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Abstract

My decision to first read and studyThe Construction of the Wonderful Canon of Logarithms

was not motivated by an interest in logarithms. I was trying to learn more about the origin of the

natural exponential function. I had known Leonhard Euler(1707 − 1783) probably did the most to

engender wide spread understanding and acceptance of modern exponential functions (including the

natural exponential function), but John Napier had over one hundred years earlier written a couple of

papers creating something he called logarithms, which through hindsight, we have learned have a very

intimate relationship with the natural exponential function. I wanted to understand this relationship with

the hope that it would help me understand the context in which the natural exponential function was

born.

I also discovered something unexpected. Napier’sCanonis a marvelous example of how engineering

problems are solved in practice. Often times engineers are prohibited from directly applying textbook

solutions because of the complexity of the problem. They, instead, make simplifying assumptions and

estimate quantities of interest. Napier faced a similar situation. Hedefinedlogarithms, yet he could not

directly compute them. So, he computed their estimates. His ability to do so, I believe, shows the real

ingenuity and inspiration of John Napier.

Throughout this paper, I have tried to preserve most of Napier’s original proofs and arguments,

updating the language and mathematics where necessary. At the end, I added a section hopefully

answering some nagging questions a modern reader might have about a400 year old paper. Such

as, why did Napier choose the word logarithm and how do Napierian logarithms relate to ordinary

modern logarithms? I enjoy placing mathematics into historical context and I hope the reader gains a

new understanding and appreciation of logarithms which goes beyond what is usually gleamed from

modern texts.
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Remembering John Napier and His Logarithms

I. I NTRODUCTION

John Napier(1550−1617) was a laird of the Merichston estate near Edinburgh, Scotland. He was not

employed as a professional mathematician, although he is now most remembered as one of the inventors

of logarithms. From what is known about his life, Napier spent a considerable amount of time studying

mathematics searching for easier and more efficient ways of multiplying numbers [1, 2]. During the late

sixteenth and early seventeenth centuries, multiplication as well as, division and the extraction of roots

were in general slow and tedious calculations. The invention of logarithms almost certainly, came as a

long awaited relief to the labor of these calculations.

The sum of Napier’s work on logarithms is found in two treatises,The Description of the Wonderful

Canon of Logarithmsand The Construction of the Wonderful Canon of Logarithms. The Description

was published in 1614 and theConstruction, although written before theDescription, was only published

posthumously by his son Robert Napier in 1619. This paper focuses on the ideas and arguments presented

by Napier in theConstruction.

Napier devised an ingenious mathematical tool without the advantages of modern mathematics.

Differential and integral calculus had not been invented nor had exponential notation (terms like base

and exponent were not routinely used until much later). In fact, most of our contemporary mathematical

language did not exist, so Napier could not even express his thoughts as we would today. Consequently,

he initially described logarithms through geometry and not as the inverse of the exponential function. It

was in Napier’s lifetime, decimal notation began to be widely accepted and Johann Kepler(1571−1630)

derived his laws of planetary motion.

Similar to modern mathematical texts, theConstruction, is written in a more or less axiomatic format.

Napier begins with a few basic definitions and then progressively builds on them. The logarithmic function

he describes is not the natural logarithmic function known today, but forms the basis and very essence

of modern logarithms. As the name implies, the bulk of theConstructionexplains how to tabulate values

for this function.

Napier did not develop an explicit mathematical expression for the logarithm of a number. He

estimated them by finding a number whose logarithm possesses upper and lower bounds that differ

by an “insignificant amount”. He then reasoned the average of these bounds was a good estimate of

the actual logarithm. Through these types of estimates and by taking advantage of certain properties of
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logarithms, Napier built his entire Table.

