts,

/0? <3t(0(P) - H(P)),/;e"Q”’fy(.,s)ds) di

¢

i
0

= — (0(p0) _ 0(130),/0‘7(_,15)6‘521!(”) +/ (0(p) — O(P),p — P)C—Qltdt
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—/07(0(1))—0( P),p—p)e”dt
> [(0) - 6(P),p ~ P)e~91tdt -
—e( [ 10) - P)Pear 4| [ ey (4.24)

The second term is,

/ Sy(Bu(p / ~Quoy( . 5)ds)dt

e@rtdt + 10(s°) ~ 0(P°)|I*}

2 S / l7l)?e~@4dt — PO|[2 — eS| / Je~@sds|?. (4.25)
So, integrating (4.23) over (0,7) gives,
[)
[ o -o(P),p - P ety
0

0
#5506 ([ ntreovas) e
v 50 [ [ w00 Te-wn(.,s)ds)?eendxdz
s C/ II/ @i, 5)ds|| 7!

° P°||2+e{/ 10p) - 0(P)]%e -Q”dt+n [ te-orarey

fem@tdt + C|l0(p°) — 0(P°)|?

+ CS|lp

1
b [0+ nlHI0() - 0(P)Pe-2ras

g .
+ c/ {lITu = ulf? + [|i — G[)?ye~9tdt. (4.26)
0

Since 0 is Lipschitz in p,
e [ o) - 0(P)ea < [ - Plreorar
<e / lp = plI7e=9tat

e / (o )l e, (4.27)

Choosing @ to exactly cancel the last left-hand side term in (4.26) with the first
right-hand side term, again using the fact that ¢ is Lipschitz and choosing ¢ small
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enough gives,

t 7
L 0w - 0Py p = Pre@tan+ 8, [ 1p~ PlPerat

0 0
+1/ K(0(°)) /? (. 8)eds) d

2 Jo p , Ms)e s| de

t

e™2dt + Cll0(°) — 0(P°)||* + CS,15° — PO
+6”/ QlidtHZ

+ch™ /0 ImPlo(p) — 0(P)]Pe=2tdy

t N
¢ [ {ITmu —ul® + & - ]7}e2tae

+e/ Nv(., t)||2e91tdt. (4.28)

Before continuing, we present the following lemma.
Lemma 4.2 For P and U defined as in equations (3.29)-(3.31) and for
7=13—Pand17=fi-—f1, we have,

Il < Climll, (4.29)

“/ =@y (, 8)ds|| < C “/ ~Qiap(,, s)ds| . (4.30)
Proof Let ¢ satisfy the equation ~A¢ =+, and let f satisfy,
[=-V¢,inQ, (4.31)
f-n=0,onTV, (4.32)
¢ =0, on I'”, (4.33)

where we have assumed that I'? # @. Then, recalling (4.9),

M= (V- f) = (v, V-1If) = (n,TIf)
< AT = £+ 1A
< llmll(CRrl Il + 11F1)
< Clinllli¢ll2
< Clmllii,
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where the last inequality holds by elliptic regularity. In a similar manner (4.30) is
shown,

O
Applying approximation results, (3.18) and (3.23), and Lemma 4.2 to equation

(4.28) and noting that f§ e~@dt = a7(1~ =27) = C, gives,

¢ 7
/0 (0(p) — O(P),p — P)e~tdt + S’/o 15 = P||2e~%tds

l -, 0 f ,—@15 ’ .
+ 2-/(;1& (0([) )) (A 77(-,3)0 (lS) d
< CRAHD 4 C)o(p°) — 0(PO)|2 + CS,
n
+ei™ [ Il loGp) - oo et (4:30)
0

This completes the first part of the proof. We come back to this estimate later.

Let w = 7 in (4.8), v = 5 in (4.9) and v = £ in (4.10) and combine the three
resulting equations to get,

ﬁO _ P0“2

(0:(0(p) = 0(P)),p = P) + (8,0:(p — P),p = P) + (llu — u,7n)
+ (K (0(p))i — K(0(P))U,n) = 0. (4.35)

Now,
K(0(p))ii — K(0(P))U = K(8(p))(ii — &) + K(0(P))({i - ©)
+(K(0(p)) — K(6(P)))u. (4.36)
Combining equations (4.36) and (4.35), applying approximation properties (3.18)

and (3.23), using the assumption that K is Lipschitz and using the arithmetic-
geometric inequality,

(0:(0(p) — 0(P)),p = P) + (S:0:(p — P),p— P) + %(1\'(0(1’))77,77)

(Mu — u,m) - (K(0(p))(& — &),m) - (K(0(p)) = K(0(P)))ii, )
+(8.(6(p) — 0(P)),p - p)

< CHE 1 CJlo(p) - (P + (Bu0(p) = O(P)),p ~ ). (437)
Note that,
. [ (0(0) ~ 0(P))dp = (0(p) — 0(P))0p — DO(P)(p ~ P)
= (0(p) = 0(P))awp + B10(p) — O(P))(p - P)

—00(p)(p — P). (4.38)
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So,
al0(p) - (P)](p Pe-9t
= a / (p) = 0(P))dpe1] + @, / _ 9(P))dpe=9*
+{80(p)(p — P) — (0(p) — 0(P))d,p}e=", (4.39)

Consider the last term in this equation and apply the chain rule and Mean Value

Theorem, where for some w € (P, p),
18:0(p)(p — P) — (6(p) ~ 0(P))0up|
= (8,0(p) — Fp0(w))(p — P)0up|
< C10(p) ~ 0(w)[’|p — P|
< Clo(p) - 0(P)||p - P|
< Cl(0(p) = 0(P))(p = P)PP/0HD) 4 e{|p — PI* + |p — pI*}, (4.40)

where we have used the inequality, [4]

1
|ab| < erlap

|af” + glbl", (4.41)

for any 1 < p < 00,7 + ¢ = 1, which implies, |a|?|b] < C|ab|?/(1+8) 4 ep?,
Multiplying (4.37) by e~92! combining with the above bounds and integrating
from 0 to ¢ gives,

/ /8 [/ (0(p P)dp)e=@2" (l’L(lT-l-Qz/ // (0(p P))dpe " dadr
+ / (S,0, (P P)e%7dr 4 = / K(0(P))n,n)e="dr

< CR¥H1 4 ¢ /0 10(p) — 0(P)||2e~927dr + /0 (0:(0(p) — O(P),p — p)e™"dr
+ [ [ 10) = 0(P))(p — PP+ drdo
+ [ e [Up= PP +1p pP)e"drda. (4.42)

Lemma (4.1) implies that, C(0(v) — 0(w))? < Jo(0(p) — O(w))du. So, the above

becomes,

¢ [@10p) - 0P Pe2mdr + @ [ 0(p) — 0(P)Pedr
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t t
+/0 (S50-(p— P),p — P)e~?"dr + 1/ (K(0(P))n,m)e~%"dr
t
< O 4. C ['ll0p) = 0(P)Pe%"dr + [ (0,(0(p) ~ 0(P), p — p)e~%"dr
0
t
— — P)|2A/(148) o =Qar . 5 — Pl|2e—@2T
+ [ 10) = 0(P),p = PP 1 [ 5 — PPe97dr

¢
+ 6/0 lp — pl|2e~®"dr (4.43)

By integration by parts,

/‘(61(() O(P),p = P)edr

= “/ (6(p) 0-(p — P))e” Q”dr+Q2/( (p) — 0(P),p — p)e~"dr
+(0(p) — 6(P ),P pe=%t — (0(p°) — 0(P°),p° - §°)
<e [ ot ||o P)Pe=%dr + C [ 10,(p ~ p)|e~%"dr
+6Qa [ 10(0) = 0(P)|Pedr + Qs [ lp — pllPe=%5"dr + o(p) ~ 0(P) e
+1(0(p°) - 0(P%),p° = £°)|- (4.44)

Also by integration by parts,

C/ 0, ”0 9(1) ” —Q2Td7. _ Q20/ ”0 p) —0(P)“2 ~Qa27 g
+C||0(p) — O(P)]||2e~2t
=C|lo(°) - 0(P°)|l2, (4.45)

and

t t
/0 (S:0:(p— P),p— P)e™®"dr = / éa,”ﬁ — P||%e97dr

5 QZ I _PIIZ —Qgrd,r +52 . |28—er
—% - P (4.46)

Combining (4.44) and (4.45) with (4.43) gives,
—~Qor _ Ss t . Ot
Q:C [ 16(6) — O(P)e~2dr + Clofp) — 0(PY e + 2222 [*5 _ plze=aimay

Ss )« —o.r . 1ot —Our
+ Sl = PlPe o + 5 [(K(0(P)n,memdr
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t ¢
< CH*HD 4 (eQ + C)/0 10(p) = O(P)||?e=?="dr + C'/O 18- (p — p)||Pe~@27dr

0(p) — 0(P)| e~

+1(0(°) = 0(P°), 1° — 1°)] + Cl0(r°) — O(PO)||? + %

t
+ [ 10() = 0(P), p = PI0Bermdr 1 ¢
0

P - PO (4.47)

So, choosing ()2 and € to make the first left-hand side term cancel the second
right-hand side term, noting that the third left-hand side term is nonnegative and
taking ¢ small enough,

—aut | S o Lt our
Cllop) = PP~ + S5 = PIPe=®" + 5 [ (K(0(P)ym,m)ewmar

t
< CRH) 4 /0 (0(p) — O(P), p — P)|?P/(0+Ble=@27 g 1 |(0(p°) — B(PO),p° — °)]

+CI0G) 0P + 2250 - PO, (4.48)

Take P® = p° Then,

16(p°) = 6(PO)* < C(llp® = 2l + 18° — PO[I*) < CRPKH.

Thus,

0wt s Se s o Lt o
Clo0(p) = O(P)[?e=% + = PIFe%" + 2 [k (0(P))m, m)e %" dr

)2ﬂ/(1+ﬁ)

< o+ 4 ([10) - 0(P), p— PYle 0 128ar) T (1ag)
0

where we have used the Holder inequality with p = (14-8)/28 and ¢ = (1-8)/(1+8).
This completes the second part of the proof. We now combine the first two parts to
derive the desired estimate.

For some fixed value Cy independent of h, let 7/ < T be the largest value of time

for which,
l:i - U~ L2(JIL2(Q < Cohdﬁ/(sﬁ_l), 4.50
(J5L2(Q)) =

where J' = (0,7") and d is the spatial dimension. Since initially & — U = 0 and i is
assumed continuous in time, we must have 77 > 0.
We make use of the following inequality [4]. If 1 < § <1, then

jabel” < (6] + ([al*/ = D]p|)E=17%)|. (4.51)
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Note that since0 < <1, k+12> ﬂ%)ﬁ

Let ¢ = 7 be the time when ess suPe(o, |0(p) — O(P)|| is attained. Then, com-
bining equations (4.34) and (4.49),

16(p) — O(P) oo (arzagay) + Sallp = Pl oo rizzqayy + 16 — ﬁ”iz(j;m(n))

)2ﬁ/(1+ﬁ)

? A ~

< ChEADUEBI0+A) 4 (eh*" / 6 — T|2)|0(p) — 0(P)||?e~1tdt
0

< CRK+)(EB/(145))

+(eh 1% — Ol 7,120 10(2) = O(P)[Feoraayy) 2+

< CHIHIUBIIHEN | B+ — T2,

(RSB = O357,2)) 7 2)0(p) — O(P) oz} (4.52)
where J = (0,7), inequality (4.51) is used to derive the last inequality, and we have
assumed 38 > 1 so that § = 26/(1 + B) > 1. In (4.50), we took the exponent on A
to be exactly large enough to cancel the —d exponent in (4.52). Now, since 7 < ¢/,

we can use (4.50) and take e small enough to hide the last two right-hand side terms.

Thus,
10(p) = (P70 (gr;12) + S

P = PlZeoqnragay + Ilu = U”iz(i;m)
< CRFHDAB/(148)), (4.53)

Without a bound on ||i — UJ| or [|6(p) — O(P)]|, we could not have hidden the last
right-hand side term. We thus assumed the minimum for one bound and derived the
other. We now can improve the first.
Let ¢ = T" and again combine equations (4.34) and (4.49),
10(p) — O(P)llioo(w;m(a)) + Ssllp — P”%W(J';L?(Q)) +(u~ ﬁ”?ﬂ(.ﬂ;m(n))
< ChEHDUBIA+0)) 4 28/(+0)¢ ) f — ﬁ”%’(J“L?)
+((h=2EBD)G = O[22 21|0(p) = O(P)|Bwigryiy}  (4.54)
Using the bounds (4.53) and (4.50) and taking € small enough gives,
16 = OllZe(nzey S ChEFNEAIO+O), (4.55)

We continue by contradiction. Suppose that 7" < T', that ko > 0 is fixed and that
k+1>d(1+p8)/(2(38—1)) > 0. Then,

Ao~ ] 1
& — U”L2(J';L2) < O QUKHDB/(14B) < _2_Cohdﬂ/(3ﬁ—1)), (4.56)
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for all values of & < ho. Since T' < T and T’ is the maximal value such that (4.50)

is true, we have a contradiction. Thus, 7" = T and,
16 = O[22 < ChEFIB/A, (4.57)
This, together with (4.53) gives the desired result. (]

We have the following corollary,

Corollary 4.1 Tor the scheme given by (3.29)-(3.31) and & = k+1 with
kE+1>d(1+p8)/(2(38~1)) >0, we have,

T 1 -
( fo (0(p) - O(P),p - P)dt)* < CHZ. (4.58)
Proof Let?=T in (4.34) to get,

T
[ (0) = 0(P), p - P)etat
0
T . -
< CRHFFD 4 gh=d / 16 — TY20(p) — O(P)[Pe=tat
(1]
< CRHHD 4 eh™?10(p) - O(P)“im(.};m(n))“fi - U“%?(J;L?(Q))
< CRAHY J 241118/ (146)~d
< CRAKH) o ¢ 20145/ (148) = (k+1)2(36-1)/ (1+8)
< CpUkY), (4.59)

O

. L
As Arbogast [4] points out, the nonlinear form (fg(a(p) - 0(P),p— P)dt) ? tells
us something about the error of the scheme, since for two constants ¢ and C,

cl0(p) = 0(P)| < ((8(p) = O(P))(p — P))? < Clp - P|.

Thus, as the nonlinear form gets smaller, the error in the water content also decreases.
Furthermore, the bound on the nonlinear form is optimal, since O(h*+!) is the order
of truncation error for approximation with polynomials of order k.

The estimates in this section show bounds for the case where the equation is
degenerate. For this case, S; can be 0, and we have only a bound on ||0(p) — 0(P)||.
In the next section we make a simplifying assumption that allows us to bound the

error in the hydraulic head directly.
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4.2 Strictly Partially Saturated Flow

In this section, the case of strictly partially saturated flow is analyzed. It is assumed
that the flow never reaches the fully saturated realm and thus that the derivative,

d0/0p is never zero.

The following assumptions are made.

1.

o

5.

6.

The tensor K is symmetric, positive definite and bounded, i.e. K, < K;; < K*
for all 7 and j, where K. and K* are fixed positive constants.

The tensor K is Lipschitz in . Thus, there exists a constant Ly independent
of two numbers, 0, and 0, such that, ||K(0;) — K(62)|| < Lk||0: — 02]|.

The function 6 is Lipschitz in p. Thus, there exists a constant L, independent
of two numbers, p; and p, such that, [|0(p1) — 0(p2)|| < Le|lp1 — p2l|-

The function 0(p) is monotone increasing in p, ¢'(p) > 0.
The specific storage S, = 0.

The derivative 0, K is bounded above, |9,K| < C.

In this section, /{ is considered to be a function of p and not specifically of 8(p).

The estimates given are simpler than in the previous section. As a consequence, we

consider a discrete time scheme.

Again consider the variational formulation of Richards’ equation given in equations
(3.13)-(3.15). The discrete time numerical scheme considered here is that given in
equations (3.33)-(3.35).

Before analyzing this case, we give without proof a lemma proven in [4] which will

be used in the following arguments,

Lemma 4.3 Suppose that u", «* 1, v™ and v™! are real numbers.
Suppose also that ¢ : IR — IR is such that 0 < ¢’ < @ < oo and |0"| < Q

for some constant (). Then,
() = 00))"(w" = ") = i [ 10() — 0(0))de)" ~ B, (4.60)
where
E < C'{(u" —v")? + (u*! — o™ 1) 4 (A2, (4.61)

for some C’ depending on @ and |d;u|.




The main result of this section is as follows.
Theorem 4.2 Let (P",ﬁ",U") € (W, V), V) satisfy the equations
(3.33)-(3.35) for each time step n,n = 1,..., N. Then,
1P =+

N -~
S KL O" — n|2Adn

1/2
) < C(h* + Ab).
n=1
Proof

error equations,

Subtracting equations (3.13)-(3.15) from equations (3.33)-(3.35) gives the

(de(0(P) = 0(p))",w) + (V- (U" — TIu"), w)

_ o 00(")
_—(dto(p )_ ot aw)a

~—

(4.62)
(P"— "V ), (4.63)
(U™ ~ Iu", v) = (u" — Iu", v) + (K (p")(&" - &), v)
+ (K (P - &

'), v) + (K(P") = K(p"))h", v).(4.64)
Let, " = P" — p",p" = U — §" and §" =U" —IIu". Let w = 4™ in (4.62),
v =¢§" in (4.63) and v = 0" in (4.64), giving,

(de(0(P™) = 6(p")), P" —p") + (V- £",7")

AL

= (dt(O(P) — 0(7)))1;,7) _ pn) _ (dt0(pn) _ 60(p7l)
(7", &")=(v",V-&"),
(ﬁnaﬂ") =

= 4(u" - ITu",n") + (K

(4.65)
()" -
+ (K(P) = K@)E", 7).

Combine these equations to get,
(d:(0(P) = 0(p))", P" — p") + (K (P™*)n"™, 0")

2 0),7")
— (u* - Tlu™, ") — (K (p")(&" — &), 7")
= (K(P™) = K(p")&", 7").

=(d(0(P) = 0(p))", p" — p*) — (d:0(p") —

(4.67)
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By the Mean Value Theorem,
(K(P™) = K(p")E",n") = (K'(2)(P" - p™)h

where z € (P",p").
Consider the first term on the left-hand side of equation (4.67) and apply Lemma

4.3 to give,

@O =02 =) > [ (0 [ 000 - 00 s
=C{IP" = p[IF + 1P =
A, (4.68)

Using the integral form of the remainder in Taylor’s Theorem and the Schwarz

inequality, the time discretization error term is bounded by,

0
(@0(6") = 550"),77)] < Ol + Clld(p) — 0
o L [ P
< Ol IP+Cllg / L =
< Ol + OA N g P sy, (4.69)

Combining the above bounds with equation (4.67),

N
(¢ [ 0 = 03 o+ (P )
< (O(P) = 0™, 5 = ")+ "

+ C{IITu”™ — u™||® + [[&" — &"|1* + || P* = p"||* + [P = p

2%0(p
64527 ) ||L2((t"_1 t") L2) + (At ) } (4.70)

Taking € small enough, the ¢||n"||* term can be brought to the left-hand side.
Multiply by At* and sum on n = 1,..., N. The first term on the left-hand side

11-—1”2

+CALY

collapses giving,
N P’l N
nZ:let /n (d, /,, (0(1) = 6(p™)) dﬂ) dv = / / (0(1) — 0(PN))dude

—//p °))dpdz. (4.71)



Applying summation by parts, the first term on the right-hand side becomes,

N
>_(d(O(P™) = 0(p™)), 5" ~ p")AL®

n=]
= (9(1’”) = 0(p"), " = p") — (0(P°) - 6(2°), 9" — ')
Atn+1
Z Pn pn) d (pn-l-l pn+1)) At'n
n=1 Atr

< ellPY =P+ ClIAY = NI + CILPO = I + Ol — o1

Al n ni2 P ) 2 n
+ ) C{|P - p* + II—-—II }atr, (4.72)
n=1

where the assumption (3.32) has been used.
Since 0’ is bounded above and below by positive constants, there exists a constant
@ such that,

(v —u)? < / v))du < Qv —u)?. (4.73)

Combining these bounds gives the following estimate,

N
1PV =g+ 3 Kull™|* A
n=1

S CIP° =p°II% + Clig™ = p™I° + 11" — p*|I”

N
n 73 p ) n n ~n an n
+C 3 AP —p II2+|I———H2+IIHu —u"fl* + 6" — a [P }PAL

n=1

+ (A2, (4.74)

Take P° = p° and apply Gronwall’s Lemma 3.1 to equation (4.74) to remove the
first term in the sum on the right-hand side. Taking approximation properties of the

L? and II projections results in,

N
1PY = pM|2 + 37 Kufli — O [PA" < O(R*Y + (AL)?), (4.75)
n=l1
where k is the order of the approximating space. ]

Thus, in the case of strictly partially saturated flow, convergence for both hydraulic

head and velocity is optimal.
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4.3 Unsaturated to Fully Saturated Flow

In this section, the case of flow through unsaturated to fully saturated soil is consid-
ered. In this situation, K can be zero, and Richards’ equation is degenerate. The
general technique of Arbogast, Wheeler and Zhang [6] is followed for this analysis.
We write Richards’ equation in the following way,
90(p)
ot

where in the case of fully saturated flow, we neglect the specific storage term. We
allow for the case that k(6(p)) = 0, a condition arising when the porous media is

= V- (K(2)k(6(p))Vp) = f, (4.76)

at residual saturation. Note here that we assume the relative permeability is only a
function of hydraulic head. The results given below can be generalized to the case
where relative permeability also depends on position.