II. A RITHMETIC AND GEOMETRIC PROGRESSIONS

The first portion of theConstructionis introductory, but nevertheless, presents some ideas which are

seen throughout the treatise and which are crucial to understanding central concepts. Arithmetic and

geometric progressions (sequences) are two such topics worth highlighting. An arithmetical progression

“proceeds by equal intervals” (Article 2) such that succeeding terms differ by a constant. A geometrical

progression advances by “unequal but proportionally increasing or decreasing intervals”. That is, the ratio

of succeeding terms is constant. As examples, Napier offers

Arithmetical progressions: 1, 2, 3, 4, 5, 6, 7, . . .

2, 4, 6, 8, 10, 12, 14, 16, . . .

Geometrical progressions:1, 2, 4, 8, 16, 32, 64, . . .

243, 81, 27, 9, 3, 1, . . .

Despite the fact that the terms in these examples are integers, Napier required them to be real numbers

in his definition. (This fact is important to remember but easily forgotten when one delves into the

construction of the Table.) If Napier had modern notation, he might have described arithmetic and

geometric motion by the functions

Arithmetic motion: f(t) = ct + b

Geometric motion: f(t) = cat

where in both casesf(·) is a real valued function of a real variable, anda, b, c ∈ R.

III. D EFINITION

Today, the natural logarithmic function is usually defined as the inverse of the natural exponential

function (e.g. [3]), or through the integral equation

lnx =
∫ x

1

1
t

dt, x > 0

(e.g. [4]). Napier offered a more qualitative definition. Consider two pointsα, β moving along the lines

shown in Figure 1. Letα move arithmetically from left to right along the first line such that in equal

time incrementsT it moves equal distances. In other words, letα travel with constant velocity. Set the

length of the second line equal to107 and letβ travel geometrically from left to right so that the distance
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Fig. 1. β moves such that its speed geometrically decreases whileα travels at a constant velocity. The position ofβ or α at

each moment in timekT is denoted byxβk andxαk respectively. The logarithm of the distance107 − xβk is defined asxαk.

travelled in each time increment equals a constant fractional proportion of the remaining length. (Napier’s

choice of107 is discussed below.) Since these lengths decrease, the velocity ofβ decreases in time.

Set the magnitude of the velocity ofα equal to107 and require the velocity ofβ at any moment in

time be equal (in magnitude) to the remaining distance at the same time. Thus at time0, the velocity of

β equals107, at timeT the velocity would equal107 − xβ1, and at time2T , it would equal107 − xβ2.

“Hence, whatever be the proportion of the distances [107, 107 − xβ1, 107 − xβ2, 107 − xβ3], etc. to

each other, that of the velocities of [β] at the points [0,xβ1, xβ2, xβ3], etc. to one another, will be the

same.” (Article 25)

Finally, let β move geometrically as described above from0 to xβk in time kT and let α move

arithmetically (with constant velocity equal to107) for the same amount of time from0 to xαk. The

distancexαk is called thelogarithm of the distance107 − xβk. (Article 26)

To the modern reader this definition may seem imprecise, nevertheless, it explicitly expresses the

relationship between a number and its logarithm. In particular, setting the velocity ofβ equal to the

lengths of the remaining distances forced the base of the exponential function describing the motion of

β to bee−1. (Refer to section V for a more complete explanation.)

Thus, knowing this base, Napier’s definition can easily be restated in modern terminology. Let the

functions

xα(t) = 107t (1)

xβ(t) = 107 − 107e−t (2)
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Fig. 2. In the sixteenth century the sine of an angleθ was defined as the half chord AB of a circle of radiusr.

describe the motion ofα andβ respectively. Then the function

zβ(t) = 107e−t (3)

describes the remaining distance fromβ to the end of the second line as a function of time.

Thus for a given timekT , the Napierian logarithm ofz(kT ) is defined as

Nap log (z(kT )) = xα(kT ). (4)

Napier chose to tabulate the logarithms of sines of angles because many intensive computational

problems of the day involved trigonometry. Note that in the sixteenth century the sine of an angle was

not normalized to a circle of radius one. Instead, it depended on the radius of the circle of interest.

Specifically, the sine of an angleθ was defined as the half chord AB of a circle of radiusr. Refer to

Figure III. The length of the second line represents the radius of Napier’s circle.