The following analysis will employ the Kirchhoff transformation,

R(p) = [ k(0(0)dg, (477)
with gradient,
V R(p) = k(0(p))Vp. (4.78)

Defining it = ~V R and u = K (z)i, equation (4.76) can be written as the follow-

ing equivalent system of equations,

__‘908(_;’) +Vou=J, (4.79)
i=—VR, (4.80)
u = K(2)i. (4.81)

Alt and Luckhaus [3] state the following regularity results for the above equation,

0(p) € L=(J; L1()), (4.82)
0:0(p) € L*(J; H™'(9)), (4.83)
i € LA(J; (LA(Q))Y). (4.84)

Since 0,0 is only in L*(J; H=1(£2)), a variational formulation of the problem would
require trial functions for equation (4.79) to be taken in H*(f2). In order to relax
this requirement, an alternate time integrated variational formulation developed by

Arbogast, Wheeler and Zhang [6] is considered.
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For this formulation, we need to integrate ¢ in time, but equation (4.82) does
not guarantee that (p) exits pointwise everywhere in time. However, we know that
physically 0 is defined at every time and we assume that 0(p) € L*(J; L®()) so
that 6(p) exists pointwise for each ¢. Therefore, (4.79) can be integrated to get,

t ¢

0(p(., 1))+ V - /0 udr = /0 fdr +0(p°). (4.85)

Since physically, the normal components of the flow flux are continuous, V - u €
L*(Q). Thus, the integral [f udr is in L*(J; H(R; div)), and the following variational

formulation can be defined,

0@ )+ (V- [ udraw) = ([ fir,w) + 06°)w), we W, (456)
(fl,V) =(R(P), V. V) - (R(pD),V i n)FDa Ve VO’ (487)
(u,v) =(K(2)d,v), ve V. (4.88)

The continuous time numerical scheme is to find (P, U,U) € (W, Vi, VV) satis-
fying,
t ¢
(O(P)w) +(V - [ Udrpw) = ([ fdr,w) + (0(P*),w), w e Wi, (4.89)
(T,v) =(R(P),V -v) = (R(pp),v - n)ro, v € VY,  (4.90)
(U,v) =(K(2)0,v), ve V. (4.91)

Theorem 4.3 Tor the numerical scheme given by equations (4.89)-
(4.91), the following bounds hold,

—— —— T
|} OP) = 0p), e (BTP) - ) + 1K [ s
r T a ~
<CLe™™| [ K2 = fyar| + / e K2 (6 — )|t
T
+e T /0 (u — Mu)dr|® + /0 elu ~ Iu?dt}.  (4.92)

Proof Making use of the L? and II projections, and then subtracting equations
(4.86)-(4.88) from (4.89)-(4.91) gives the following error equations,

(0(P) = 0(p),w) + (V-1 /0 t(U —u)dr,w) = (0(P°) = 0(p°), w), w € Wi, (4.93)
(O~ §,v) =(R(P) - R(p),V-v), ve Vi, (4.94)
(U =, v) =(K(2)(U - ), v) + (u = u,v),v € V. (4.95)
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— R(p)) € W, in (4.93)

For some constant r defined later, let w = e™"(R(P)
resulting in,
o — t
(6(P) = 0(p),e™™(R (P)—R(P))H(V'Hfo(U—u)dT,e (R(P) — R(p)))
2(p (4.96)

=(0(P°) - 0(z°), e~ R(P) — R(p)))-

—u)dr to give,
—u)dr). (4.97)

In (4.94), let v = eI fi(
(U = &, e / ~u)dr) = (B(P) - R(p),V - ™11 /
Lastly, integrate (4.95) from 0 to ¢ holding v fixed and multiply by e™. Then, let

v=ﬁ-—fisothat

(e / (U = Iu)dr, U
- / K(@)(0 - 0)dr, 0 - &) + (¢ | ‘(u = Tu)dr, U — &). (4.98)

Combining the above three equations results in,
(0(P) = 0(p).e™(B(P) = Rp)) + (¢ [ K(@)(© - &), - §)
sy o~ o4 t . s
§),0 - a) + (e_”/ (Mu — u),U—ﬁ)
0
(4.99)

~ R(p))).

1)

~

=134

-~

= (e [ k(@)@ -

+ (0(P°) = 0(p°), e (R(P)
Let » = U — i and integrate (4.99) in time from 0 to 7. Then, consider the
(4.100)

second left-hand side term of (4.99),
d
’ <K / nds, / nds) _2<A( NV, / nds)

So, (e™™ f3 K (z)m,m) = Le~™L||KV/2 f3 nds||?. Thus, by integration by parts,

T t 1 (T t
/ (K(rv)n,e'”/ nds) = —/ re " Kl/z/ nds dt

0 0 2Jo 0

1 ok
e T2 K 1/"-/ nds (4.101)
0
Therefore, (4.99) integrated in time is

R(p))) + —/ re"t Kl/""/ nds| dt

2Jo 0

T
| (0P - 0p), e (A(P) -
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1 T
-T2 || 7r1/2
+e 5 K /0 nds
o T t
= ([ dn) o [7 (e e —un)

+ [ 0P~ 06, e~ (TP ~ FD)). (4.102)
Now, by integration by parts,
T A
/ ( /A( (i — ﬁ),n>dt
0

T !
e T K(: ﬁ—ﬁ),/o n(l'r) di

=7-/0T( / K(a )(u—u)(lr,/tn(l'r') ai- | ( =" ()

+ (e
T t N
<Cr / e | K2 [ (i~ &)ar (lt+cr -"“1;‘/2 ndr| i
0]
” T
+C / || KV — )%t + ¢ / et | K172 / ndr| at
. 2 2
+CeT /0 K26 = fydr|| + e~ || K12 /0 ndr (4.103)
Similarly,
[ finn-wr
0 0 ’
T t 2 T t 2
<(Cr -7t __ ~ ~rt
_C7j0 e /o(u [Tu)dr dt—{-er/o e A ndr|l dt
T t 2
-t _ 2 ~
+c/ e~ ||u — Iul| dt+c/0 e /ondT dt
T 2 T 2
+CeT / (u — Mu)dr|| +é&" / ndr (4.104)
0 0
0(p°),w) = 0,Yw € W,

Take the initial approximation, P°, such that, (6(P°)
(0039)), whete 0(:9)] 5, = s Ji, 005°)

This is done by computing P® = 0
Thus, combining equations (4.103)-(4.104) with equation (4.102), taking € and ¢

small enough and choosing r large enough to exactly cancel the second left-hand side

nas
0

2

term in (4.102) gives,

INUGE

), e (R(P) - R(p))) +
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+/ rt“1 1/2 ﬁ szi

2

T T
/(U—Hu)dT +/ e=t|u - Mu%dt}.  (4.105)
0 0

O

The theorem just proven bounds the error in the numerical flux by approximation
bounds. Thus, once the regularity of the solution is known, the error in the flux will
have the same asymptotic behavior as approximation in the discrete space.

The next estimate gives a bound in the H_; norm of the numerical approximation
to hydraulic head in the case that 0/8p > 0. The above result is used to derive this
result.

Let » € H3(R). Then, equation (4.93) and the definition of the L? projection
imply, ~

(MPy—wmwo=WUﬁ—0@»¢—¢r+(()— 0(p), $)
—(0(P) — 0(p), 1 — (v n/ — u)dr, q/;>

=(0(P) — 6(p), ¥ - ¢)+( /(U—u)dr w), (4.106)

where we have used integration by parts, the definition of the IT projection and have
again choosen PP so that the initial term is 0.
Now, assuming @ is Lipschitz continuous, and again using the definition of the L2

projection,

(O(P) = 0(p), b — ) = (0(P) — 0(B), % — %) + (0(5) — O(p), b — )
<0+ Ch|lp - pll|l% ]| a,- (4.107)

Also,

(n / ‘(U = w)r, i) < HH / (U = wyar| 1]l - (4.108)

Integrating equation (4.95) from 0 to ¢ holding v fixed and then taking v =

(K(m)/ dT,H/ —-u) cl'r>

IT f;(U — u)dr, results in,

“n U—uyr|
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+ (/Ot(u ~ Mu)dr, H/Ot(U - u)dr)

/Ot(u — ITu)dr

2

2
+C

t .
<cC ‘ &' [0 - w)dr

2

(4.109)

t
+e H/O(U—u)dr

Combining equations (4.106)-(4.109) and recalling the definition of the H_; norm, -

equation (3.1), gives,

16(P) = 0(p)||1-.,

t .
<C{h|lp - pl| + ”1{1/2/0 (0 - f)dr ). (4.110)

+ Mm — Iu)dr

For a given time ¢, apply the mean value theorem to write,
O(P(.,1)) — 0(p(.,t)) = 0'(w(@))(P(-st) = p(.,1)) 2 C(P —p).  (4.111)
Thus,

1P = plla_,

<C{hllp~ ol + | o (a119)

i
K/ / (0 - @)dr
0

+ “/Ot(u — Iu)dr

So, with Theorem 4.3, the error in hydraulic head is bounded in terms of approxima-

tion error.




Chapter 5

Two-Level Methods for Nonlinear Parabolic
Equations

The analysis in the previous chapter applies to discretizing the full nonlinear problem
on a computational grid of cell diameter 2. However, due to the highly nonlinear
nature of § and K, solving the resulting discrete nonlinear system is computationally
very expensive. Thus, alternative schemes which get around solving the full nonlinear
mixed formulation of Richards’ equation are attractive.

One alternative approach is to consider linearizing the equation before discretiza-
tion. For this approach, one would solve the full nonlinear problem on a coarse grid
with a small amount of unknowns, then use that coarse grid solution to linearize the
problem on a fine grid. This idea of using a two level scheme for nonlinear problems
was first developed by Xu [63, 64] who applied it to nonlinear elliptic equations with
Galerkin finite elements and extended by Dawson and Wheeler [22] to the expanded
mixed method applied to nonlinear parabolic equations.

Xu showed optimal Hy convergence for both the coarse and fine grids. Dawson
and Wheeler showed optimal H; and L? estimates for the coarse and fine grids,
and for the case of the lowest order Raviart-Thomas-Nedelec space, they showed
superconvergence for the coarse grid in both norms.

In this work, we will show superconvergence results in certain discrete norms on
both grids for a finite difference scheme applied to the nonlinear heat equation. This
is a first step in trying to apply the two-level technique to Richards’ equation. After
completing this analysis. We show convergence results for a two-level scheme with the
expanded mixed method applied to Richards’ equation. For this scheme, the equation
is not fully linearized on the fine grid. To fully linearize the equation would require
giving up a mass conserving scheme. Previous work has shown that solutions become
inaccurate when mass balance is lost. We thus leave the time term nonlinear on the

fine grid and just consider linearizing the hydraulic conductivity term.




Two quasi-uniform triangulations of  are considered, a coarse triangulation with
mesh size H denoted by 7y, and a fine triangulation with mesh size & denoted by
Ty. We assume that 7), is a refinement of 7y. Both these triangulations consist of
rectangles in two dimensions and parallelepipeds in three dimensions.

5.1 A Two-Level Finite Difference Scheme

We begin with a finite difference scheme for the nonlinear heat equation,

7,
a—f -V .K(p)Vp= /[, (5.1)

—K(p)Vp-n = 0. (5.2)

For simplicity we consider homogeneous Neumann boundary conditions. It is
straightforward to extend the following results to nonhomogeneous conditions. The

following assumptions are made.
1. The tensor K is symmetric and positive definite.

2. The tensor K is bounded, i.e. there exist positive constants, K, and K* such
that for z € IR,

K.z|? < 2Kz < K*|2|.
3. Each element of K is twice continuously differentiable in space and time with

derivatives up to second order bounded above by K*.

4. The tensor K (p) is Lipschitz continuous in p.

5.1.1 A Coarse Grid Nonlinear Finite Difference Scheme

In this section we develop and give convergence estimates for a nonlinear cell-centered
finite difference scheme on the coarse grid. For simplicity we consider two dimensions

and note that extensions to three dimensions are straightforward.

Definition of the Scheme

A variational formulation for (5.1)-(5.2) at time t" is to find (p", 4", u™) € (W x V x
V9 satisfying

(Op",w) + (V- u™,w) = (f*,w), Yw e W, (5.3)
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(8",v) = (p", V- v), Vv € V°, (5.4)
(u™,v) = (K(p")i",v), Vv € V. (5.5)

Cell-centered finite difference approximations P} € WH,fJ'"H € Vg and Uy, € V2
to the functions p(t",.), a(t",.) and u(t*,.), respectively, are chosen for each n =

l,..., N, satisfying

(de Py, w) + (V- Ul w) = (f*,w), Yw € Wy, (5.6)
(O3, v)mm = (PR, V- v), Vv € V3,
(U, v)rm = (K (Pu(PR))0%,v)r, Yv € Vi, (5.8)

with P} = pu(°,.).
Recalling that the grid points are denoted by,

($i+1/21yj+1/2)77: =0,..., Nz’ .7 =0,..., Ny,
and midpoints by,

(wi+l/2 + "L‘i—l/2), ¢ = la e 1Na:a

8
[

(.T/j+1/2 + ?Ij—l/z), J= 1’---7Ny,

N = DN =

Yj

define Py(p) from the values of p;; for i = 1,...,N, and j = 1,.. .,N,, as follows.
For points (2,y) such that @; < @ < 244,71 € {1,...,Nx} and y; <y < Yj41,J €
{1,... ,Ny}, take Py(p)(z,y) to be the bilinear interpolant,

Tip1 — T — T Yj+1 — Y
Pu(p)(x,y) = (pij(———) + pis1j
(p)(z,y) (l’zz(mi-*_1 — ,L‘) Piy ](-’L‘H-] A
Tipy — & T — Y=y
H(Pijp1(———) + pit1; .
(p"“(:vm — rv;) p'“”l(mm =

F01‘i=1,...,N$—1, set

5 _ (2HY + HY)pin — Hip»
,Pll(p)(a'nylﬂ) - Hi, +Hg .

This is a two point extrapolation, and by Taylor’s theorem |(Py(p) — p)(a:, Y1/2)| <
CH?®. For points (z,y) such that 2; < = < 241 and Y172 < ¥ <, define Py(p) as
the bilinear interpolant between p;,1,p,‘+1,1,771-1(1’)(-’1«'1',3/1/2) and Py(p)(@it1,¥172). By
interpolation theory |Py(p) — p| £ CH? for these points. In a similar way define



[
o

Pr(p) for (z,y) such that @; < & < 2441 and g YN, S Y S YN, 4172 as well as for points
(v,y) where 21s S K2y or ey <a < TN +1/2 and y; < y < y;41 for j such that
1<5< N Lastly, define Py(p) at the corners of the domain. Here, three point

extrapolation is used,

7’}1(1’)(-’”1/2, .?/1/2) = 7’11(1’)1.1/2 + 7’1{(1’)1/2,1 —P1a
= p11/2 + P1/2a — P11 + O(H?).
By Taylor’s theorem, |(Py(p) — p)(21/2,y1/2)] < CH? For points (z,y) such that
212 < & < xy and ¥y £ y < 4, define Py(p)(z,y) as the bilinear interpolant of
7’;1(1’)(-’01/2,.7/1/2), PH(P)(-’L‘l/:z,yl), 7’;1(1’)(-731,.7/1/2) and p;; which is an O(Hz) approx-
imation to p(x,y) within this “corner region”. Similarly, define Py(p) as an O(H?)
approximation to p in the other three “corner” regions.

We have just proven the following lemma,

Lemma 5.1 If p is twice differentiable, then for Py (p) defined above,
|Pu(p) = plle < CH™

If a uniform mesh is used and K is a diagonal tensor, equations (5.6)-(5.8) reduce
to a standard nonlinear finite difference procedure. Denoting P} by P", in the interior

of §,

H?
n rr2 n-1
GH+ P o

1 - n - n n n
=§[(1‘11(7’H(P Di+1/2i41/2 + Ki(Pu(P"))is1/25-172) (P — Pliy;)
+ (K1 (Pu(P"))i-1/254172 + Kin(Pu(P"))icaj2j-172) (Pl — PlLy;)
+ (K22(Pr(P™))ig1/2541/2 + K2a(Pra(P"))ic1254172) (Pl — Pii)
) N

17
+ (1"22('P I(Pn Pj — lJ 1)]
H?

ij
+xm b (5.9)

Existence and uniqueness of a solution to this discrete nonlinear problem is given

i+1/2j-1/2 T+ ]\'22(7>H(Pn))i-—1/21'—1/2

in the following theorem.

Theorem 5.1 TFor time¢" and At sufficiently small, there exists a unique

solution to equations (5.6)-(5.8).
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Proof We areseeking a unique solution to the nonlinear equation F(P") = 0, where
F(P™) = b" 4+ P" 4 &5 A(P")P™. Here, b" is a vector whose entry corresponding to
grid cell (z4,y;) is ——%‘; Joi, [l — P3~', P is a vector whose ijth entry corresponds
to the value of the scalar variable P} and A is a matrix function of P* given by the
stencil above. By Theorem 5.4.5 of Ortega and Reinbolt [52], if F' is continuously
differentiable and uniformly monotone on IR", then a unique solution to F'(P") = 0
exists. It is easily verified that the I" defined above is continuously differentiable. In
order to prove that I is uniformly monotonic we note that uniform monotoncity is
equivalent to positive definiteness of the Jacobian, J = F’, and that a real matrix J
is positive definite if and only if its symmetric part, (J + JT)/2, is positive definite
(10, Lemma 3.1]). Furthermore, we know that if a matrix is stricly diagonal dominant
with positive diagonal entries, then the eigenvalues of the matrix have positive real
parts (10, Theorem 4.9]. Now, J = I + 85 A(P") + &5 A'(P")P*. Thus, with az
sufficiently small, we have that the symmetric part of J has positive real eigenvalues
and, hence, is positive definite, making J positive definite and F uniformly monotonic.

d

Preliminary Estimates

Before we show convergence estimates for this finite difference scheme, we show con-
vergence for a related linear scheme. The arguments given below closely follow those
of Arbogast, Wheeler and Yotov [8] except that we extend their work to time differ-

enced time dependent problems.

Theorem 5.2 For eachn =1,...,N, let (P}, U, UY) € (Wy x Vi x
Vj) satisfy

(V-Up,w) = (0", w), Yw € Wy, (5.10)
(Tp, V)M = (P, V- v), Vv e V3, (5.11)
(—U-?I,V)TM = (A’('PH(pn))Q’;{av)Ta Vv e VH7 (5'12)

with 0" = f* — 9,p" and PY = pY. We further require the compatibility
condition, [, Py = Jo p"*. Then,

U = u*llew + [T — 6" flom < CH?, (5.13)

125 — p"llm < CH?, (5.14)

LY — dip™|lm < C(H? + Ab). (5.15)
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We will make use of the following lemma proven in Arbogast, Wheeler and Yotov
[8].

Lemma 5.2 For the lowest order RTN space on rectangles and for any
q=(¢",¢") € H(Q) and E € T;,

0 0q*
5= (Ma)llo.s < 15 lloz, (5.16)
0 y aq¥
— y < || =—|o,5- .
I35 o5 < 1155 los (5.17)

In order to prove the above theorem, we will first prove two preliminary lemmas.

Lemma 5.3 Assume for each n = 1,..., N, that p*,dp" € WIQ).

Then, there exist U*" € Vy, P*" ¢ Wh,Z2™" € Vi, Z*" € Vi and W €
Wy such that

(I'j-*.n, V)'I‘M =(P*'", v. V), VE V[—?, (518)

(Z*'n,V)TM =(W*",V.v), veVs, (5.19)

(27, v)mm = (K(p")Z™", v}z + (9K (p")) 0", V)1, v € Vir (5.20)

and there exists a constant C independent of H such that for all 7, j,

Pt —piy S CH?, (5.21)

W™ — ol < CH?,  (5.22)

Univryas = Tirosl + Upfisaje — il < CH?,  (5.23)
|2z 25 = O saposl + 125050070 = Orily 02| S CHP, - (5.24)
(5.25)

*y *y 2
IZw.?+1/2j - 8¢u;",-+1/2j| + IZy.ir;'+1/2 - atu;},ij+1/2| < CH"

Proof Arbogast, Wheeler and Yotov [8] present a lemma which gives the desired
P=* and U*™ above. In order to derive (5.22) and (5.24), we apply a lemma due to




55

Weiser and Wheeler [62] to the pair (8,@i", d,p™) which, by definition, satisfies the two

equations,

V.o4" = I, in 0,
6,11" = —V@,p”,in Q,

where " = 9, f" 4+ Oyup". This result gives a W*™ satisfying (5.22) and through
(5.19), Z*™ satisfies (5.24) in the interior of Q. Define Z on T by,

%1 — ~71
w,it1/2i = atua:.i+1/2ja

TN - ~n
ii1jz = Oy i1y,

Then, (5.24) clearly holds on T
Choosing v in (5.20) to be the basis function associated with node (z;11/2,y;), we

have fori =1,..., N, — 1,
* 7] 1 e ry %1
Zx:,'l.g.l/zj = '2‘[1\11(Pn)i+1/2j+1/2 + ]{11(pn)i+l/2j—1/2]zx,,'l+1/2j
1 e ’ ok
510K (P"))ivr2i4172 + O K11 ()i 21721 UL e
Since du™ = K (p")d,i" + 8,K (p")ii", Taylor’s theorem gives for ¢ = 1,...,N, — 1,

n 1 d 4 Qg ~n
Qg i1/2; = '2‘[1‘11(1’n)i+1/2j+1/2 + Kn(p")iv1/2j-17210085 111 o

1 , n , n ~n
+§[3t(1‘11(12 Ditrszitr7z + O K (p"))ivry25-1/2)05 141 /0; + O(H?).

Therefore,
123 1725 = Oz iapnj) S ClZ3EL o — Ol i1 o5] + O(H?).
In a similar manner we can bound |Z}7 1/, ~ 8y i/, and (5.25) follows. O

We can now extend a corollary from Arbogast, Wheeler and Yotov [8] to arrive at
the following statement. For the U™, P*» Z*m Z*" and W*™ in Lemma 5.3, there

exists a constant C, independent of H, such that
10" — 6" |lxm < CH?,

|Z*" — 8,i" ||t < CH?,
||Z*’n — 8¢u"||TM < Cf]2.
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Lemma 5.4 There exists a constant C independent of H and At such
that,

IV - (du” - & UY)|| < CH, (5.26)
ld@" ~ d.Tiyrl|nm + [|diw™ ~ d U [ltm < C(H? + At).  (5.27)

Proof To prove this lemma, consider the time difference of (5.3)-(5.5),

(V- du™,w) = (b, w), Yw € W, (5.28)
(", v) = (dyp™, V - v), Vv € VO, (5.29)
(deu™,v) = (d( K (p"))@",v) + (K (p"~')d, T, v), Vv €V, (5.30)

and the time difference of (5.10)-(5.12),

(V- d U}, w) = (dib*, w), Yw € Wy, (5.31)
(d Oy, v)rm = (4P}, V -v), Vv € V2, (5.32)
(AU, v)m = (de(K (Pu(p™)) Ty, v)a

+(K(Pu(p*))d Oy, v)r, YV € Vi (5.33)

Subtract (5.31) from (5.28), and subtract (5.32) and (5.33) from (5.19) and (5.20) to
give,
(V- (du™ — d,U%),w) = 0, (5.34)
(Z*" — d 0y, v)mm = (W™ = d P}, V - v), (5.35)
(Z*" ~ U}y, v = (K (p")Z"" = K (Pu(p"))d Ty, v)r
HOK (p")O™" — d K (Pu(p") Ty, v)r.  (5.36)

Using (5.34) and applying the Cauchy-Schwarz inequality we have,

”V . (dtlln - (liy_z)HQ = (V . (dtu" - dg_U_nH), AV ((lgu" - Hdtu"))
S|V (du” - dUR)||IV - (du” — Tdu™)]].

Thus, by (3.24) the first part of the lemma is obtained.
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Now, let v = Ildu™ — d, U}, in (5.35) and v = Z*" — 4,0}, in (5.36), use (5.34)
and combine to get,
(K ()2 ~ K(Pu(p"™)d 0y, 2" — d T
=~ (2" — 40y, N - dU})m + (2" ~ d U, 2 — .0}y )rm

— (0K (p") O™ — d K (Pu(p™) Ty, 2" - d, 057, (5.37)

Adding (K (Py(p=1))Z*", Z*n — dU})r to both sides of (5.37), using the bounded-
ness assumption on I, Taylor’s Theorem, the Cauchy-Schwarz inequality and (4.2)

results in,

1Z*" — d 0y |lmm < C(|Hdu™ — Z*™||pp + AL T*||
+l|do(K (") — K(Pu(p))) 0" ||z
H|d K (Pu(p) (T = T)|lr + (H? + AL)||Z*"||1).