He chose107, in particular, because he wanted to guarantee accuracy and ease of computation. (Article

3) Multiplying everything by107 produced large integral numbers and achieved this goal.

Unfortunately, requiring the length of the second line to equal107 instead of one, convolutes

the computational advantages normally seen in modern logarithms. Napier himself was aware of the

improvements which would be gained by rescaling and he, in fact, proposed a new and “better kind” of

logarithm in the appendix of theConstruction.

IV. CONSTRUCTION OF THETABLE

Besides reflecting his approach, the arrangement of Napier’s Table and his method of constructing it

reflect the challenge of computing logarithms. As said before, his definition did not provide an explicit

expression. Calculating the logarithm of a number wasn’t simply a matter of plugging numbers into an

equation. Napier cleverly built his Table in a specific way so that he could take advantage of certain
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First Table

10000000.0000000
9999999.0000000
9999998.0000001
9999997.0000003
9999996.0000006
9999995.0000010
9999994.0000015
9999993.0000021
9999992.0000028
9999991.0000036

...
9999900.0004950

Second Table

10000000.0000000
9999900.0000000
9999800.0010000
9999700.0030000
9999600.0060000
9999500.0099999
9999400.0149998
9999300.0209996
9999200.0279994
9999100.0359992

...
9995001.2248041

TABLE I

NAPIER’ S FIRST AND SECOND TABLES OF DECREASING GEOMETRIC PROGRESSIONS. THE FIRST PROCEEDS WITH A

PROPORTION OF ONE ONE MILLIONTH AND THE SECOND WITH ONE ONE HUNDRED THOUSANDTH.

properties and arrive at estimates for his logarithms. He began by creating a decreasing geometric sequence

which was easy to compute. Starting with the numbera0 = 107, he subtracted one one millionth from it

to obtain the second number in the sequence. That is, he subtracted1 from 107 to obtain9999999.00000.

Similarly, he subtracted one one millionth of9999999.00000 from 9999999.00000 to obtain the third

number, i.e.a2 = a1 − a1(.0000001) = 9999998.0000001. In general,an = an−1 − an−1(.000001).

Napier continued the sequence for100 iterations and called it the First Table (Table I).

Next, he created a second decreasing geometric progression starting again with the number107 but

using a different proportion. This time in order to make everything fit together, he looked at the first and

last elements in the First Table and noted that their difference was roughly100 which is one one hundred

thousandth of107. He used this proportion to build his Second Table. It continued in the same manner

as the First Table, but only for50 iterations ending with the number9995001.224804 (Table I). He did

not use the exact proportion existing between the first and last elements of the First Table for the very

simple reason that using a round number like100 made the computations easier.

Building on these two tables, Napier created a larger Third Table. See Table II. This table had21 rows

1This number mistakenly appeared in theConstructionas9995001.222927. Napier most likely made a computational error

when constructing the Second Table. This error impacted later calculations, the effects of which are seen in Napier’s final

logarithm table. [1]
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1st Column 2nd Column 3rd Column · · · 69th Column

10000000.0000000 9900000.0000000 9801000.0000000 5048858.8878707
9995000.0000000 9895050.0000000 9796099.5000000 5046334.4584268
9990002.5000000 9890102.4750000 9791201.4502500 5043811.2911976
9985007.4987500 9885157.4237625 9786305.8495249 5041289.3855520
9980014.9950006 9880214.8450506 9781412.6966001 5038768.7408592

...
...

...
...

9900473.5780233 9801468.8422431 9703454.1538206 · · · 4998609.4018532

TABLE II

NAPIER’ S THIRD TABLE . THE PROPORTION IN EACH COLUMN IS ONE TWO THOUSANDTH AND ONE ONE HUNDREDTH IN

EACH ROW.

and69 columns and each row and column was a decreasing geometric sequence. The proportion in each

column was one two thousandth; in each row one one hundredth. The first element in the first column

was107 like before and the last element in the 69th column was4998609.4018532.