Taylor’s theorem, the estimate (3.25) and Lemma 5.3 imply that ||[Id,u™ — Z*"||1m <
C(H? + At). By Lemma 5.3 ||0*"||py and ||Z*"||1 are bounded. Thus, by Taylor’s
theorem, the Lipschitz condition on 8., the boundedness of 8,K and the approxi-

mation properties of Py,
|Z*" ~ dOylirm < C(H? + At + [T - Tyjr). (5.38)

By results from Arbogast, Wheeler and Yotov [8], ||[U*" — Ul ||t < CH?. Hence, by
the triangle inequality and Lemma 5.3,

™ — dOlyllem < C(H? + At).
Now, let v = Z*" — d,U}, in (5.36) and use the Cauchy-Schwarz inequality to get
12" - U llrm < 1K (P2 = K (Pu(p"))d Uy llx
H0K ()T — dy(K (Pu(p"))) Ty -

By the Lipschitz assumptions on K and §,K, Taylor’s theorem, the approximation

properties of Py and the boundedness of 9, K,
12" — d Ukl ™
<NEE™) = K(Pa(p" )2 + | K (Pu(p" " ))(Z*" - d.Tp)|x
+ 10K (p*) = de K (P (p")) 0"l + [|dK (Pr (p7))(T*" = Ty )|l
<C(H*+ At).
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The triangle inequality and Lemma 5.3 result in,

[deu™ — dUY|lmm < C(H? + AY).

Remark 5.1.1 By the inverse assumption, the definition of IT and (3.25)

we have
1G5l < |G = T oo + TG — G| oo + |5l oo
S CH | Oy — TG |m + [|TE" = 6" oo + 1" o
< C(H™?H* + H +1),

. . . T '
where d is the space dimension. Thus, ||Uj||.~ is bounded.

Proof (Of Theorem 5.2) Results (5.13) and (5.14) have been proven by Arbogast,

Wheeler and Yotov [§].
In order to derive (5.15), subtract (5.32)-(5.33) from (5.29)-(5.30) and use the

definition of the L? projection to give,

(i — di Uy, v) + Ern(d0y, v) = (diply — dP},V - v), v € V3, (5.39)

(da™ — iU}, v) + Erm(diU}y;, v) = (dy (K (p™))T" — dy(K (Pu(p"))) Ty, v)
+(K (") dyi" — K (Pu(p™"))d 0}, v)
+Er(d(K (Pu(p™))) T, v)
+Ep (K (Pu(p™ 1) Uj, v), v € Vi (5.40)

Let ¢ satisfy the auxilliary problem with p™ € L?(Q) defined later,

=V K(Pu(p"))V¢" = p", Q, (5.41)
K(Py(p™1)Veé" - n=0, T, (5.42)

where we assume that f; p" = 0. Elliptic regularity implies that
8™z < Cllp"|l. (5.43)
By equations (5.41) and (5.39) and the definition of II,

(dipp — de By, p")
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—(dipfy — Py, V - K (Pu(p™~"))V ")

—(de@t® — d 05, LK (P (p™1))V ")

— Epn(d, Uy, TLK (P (p™=1)) V™)

—(d,a" — dt_fl:,, HK(’PH(p"’l))VqB" - K(Py(p"“))Vqﬁ")
~(K(Pu(p"™))(dii" - d.0y), Vg™ — IV4")

—(K (Pu(p™™") (" - d0y), IV4")
— Ern(di Uy, LK (Pu(p™ 1)) V™).

(5.44)
By (5.40),

~(K(Pu(p" ") (did" - d 0y ), V")
=((K(p"") = K(Pu(p"™"))di", IV4") — (deu® — d, U, IV ")
+ (d(K (p")8" = d(K (Pu(p"))) 0y, IV$") — Brv(d Uy, 1V47)
+ Er(d(K (Pu(p"))) 0y, V")
+ Er(K(Pu(p*))d 0y, IV4™).

We also have by integration by parts, (5.34) and (5.36)

(5.45)

—(du" — d, Uy, 1IVS™)
—(d™ — d, U3, IIVY™ — V¢*) — (dyu” — U}, Vo)

= —(du" — U, TIV" = V¢") + (V - (dyu” — dU}), ¢" — ¢%).  (5.46)

Furthermore, we can write
(d K (p") 0"~ du I (P (p™) Uy, IV ™)
=((de L (p") — d K (Pu(p™)))id™, IV ")
+ (K (Pu(p")) (6" - Uy), IV ™). (5.47)

Using (3.16) and recalling the definition of the lowest order RTN space gives,

|Em(d Ty, K (") Vo) < C 3 % “a
E€Ty |a|=2

adU 3" a ) nyx
<C 3 (15 ol 5 (MK () V6™ o,z
EeTy .

(" )V ) ey H?

ad, 07, .
+||_‘a_yﬂ|| ol 5 (HI\( V6" )llo,p)H®.  (5.48)
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By Lemma 5.2 and the inverse inequality we have

adiﬁ:l &
1=

9 s o o .
HO-E S ”a?(dtull,:c - Hdtum)”O:E + ”%Hdtum”QE

< CIGT ~ Tl s + | iz o5
< Oldi Oy — Ty flo,pH ™" + [|dyi™ |1, 5. (5.49)
Since dtﬂz and IIK (p*)V¢" are in Vi, by (5.48) and the Cauchy-Schwarz inequality,
| Brna(d Ty, K (p")V4)| < C ZE:(Hdtfl:z — di"||o,z + || 6" |1, 2 H)|¢" |l2.6H
< C([| Ty — Ndeiflo + |G [ )| ¢"[l2H.  (5.50)

As done above and noting that K has bounded second derivatives,

| Exm (d: Uy, TV $7)| < O(||dUf; — Hdpa™|| + ||deu™ || H)

x || 6"l A, (5.51)
| Ex(de (K (Pu(p")) Oy, IVE™)| < (C + At)(| Ty — TG"|| + || G|, H)

x ||l H, (5.52)
|Ex(K (Pu(p*))d Ty, IV4™)| < C(||dTy; — Nd, ™| + (|dG" ||, H)

x||¢"||2H, (5.53)

where C' in the second and third inequalities depends on K*.
Combining (5.44) with (5.45)-(5.53), applying approximation properties of the 2
and II projections, using Lemma 5.4, and equations (5.13) and (3.25) gives

(dipfy — di Py, p")

< |\dia™ - d Tyl (p") V™ — K (p")V"|
K (Pr(p™))(dd™ ~ 03| V4" - TV
HI(deK (p") — dedK (Pyr(p™))) || TIV 47|
HldeK (Pu(p™)) (" ~ T[TV
HI(E (") = K(Pu(p™™")))d ||| TV "
+deu" - LU0V — V||
+H|V - (deu™ — d U146 - S
+de (K (p) T ~ do( K (Pr(p™))) T || TIV 4"
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+| Brw(de Ty, LK (") V)] + | Erna (U, TV $7)|
+ Bx(d(K (Pu(p")) Uiy, IVE™)| + | Br(K (Pr(p™"))d, Ty, 1V )|
< C(H? + At)[|¢"]|e.
Taking p" = dip" — diP}; and noting that that fyp™ = [, p° = 0 and applying
equation (5.43) we have,
By — &P}l < C(H? + Ab). (5.54)
O

Convergence Estimate of the Nonlinear Scheme

We now prove the following theorem about the convergence of the above coarse grid

finite difference scheme:
Theorem 5.3 Let P,'},f)'}?, and Uy,n =1,...,N be defined as in (5.6)-
(6.8) with initial values P = pu(t%.). Then, there exists a positive
constant C, independent of H and At such that
N
1P = p"ilm +{At 3 K. ][O — a|3}? < C(H? + At). (5.55)

n=1

Proof Let y" = P — Py,n" = Uy — Uy, &" = Uy — U} and o" = PY —
Subtracting (d; P, w) + (V - Uy, w) from both sides of (5.6) and using equations
(5.10) and (5.3) we have,
(dey"yw) + (V- €% w) = (f*,w) — (V- Ufy,w) — (LY, w)

= (0", w) = (dp", w) — (dpa™, w)

= (e",w) — (d;a"™, w), w € Wy, (5.56)
where ¢" is a time truncation term. Subtracting (5.11) from (5.7) results in,

(", v)m = (7", V-v), ve Vlga (5.57)

and subtracting (5.12) from (5.8) gives,

(&",v)rm = (K(Pu(P)OY, v)r — (K(Pu(p™)Ty, v)r
= (K(Pu(Pi))0"™v)r + (K (Pu(Py)) — K(Pu(Ly)) Uy, v)r
~((K(Pu(p™)) = K(Pu(P})) T, V)1, v € Vi, (5.58)
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Letting w = 9™ in (5.56), v = £" in (5.57) and v = %™ in (5.58) gives,

(dy*,7") = =(V - €%,9") + (", 7" )m — (die™,7"), (5.59)
(m", &%) = (7", V- ), (5.60)
(€™ n")m = (K (Pr(P))0™, 0™z + (K (Pu(PR)) — K (Pu(By) 05, 0™

~((K(Pu(p™)) = K(Pu(L3))) Ty, n™)1. (5.61)

Combining equations (5.59)-(5.61), applying the Cauchy-Schwarz inequality and
(4.2) we have,

2At[”’7 I~ I K(Pu(Pi) o}

< (dey™ Y + 1K (Pu(PE) P07 |15

< (€7 = (dhe™, 7" + (K (Pu(p™) = K (P(Bi)) Dy, m)n
~((K(Pu(PR)) ~ K (Pu(B3) Ty ")

< I IRe 171y + ey + CICK (Pae™) = K (P 23Tl
+CI(K (Pu(PR)) = K(Pu(25))Tglls + 8llm" 3w,

where 6 < K. /2.
Now,

n 1 tn n 1
lefs| = Elftw Pu(is Y3, 1) = 87)dt| < [|pu(@i, yj, )| s2gen-1,0m) (AL)z.
So,

€™t < ALD S HE HY [pea(ei, 50 ) |2 (enm1,em)- (5.62)

ij
By the triangle inequality and Theorem 5.2,
ldia™ |3 < C(H* + At?),
By the Lipschitz assumption on K, the definition of Py and Theorem 5.2

(K (Pu(p™)) = K(Pu(LE)Tyl4 < Cllp* - Phl% < CHY, (5.63)
(K (Pu(Pf;)) — K(Pu(PF)) —H“T < Clv™ I (5.64)

where we have used the boundedness of _fJ_'n L as per Remark 5.1.1,
H p
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Multiplying by 2At, bringing the 6||7"(|3y term to the left-hand side, summing
onn,n=1,...,N, using (5.62)-(5.64) and applying Gronwall’s Lemma 3.1 gives,

K(Pu(PR) 0™ |13

Y™ I3 = 11l

N
< CAt Z(Ilfnllﬁa + eIl + lle ) + CH* + CAL 3 1y Iy

n=1 n=1

< C(AL2 + HY).

The proof is completed by applying the initial conditions on P} and PY, Theorem
5.2 and the triangle inequality. O

5.1.2 Fine Grid Linear Scheme

We now consider a linear cell-centered finite difference scheme on the fine grid where
we make use of the nonlinear solution on the coarse grid. Note that since we assume
T}, is a refinement of Ty, we have, Wy C W), and Vy C V.

We solve the following problem for PF € W, Ut € V, and Ur € V2 at each time
stepn=1,...,N,

(ng,?,'w) = (V Uln ) (f",w),w € VVIH (565)
( hav)TM = (Ph ’v V),V € ‘ha (566)

(Urv)mm = (K (Pu(PE)OR, v)r
+(K'(Pu(PR))u(Uh)(Pu(PE) = Pu(PR)), V), v € Vi (5.67)

We define Qp(fi) as a vector quantity with entries QH('& ) and QF(a¥). The
entry Q% (@) is defined from the values of Ufy1/q5 fori =0,.. ,Nyand j =1,. N,,
as follows. For points (z,y) such that 12 < @ < @i41y2,7 € {1,...,N$} and
v; < ¥ < Yirnd € {1,...,N,}, we take Q%(@®) to be the bilinear interpolant of
Uiy /2,55 Wipa g, Wim1/2,541 @0 Uiy s iy y- This leaves a strip half a cell in height along
the top and bottom of the domain. We will consider the bottom strip. TFor i =
0,...,Nz, we set

a(a® (HHl +H3/) i _fll u;
Q5 (%) (@ig1/2,91/2) = 11:12}112 e

Now, for points (,y) such that x;_1/2 < & < @i44)0,1 € {1,...,]%} and yy/, <
y < 1, we let QF (4%)(x,y) be the bilinear interpolant of the two interpolated values
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Qi (%) (@i-1/2,¥1/2) and QF(%°)(@iy1/2, y1/2) and the two values 4f_ _1/2, and Uy /g
An analogous defintion is made along the top strip of the domain. The definition of
Q};(@*) is similar to the above, except that the strips are along the left and right
sides of the domain.

The following lemma summarizes the approximation error of Qp.

Lemma 5.5 If each component of @ is twice differentiable, then for
Qu(t) defined above,

1Qu(li) — dif| e < CH?

Proof By Taylor’s theorem we have that the two point extrapolation for the bound-
ary points described above is O(H?) accurate. Thus, since bilinear interpolation is

also O(H?) accurate, the lemma is proven. O

We turn now to an analysis of the fine grid scheme.

Theorem 5.4 Let PP, U7 and U?,n =1,..., N be defined as in (5.65)-
(5.67) with initial values P = p,(¢%.). Then, there exists a positive
constant C, independent of h, H and At such that

N
IPY —pNlim + {At Y K.||OF — ar||3}/2

n=1

SC(H™? 4 3% + At).

Proof We can define P} € W, U, € V, and U € Vi at eachn = 1,...,N
satisfying equations (5.10)-(5.12) and Theorem 5.2 on the fine grid.

Let 4" = P} — P}, " = U} - U, £" = U} — UT and o" = Py —p™. As done in
Theorem 5.3, we subtract (d; P}, w)+ (V - Uy, w) from both sides of equation (5.65)
and combine with equation (5.10) applied to the fine grid. We also subtract (5.11)
and (5.12) from (5.66) and (5.67) to give the error equations,

(dy™,w) = —(V - €™ w) + (", w) — (dia™, w), (5.68)
(m*,v)m = (7", V- v), (5.69)
(&",v)rm = (K(Pu(P))Op, v )T — (K(Pu(p™))Ty, V)

+(K'(Pu(Pi))u(Uk ) (Pu(PY) — Pu(Pf)), v)r. (5.70)
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Using Taylor’s Theorem, K (P),(p")) can be written as

K(Palp")) = K(PUPE) + K (Pu(P))(Pu(r") ~ Pu(Pp)
O ) - Pa(P),

where 0" is between Py (p") and Py (Ph).

Using this expression in (5.70) and adding and subtracting the derivative term,

(K'(Pu(PR)Qu(T)Pu(p™), v)r gives,
(&",v)mm = (K(Pu(Pg))n", v)r
+(K'(Pu(P))(Qu(T%) — T)(Pu(p™) — Pu(PE)), v)r
UK (P (PR))Qu (T ) (Pu(P) = Pu(e")), V)
D) - P (PR, v

Let w = 4", v = £" and v = 9" in (5.68), (5.69) and (5.71), respectively, and
combine to give,

Sl P = =7+ Kl
< (dey™, ") + 1K (Pu(P)) P03
< Sl + I + 5 a7 + ol
+C| K" (Pu(P))(Qu(T}) — T (Pu(") — Pul(Pp))I3
FC|K (Pu(PR)Qu (O} (PEY) - Palr™)I
+0) X80, )~ Pty TR, (5.71)

where § < K. /2.
Consider now the last three terms of (5.71). The first of these can be bounded as
follows.

1K' (P (PR))(Qu(TY) = Ty)(Pulp™) — Pu(P)IA
< CIQu(T%) = UyllmlPr(p™) — Pr( )3, (5.72)

where,

191(0) — Tylf3m < 1Qu(T%) — Qu(i™) |3y + | Qu(T™) — 672y
+[§" - U—h”TM'
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Since QH(ﬁ',T,) is a bilinear interpolant of terms that can be expressed in terms of
nodal values of U7, on the coarse grid, it can be shown that,

121 (0y) — Qu(a™)|2y < OOy - G130,

where || - ||tm,# denotes the midpoint by trapezoidal norm on the coarse grid. Also,
|Qu (") — 4™||3y < CH* by Lemma 5.5. In order to bound the second term in

(5.72), write it as,

1Pu(p"™) = Pu(Pi)llie < 1Pu(Ph) = Pu(p™)ie + |Pu(@™) = p"|2
+Ip™ = Pu(p")||F o

By the definition of Py, the quasi-uniformity assumption on the coarse grid and

Theorem 5.3,

n [ C n W
| Per(Pf) — Pu(p )”ioo < _d”PH -p ”12\4,11
H
< C’H‘d(H“ + At?),

where d is the space dimension. By Lemma 5.1, ||Py(p") — p*||2= < CH* and
IPr(P™) — p"||3 < Ch'. Thus,

K (P (PN Qu(T%) — T3 (Pu(p™) — Pu(PE))|%
SO0y — 6 dy g + 16" = T3 + HO(H" + HAAR + b, (5.73)

The second to last term in (5.71) can be bounded by,

15" (Pu () Qu (T3 )(Pu( ) = Pulp™)) I3

< CIORIE=IPu(PR) = Pu(p™)lI%

< CHNOF — 63w + 16 13<) (1P = PRI+ 125 = plIR)

< CH O — @5 + C)([Iv"I* + 4%). (5.74)

The last term in (5.71) is bounded by,

K" o
1 Puer) - Putrp) TR

< CIIPh( ") = Pu(Pi)l|ze1Pu(p”) — Pu(Ph)I7

S CH™ + H™ AL + b)Y (b + H + ||p" — P3|3.0)
< C(H"™ 4+ H AL + M) (W' + HY + At?)
<O

H 4 bt A+ HRIAR + HA). (5.75)
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Combining equation (5.71) with equations (5.73)-(5.75), taking the 6[|%*||? term
to the left side, multiplying by 2A¢ and summing over n,n = 1,..., N* where N* is
the time step at which ||y"|| achieves its maximum value gives,

N‘
Y 12 = 100l + At 3 Kl 3w
n=1
N* N*
S ALY (Il + lldie™|?) + CAL Y [lv)|12
n=1 n=1

Nt
+C(H' + H AR + ALY (0% — 6w, + 15" — Tyl12 + HY)

n=1
NO
+O( + 1Y )AL Y BT —
n=1
+C(HE + b 4+ At + H4RIAL? + HOAL).

Recalling the bound on €*, using Theorem 5.2 and recalling the initial conditions

on P) and P gives,
L] N.

IV + ALY Kumt 3w < CHP + b + At? + Hh'AL® + H2 ALY
n=1

N‘
+CALY Iy 1? + CllyV IP(H*4 + H4Ae?).
n=1

We can choose H and At such that H4~¢ 4+ H-4A2 < 2—15, and the last term can be

moved to the left-hand side. Applying Gronwall’s Lemma gives
N‘
I 1P+ ALY Kl 3w < CH™ + 1 + At2),
n=1

Applying Theorem 5.2 and the triangle inequality gives the desired result. O

5.1.3 Extensions to Multiple Levels

The above analysis carries through for multiplelevels. In this case, the nonlinear prob-
lem would still be solved once on the coarsest grid. However, one could have multiple
fine grids. On each of these finer and finer grids, the nonlinear term is expanded about
the next coarser solution and the resulting linear system is solved. Adding more grids
corresponds to adding more Newton-like iterations with each iteration taking place

on the next finer grid.
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5.2 A Two-Level Method for Richards’ Equation

In this section, we consider applying these two-level ideas to Richards’ equation. We
discuss only the expanded mixed method and not the superconvergent finite difference
case.

In order to get a sufficient rate of convergence on the coarse grid to transfer to
the fine grid, we make the assumption of strictly partially saturated flow. Under
this assumption, the scheme in Section 4.2 can be applied on the coarse grid giving
optimal convergence. Thus, we turn to the fine grid.

Linearizations of the time derivative term lead to schemes which are nonconser-
vative and give incorrect mass balance. Thus, we consider leaving the time term
nonlinear and just linearizing the hydraulic conductivity, K.

Our discrete time fine grid scheme is to find (P, f,T", Ur) € (W), V4, Vy,) for each
time stepn =1,..., N satisfying,

(d0(P™),w) + (V- U™, w) =(f", w), (5.76)
(0", v) =(P",V - v), (5.77)
(U™ v) =(K (P)T",v) + (K'(PR) T3 (P — Pg), v).(5.78)

The following theorem gives the convergence behavior of this scheme.

Theorem 5.5 TFor (P, fI”, Ur) e (Wi, Vi, V},) defined as in equations
(5.76)-(5.78), we have,

N ) 1/2
I - P4 (Z IR — )

n=1

SC(A* 4 At 4 HF+2-d/2), (5.79)
Proof Subtracting the numerical scheme from the variational formulation, equa-
tions (3.13)-(3.15), gives the error equations,
(d(0(p") = 0(P™)), w) + (V- (TIu" — U™), w) =(", w), (5.80)
@ -0 v)=(" - P",V.v), (581)

and
(Mu™ = U™, v) =(Mu" — u",v) — (K (P20, v)
= (K(POR(P" = Pi)v) + (K(ME% V). (5.82)
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Let y* = p" — PP g = G — U™, and §" = [Iu" — U". Take w = 4" in (5.80),
v =£"in (5.81) and v = 0" in (5.82) and combine to get,
(d(0(p™)=~0(P™), ") ~ (K (P) 0™, m")
=(e",9") = (" = ", 0") + (K'(PR) T (P - Py), )
— (K (p")0", n"). (5.83)
Expanding K (p") gives,

K"(a™)

2 (pn_P;})2‘

K(p") = K(Pg) + K'(Pg)(p" — Pp) +

Rewriting (5.83) and using this expansion gives,
(d(0(p™)~0(P™)),p" = P*) + (K (PR )0, ")
=(¢",7") + (Mu" — u™, 9") — (K(p)(&" - @), ")
(" + (0" ~ FNE (PO m™) + (K (PR - PR)(E" ~ 0F),m%)
+ 30" = PRI (@)8" 1)+ (00" — 0P, " = 7). (58)
By Lemma 4.3, we have,

(de(0(p™)-0(P")),p" — P")

> [ d [ (009) ~ 0(P)dpde

- C{(p" . Pn)2 + (pn—l _ Pn-—-1)2 + (Atn)'z}. (585)
We bound the time discretization term as in section 4.2,
n 9% n
le*]l < IIW”LZ(t"-I,t");LZ’)(At )12, (5.86)

Combining equations (5.84)-(5.86) and applying the Cauchy-Schwarz and the

arithmetic-geometric mean inequalities, we have,

pll
/nf“ (/ (O(p) - 0(P"))dp) dz + (K (PR)n™,m")
<C{llp" = PP+ p"" = PP} + CL(A)? + 10:u0]| 22 nmt gz AL + 1712}
+ (d(8(p™) = 0(P™)),p" — ") + C||TTu™ — u™||? + ¢|”||* + C||&" — &2
+ Cllm Iy (1T = 67| ze + [T 2eo) + Cll(p" = ) T2

+Cll(p" ~ PR - T2 + Cll(p" — Pp)*&" |2 (5.87)
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Let N be the time index where max, lp" — P*|| occurs. Multiply (5.87) by A¢"
and sumonn =1,...,M, where M < N and M > N,
The first left-hand side term becomes,

ﬁ;m” /Q d, ( /P ":(o(p) - 0(P”))dp) dz
== [ (f @) - ondp) s + | (/o 010 = 0¥ )
2~ Clp° = P>+ Cllp™ — P, (5.88)

where we have used Lemma 4.3.

By summation by parts,

M
z_:l(d:(O(p") - 0(P")),p" — pMAL"
=- Mi(ﬂ(p") — O(P"), dy(p™*t! — PM))AL"
= (00°) = 0(P°), ' =)+ (0™) — 0(PM),p™ = ), (5.89)

where we have used assumption (3.32) of a quasi-uniform time discretization. The
first right-hand side term of equation (5.87) is bounded by,

M
2Alle" = PP + [l = PP PYAe
n=1

M
<23 Ip" = P|PAt" + ||p° — PO||2At. (5.90)

n=1

So, noting that ||v*|| < ||p™ — " + ||p" — P"||, we have,

M
Ip™ — PM|*4+ 3" (K (Pg)n", n™) At"

n=1

M
SC Y Ip" = PYPAt™ + [)p° — PO||* + C(At)?

n=1

M M
FOX 5 = pIPAL + €3 " PAr

n=1 n=1

M
+C 0 110(p") = 0(P)|lde(p™*" = )| AL
n=1
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m 4
+C Z{HHu" —u"?+ 0 - d|* A+ Z T:. (5.91)
n=1

i=1

We bound T; by.
I X ~ ~
Ty =C ) "Iy (0% — G*flzes + |18"|| oo ) AL™
n=1
M -~
<C Y ™ le = PI(10% = G™||pee + |G| 1o ) AL™
n=1

M
+C 30 ™" = P (0% = G|z + | 8"l ) AL"

n=1
. (M 12 y M 1/2 M
<ol - P (S rrar) (105 - wiear)  +e3 forear
n=1 n=1 n=1
M 172 , m 1/2
= lomy (32 IiPae) (32107 - i)
n=1 n=1
M M
+CZ ”pn —'PnHZAtn-i-CZ l|])n—]3n|I2Atn
=1 n=1
. ) M 1/2
<Clp" - P (Z IIn"IIZAt") (H-42(H 4 A))
n=1
M 1/2
+Cllp (2 ||n"||2At"> (H“2(HM 4 At))
+C Z p" - P*|A¢" + C Z Ip* - p7|I2At", (5.92)
n=1 n=1

where we have used the inverse assumption Theorem 3.1 and Theorem 4.2.

Now,

1/2
I = P (S i) e+ a)

<5l ~ PR+ (Z unnuw) (H™P(H 4 A (5.98)

n=1

We choose H and At such that,

H™2(HM 4 At) < K12, (5.94)
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Note that in two dimensions, this requires £ > 0 and in three dimensions, we must
have k > 1. Then, the second right-hand side term in (5.93) is bounded by,

A’“ n n
Z [ (5.95)

Similarly,

M 1/2
15 = pllzeo(r2) (Z lln”ll"’At”> (H-4P(H* 4 At))

n=1

K, Y

Z ™ 2At". (5.96)

n=1

1 A
55”1? — pllio(r2y +
Thus, T} is bounded by,

M M
Ty <C Y |Ip* = PY|PAt +C Y I - p|2AL" + 2 In™PALm. (5.97)

n=1 n=1 n=1

The term T3 is bounded by,

M
T, =C ) |I(»" - p")Ug At
n=1

M
<C 3 (" =PI % + I — )11 — &%) Ae
n=1
M .
SCRHN 4 ¢ S p2 0Ty, — an|PALn, (5.98)

n=1

and T3 by,

M
Ty =C 3 lI(p" - PR)(u" — Up)|PAt"

n=1

M
SC X" = Plsla” - Ug [P At

n=1
M

SC Y (HHMY 4 AL)IE" - Ty |)PAr, (5.99)
n=1

where we have again used the inverse assumption.

Lastly,

T can — PR |Ar

n=1
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M
<C Y™ = PRIlZIIp™ — PRIIPIG"% A
n=1

M
SC ST(HTHHM £ At)2(HF + At)2 AL, (5.100)

n=1
Thus, again using Theorem 4.2 we have for these last terms,
4
YT SC(RPEFD - (H2(HAY 4 AL))(H* 4 At)?
=2

A", (5.101)

M M
+C Yo" - PPAt+ C Y |p" - p
n=1 n=1

Now, let M = N. Applying approximation properties, Gronwall’s Lemma 3.1 and

taking P% = p° in (5.91) gives,
B iz, o
P = PYIP+ Y (K (PR )n™, ™) At
n=1
SC{AL? + HAHEHD) o p2k41) | gr=d prateti)y, (5.102)

So, [PV = PN|| < C{AL + h¥+1 4 H-d/2+20k+1)},
Combining these equations and taking M = N in (5.91) gives,

N 1/2
I = ¥ (S P o s

n=1

<C(hMY 4 At 4 H¥+2-4/2), (5.103)

The triangle inequality finishes the result. O
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Chapter 6

Implementation and Numerical Results

In this chapter the implementation of a C** three-dimensional Parallel Richards’
EQuation Solve code, PREQS, is described. We first discuss the equation formulation
and discretization scheme used. Then, a brief discussion of the nonlinear and linear
discrete system solution techniques is given. Lastly, some numerical test cases are

presented along with results.

6.1 Implementation Issues

In order to achieve parallelism, the parallellepiped domain, 2, is decomposed into a
set of smaller parallelepiped subdomains, denoted by €;, so that Q = U;§;. The data
corresponding to the cells in each of these subdomains is stored on a single processor.
Let T'; = 0Q; and T';; = T; \ T. Thus, I';; is the part of the boundary of subdomain ¢
that is contained in .

As shown in Section 5.1, the expanded mixed finite element method with certain
quadrature rules simplifies to a cell-centered finite difference scheme with a 19 point
stencil. This stencil is shown in Figure 6.1. In order to implement this finite difference
scheme in parallel, each processor communicates with up to 18 neighbors. To reduce
this requirement, we add extra unknowns along the interfaces between subdomains.
Adding these unknowns allows for the normal fluxes at the interface points to be
discontinuous, which is a nonphysical condition. Thus, extra equations which enforce
continuity of normal fluxes at the interfaces are also introduced. Adding these extra
unknowns corresponds to adding a single hydraulic head at the interface points. This
value will be “owned” by one processor and communicated to the “non-owner” after
updates.

Formulating a mixed method with these extra unknowns along interfaces between
subdomains was first done by Glowinski and Wheeler [35] in the context of linear
elliptic equations. They used these unknowns to formulate domain decomposition

schemes for the mixed method.
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Figure 6.1 The 19-point discretization stencil.
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General conditions of the form,
cu-n+uvp=yg,

are considered for the external boundaries. The functions ¢ and v are assumed to be
functions of position only. The data ¢ is a function of both time and position.

To define the numerical scheme, we define a new discrete vector space, V. Let
V; = Vilq,. Then take, V,L = @ V;. The numerical scheme is defined as finding
(P", U, Un, L") e (Wh,Vh,Vh, Aj) at each time step n = 1,..., N satisfying,

(d0(P"),w) + (V- U™ w) = (f*,w), (6.1)
(0", v)aira = (P, V-)q, — (L, v - n)r,, (6.2)

(U™, v)a,rm = (K(PY)U", v)a, 1, (6.3)

(U™ - n, B)riar = (g + v L™, B)m,rier, (6.4)

> (U*-n,B)r, =0. (6.5)

i
The extra unknowns provide a boundary condition for internal interfaces. Thus,
the subdomains are coupled only through shared boundaries, and each subdomain
will only need to communicate with neighbors sharing interfaces. Hence, subdomains

communicate with up to 6 neighbors and not 18,
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The main disadvantage of this approach is that as the number of subdomains
increases, so does the number of extra unknowns. Thus, the algorithm changes as
more processors are added, and parallel speedup, in the traditional sense, will be
non-optimal.

In calculating flow velocities, the technique of one point upstream weighting [46] is
employed. For this technique, the relative permeability and its derivative at interfaces
are approximated by the value at the cell one point upstream. The upstream point
is defined in the case of a full permeability tensor and cell-centered finite differences
by [21],
krw(Pigr), if k(2)Uigr2 <0,

(6.6)
krw(B), otherwise,

krw(Pi+1/2) = {
Forsyth and Kropinski [32] and Sammon [61] have shown that upstream weighting is
necessary in order to accurately track the fluid front. However, by Taylor’s Theorem
the truncation error associated with upstream weighting is O(h). Thus, we expect
this approximation to be only O(h).

We use an inexact Newton method [23] with backtracking line search globalization
[24, 27] to solve the discrete nonlinear problem. In this method the Jacobian system
is solved inexactly, most often with an iterative method. The GMRES Krylov sub-
space method [60] preconditioned with a Jacobi preconditioner is used in the code.
The linear system tolerances are chosen using an algorithm of Eisenstat and Walker
[28] which prevents oversolving of the system. Far from the solution, the nonlinear
function F" and its local linear approximation may disagree significantly. In this case,
forcing the linear solution to be very accurate may lead to a step which provides little
or no progress toward a solution. Furthermore, solving the linear system to a high
level of accuracy can be very costly. Eisenstat and Walker give a variety of choices

for tolerances [28]. One choice is,

g = U = 1FPm) + J(P=HAP™| |
[#(Pm=1)] ’

where P™ is the current Newton iterate. This choice reflects the agreement between
the function and its linear model at the previous step. Eisenstat and Walker have
shown that for this choice of n™, once the iterates are close enough to the solution,
the inexact Newton method shows two-step quadratic convergence. This method
has been effectively implemented in a two-phase flow code where the compute time

decreased significantly with this choice for the linear system tolerances [21].
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The PREQS code uses the kScript scripting language of Keenan [42] in order to
provide a flexible user interface. The kScript command generation program cmdGen
[41] was used to define kScript commands and variables. As a result, code input can
be set in any units and in any order. Furthermore, Keenan has developed extensive
array and vector C** classes that were used throughout the PREQS code.

6.2 Numerical Results

In this section, results are given for the PREQS code applied to various test problems.
A three-dimensional nonlinear heat equation with a known solution is considered first.
Then, one-dimensional and three-dimensional partially saturated flow problems are

discussed.

6.2.1 A Known Solution Test Case

In order to verify the asymptotic rate of convergence, a test problem with a known
closed form analytical solution is considered. For this case, 8 and k, are both taken

to be p, giving the equation,

%V (pkVp) = /. (6.7

where f is chosen so that p = xyzt + 1. The problem domain is taken to be the unit

cube and,

1.0 0.1 0.1
k=101 1.0 0.1
0.1 0.1 1.0

Dirichlet boundary conditions are taken on all sides of the domain and the initial
condition is 1 everywhere. The nonlinear iteration tolerance was set to 10~9, and all
problems were solved on a processor mesh of 2 x 2 x 1. Time steps of 0.001 were
taken, and the discrete L? error measured at the final time, 0.1. The time step was
taken to ensure that At < h? for all h considered.

Table 6.1 gives the discrete L? error for various mesh sizes. Let E; be the error
after solving on a grid of size h;. Then, E; = Ch? is the discrete L? error at the last

time step. Taking logs results in,

(log h;)r + log C = log E;. (6.8)
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Writing this for each data pair (E;, h;) gives an overdetermined set of equations for
the convergence rate r and the log of the constant C. Using Matlab to solve this
system, we arrive at the solution r = 1.9, log C = —6.3411. This line, along with the

five data points, is plotted in Figure 6.2.

Table 6.1 Convergence results for a three
dimensional analytic test problem.

Grid L? error

2x2x2 4.2947 x 10~*
4x4x4 1.3104 x 10~
8x8x8 3.4952 x 105
16 x 16 x 16 8.8112 x 10~
32x32x32 21521 x 107¢

a Log-Log Plot of Convergence Data and Best Fit Line

10

107 |
slope = 1.9

Log of Eror

-5 -

-8 1
107 107" 10
Log of Mesh Size

Figure 6.2 Linear plot of convergence data.

The analysis in Chapter 4 indicates that the expanded mixed method with the
lowest order space should give at least O(h) spatial convergence. However, the above
results indicate that it may be possible to prove better than O(h). Furthermore, the

code uses a finite difference scheme based on superconvergent points similar to the
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coarse grid scheme proven to be O(h?) for the nonlinear heat equation in Chapter 5.
The method used in the PREQS code employs one-point upstream weighting which
is O(h) instead of the O(h?) bilinear interpolation. However, for problems where no
steep fronts are present, it is not surprising to see better than O(h) convergence even

though upstream weighting is used.

6.2.2 A One-Dimensional Flow Problem

The next test problem we consider was reported by Celia, Bouloutas and Zarba [18]

and is a one-dimensional flow problem. This problem was implemented in order to

verify conservation of mass and to examine the effect of lengthening time steps.
Physical properties for this test case are given in Table 6.2. The water con-

Table 6.2 Physical data for the one-dimensional flow problem.

Domain lem X 1 ecm x 60 cm
o 0.0335

n 2

m 0.5

0, 0.368

0, 0.102

Kygy Ryyy b2z 1.0568 x 1074 cm?
k:z:y, k:vza k yz 0

Density lgm/cm?®
Viscosity 1.124¢P

Porosity 0.368

tent and relative permeability are given by the van Genuchten curves, (2.2) and
(2.7). Initial and boundary conditions for pressure head were as follows, h(z,0) =
—1000c¢m, 2(0,t) = —1000cm and ~(60cm,¢) = —75cm. No flow boundary conditions
were taken on the four remaining boundaries. The depth direction was divided into
cells of width 2.5¢m, and a single processor was used for all results with this test case.

Let W denote the time change of water content in the domain over the time of
simulation, and let I denote the water mass entering the domain over the time of

simulation. Then,

W=y == Afn —APAz = (6N - 09)As,

n=1 i
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N N
F = (Z(u::_l/z —_ u:l_llz) ' n,‘) Atn — Z(Ug ‘g — U% . nB)AtTL,
n

=1\ n=1
where uj - n is the flux on the z = 60cm boundary. The mass balance ratio is given
by,
w

MB= . (6.9)

If this ratio is unity, the numerical method exactly conserves mass.

Celia, et.al. show the mass balance ratio for a head-based form of Richards’
equation solved with both a Galerkin finite element method and a finite difference
method. Both schemes show large degradations of the mass balance as the time step
increases. For steps of 1 minute, the finite difference scheme gives a ratio close to 1,
but as At goes to 60 minutes, the ratio drops to 0.6. The finite element scheme gives
even worse results. However, with the mixed form of Richards’ equation, mass should
be conserved and the ratio should be close to unity.

This test problem was solved with the PREQS code for one simulation day with
various time steps ranging from 1 minute to 60 minutes. In all cases, the above mass
balance ratio was always unity. Thus, no water was artificially created or destroyed
by the numerical method.

Figure 6.3 shows the approximate solutions for four different time steps. These
solutions are almost identical indicating that the mixed formulation of Richards’
equation used in this work prevents degradation in results due to time step increases,
unlike h-based forms which degrade quickly with step increases. This degradation
can be dramatic and is documented in Celia, et.al. [18].

Figure 6.4 shows approximate solutions after 0.5 simulation days for a fixed time
step of 15 minutes and varying spatial steps. The solution is converging to a sharper
and sharper front indicating that as the grid is refined, the solution improves.

6.2.3 A Three-Dimensional Irregular Geometry Flow Problem

The last problem we consider is a three-dimensional problem over an irregular geom-
etry domain.

For this case, the domain can be mapped to a rectangular domain of 100cm x
100cm X 20cm with a C? map, F. The theory of Arbogast, Wheeler and Yotov
[7] discusses the transformation of the original problem to one over the rectangular

computational domain. Specifically, if the mapping is C?, then the problem can
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be transformed into an equivalent problem over a rectangular domain which has a
convergent solution. The permeability tensor, K, is transformed by,

K = JDFK(DF )T, (6.10)

where DF is the Jacobian of the map, F', and J is the determinant of DF. The
resulting permeability tensor will be full even in the case that the original is diagonal.
Furthermore, the time derivative term is multiplied by J. Applying these transfor-
mations allows computation over a regular grid.

Physical properties for the original case are given in Table 6.3. The water content

Table 6.3 Physical data for the three-dimensional flow problem.

Domain 100 cm x 100 cm x 20 cm
o 0.0334

n 2

m 0.5

0, 0.361

0, 0.102

kzay kyyy kzzy 2 < 10cm - 9.33 x 10712 m?
kzys Koz kyzy 2 < 10cm  9.33 x 10713 m?
kyzy kyys kzzy 2 > 10cm  9.33 x 10710 m?
kzyy kzzy kyzy 2 > 10cm  9.33 x 10711 m?
Density lgm/cm?®
Viscosity 1.124¢P
Porosity 0.368

and relative permeability are again given by the van Genuchten curves, (2.2) and (2.7).
The computational grid was 20 x 20 x 10 divided uniformly over a 2 x 2 x 1 processor
mesh. As seen in Table 6.3, the domain has two horizontal layers. The top layer has
a much higher permeability than the lower. No flow boundary conditions were taken
on all boundaries except the top and bottom. On the top face, the « € (0,20cm),y €
(0,20cm) section had a hydraulic head boundary condition of -50 c¢cm and no flow
conditions everywhere else. On the bottom face, the = € (80cm, 100cm), y € (0, 20cm)
section had a hydraulic head condition of -1000 cm and no flow everywhere else. These
conditions effectively placed a source at the top left section of the domain and a sink

at the bottom right section.
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Figure 6.5 shows results for the regular domain in the case that the entire do-
main has the higher permeabilities given in Table 6.3 after 45 simulation days. The
infiltrating water has advanced radially outward from the injection part of the upper
boundary and has been pulled downward by gravity. The water has reached the sink
boundary condition and has started flowing out of the domain. Figure 6.6 shows the
regular domain for the two permeability layer case given in Table 6.3 after 50 simula-
tion days. Here, we see that the water does not easily flow into the low permeability
region. The water must accumulate enough weight in order to push into this region.
Furthermore, the low hydraulic head condition is not felt by the water since it has
not yet gotten to that part of the boundary.

Hydraulic Head After 45 Days

Figure 6.5 Three-dimensional single permeability
layer test case after 45 simulation days.

Lastly, Figures 6.7-6.10 show the hydraulic head after 5, 20, 50 and 75 simulation
days for the irregular geometry test case. As can be seen from the figures, water
starts flowing at the top left of the domain. As time passes, it begins drifting toward
the right while gravity pulls it downward. However, when the water reaches the lower
permeability region, it must accumulate enough pressure to go further. Instead of
going straight down, it pools along the interface between the two regions. As enough
pressure builds underneath the injection area, the water is pushed downward and
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Hydraulic Head After 50 Simulation Days

Figure 6.6 Three-dimensional two permeability
layer test case after 50 simulation days.

begins to accumulate at the bottom of the domain. Around 20 days we can see the
preference of the water to flow toward the rightmost part of the domain. This is due
to the shape of the domain as it is twisted at the floor. Thus, the downward direction
is toward the lower front of the domain. By 75 days, most of the upper region has
filled with water and the water is starting to flow into the lower region. The effect
of the two layers is clearly seen. Furthermore, it is clear that domain shapes have a
dramatic effect on the flow and should not be modeled by simple rectangles.

In conclusion, we have shown that the PREQS cede gives O(h?) accuracy on a
model problem with a known solution. Furthermore, the code maintains perfect mass
balance and is robust for large time steps. Lastly, the code predicts expected solutions

to three-dimensional groundwater problems with full tensor coefficients.
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Hydraulic Head After 5 Simulation Days

Figure 6.7 Three-dimensional irregular
geometry test case after 5 simulation days.

Hydraullc Head After 20 Simulation Days

Figure 6.8 Three-dimensional irregular
geometry test case after 20 simulation days.
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Hydraulic Head After 50 Simulation Days

Figure 6.9 Three-dimensional irregular
geometry test case after 50 simulation days.

Hydraulic Head After 75 Simulation Days

Figure 6.10 Three-dimensional irregular
geometry test case after 75 simulation days.




87

Chapter 7

Conclusions

7.1 Summary

In this thesis we have analyzed and solved numerical methods for simulating variably
saturated subsurface flow. A brief summary of existing literature in this area was
presented along with the physical situation that is modeled.

We developed and analyzed a number of expanded mixed finite element methods
applied to Richards’ equation. Optimal convergence was shown for a discrete time
scheme applied to the strictly variably saturated case. Optimal convergence was
also shown for a nonlinear form in the case of partially to fully saturated flow. The
nonlinear form is bounded below by the error in water content and above by the error
in hydraulic head. Convergence rates in terms of a Holder continuity rate were shown
for the error in water content for this case. Lastly, convergence rates in terms of
approximation error were shown for the unsaturated to fully saturated flow case with
a continuous time scheme. This scheme was defined using the Kirchhoff transform in
order to put the equation into a more easily analyzable form.

A method for handling nonlinearities was examined where the nonlinear problem
is solved on a coarse grid and the problem on the fine grid linearized about the coarse
grid solution. This technique is difficult to apply to Richards’ equation due to the
need to maintain mass balance. Thus, a scheme where the time derivative term on
the fine grid was left nonlinear was analyzed.

Numerical results were given for a three-dimensional parallel Richards’ equation
solve code, PREQS. The code exhibited superconvergence on a model problem as well
as robustness for large time steps. Mass balance is maintained exactly in the code.
Results from a full tensor three-dimensional irregular geometry test case were shown

and expected behavior was produced.
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7.2 Future Work

Despite the above results, there is still plenty of work to be done in the area of
simulating partially saturated subsurface flow.

The PREQS code uses only a Jacobi preconditioner and can be quite slow for long
simulations where the linear systems get difficult to solve. Thus, future work will in-
clude finding robust preconditioners for the linear nonsymmetric Jacobian systems.
Furthermore, the dynamic linear system tolerances described in Chapter 6 can sig-
nificantly slow convergence of the Newton method. Further work will try to identify
ways of making the forcing term selection more robust.

Richards’ equation has been criticized as a simplistic model for expressing the
two-phase flow of water and air [36]. However, when applicable, it is much faster to
solve Richards’ equation than a full two-phase model such as described in [21]. An
interesting area for future work would be to closely examine under which numerical
and physical conditions the solution of Richards’ equation fails to match that of the

full two-phase flow problem.
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