Napier began with these decreasing geometric progressions because his goal was to build a table which

listed the logarithms of sines between zero and ninety degrees. This meant, given the archaic definition

of the sine of an angle (and a radius of107), he was ultimately searching for the logarithms of0 through

107. He did not tabulate progressions with a proportion ofe−1 since he could not directly compute the

terms. He instead created progressions which were easy to compute and which yielded estimates of their

logarithms.

It follows directly from Napier’s definition that the logarithm of107 is zero since the distanceα has

traveled at time0 is 0. Napier estimated the logarithm of9999999.0000000 by introducing the following

bounds.

Consider the abstraction of Figure 1 shown in Figure 3. Denote the endpoints of the line along which

β travels asA andB and fix a pointC arbitrarily between them. Extend this line to the left to the point

D such that the length of the line segmentDB is in the same proportion toAB asAB is to CB, i.e. let

DB

AB
=

AB

CB
.

Allow β to move geometrically to the right beginning atD such that it moves fromD to A and from

A to C in equal times (the speed ofβ at D is equal to the length of the line segmentDB which is

greater than107). Allow α to move arithmetically fromE to F in the same amount of time.

The logarithm of the length of the segmentCB is, by definition, the length ofEF . From the figure
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Fig. 3. The logarithm of the line segmentCB has an upper bound equal to the length ofDA and a lower bound equal to the

length ofAC.

we also see that the logarithm ofCB is greater than the length of the segmentAC becauseα moves at

a constant speed as it travels fromE to F while β continuously slows down as it moves fromA to C.

Thus, the length ofAC is a lower bound of the length ofEF . Similarly, the length ofDA is an upper

bound sinceβ moves at higher speeds betweenD andA thanα does betweenE andF .

Expressions for these bounds are easily found. Note that the length ofAC equals the length ofAB

minus CB, that is107 minus the number with which you are taking the logarithm. An expression for

the upper bound is found by noticing that the segmentDA is in the same proportion toAB asAC is

to CB. This yields

DA =
(AB)(AC)

CB
.

With these bounds Napier returned to the problem of computing the the logarithm of9999999.0000000.

If the length ofCB equals9999999.0000000, the lengths ofAC andDA equal1.0000000 and1.0000001,

respectively. Napier reasoned that these bounds differed “insensibly” (Article 31) and that any number

between the bounds sufficed as an estimate of the logarithm. He decided to take the average of the bounds

and set the logarithm of999999.0000000 equal to1.00000005.

If Napier had started with a different proportion in his progressions, his bounds could have very easily

yielded an inaccurate estimate. If, for example, he used one tenth instead of one ten millionth in his First

Table, he would have computed the bounds of9000000.0000000 as1000000.00 and11111111.11!

It is evident from Napier’s definition that as the remaining lengths decrease geometrically, their

logarithms increase arithmetically. For a given time intervalT , β will move from 0 to xβ1 (Figure 4) and

by definition, the logarithm of107 − xβ1 is xα1. At time 2T , the remaining length becomes107 − xβ2

and the logarithm of this distance is simply twice the logarithm of107 − xβ1 sincexα2 is twice xα1.

Likewise, the logarithm of107 − xβ3 equals three timesxα1.
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Fig. 4. As the length of the remaining distances (107− xβ1, 107− xβ2, etc.) decrease geometrically, their logarithms increase

arithmetically.

Using this logic, Napier took his estimate for the logarithm of999999.0000000 and doubled, tripled,

quadrupled, etc. it and computed all the logarithms of the First Table (Table III).

Number Logarithm

10000000.0000000 0.0000000
9999999.0000000 1.0000000
9999998.0000001 2.0000001
9999997.0000003 3.0000002
9999996.0000006 4.0000002
9999995.0000010 5.0000002
9999994.0000015 6.0000003
9999993.0000021 7.0000004
9999992.0000028 8.0000004
9999991.0000036 9.0000004
9999990.0000045 10.0000005

...
...

9999900.0004950 100.0000050

TABLE III

COMPLETED FIRST TABLE .

Napier now tackled the Second Table. The first value is107 which we already know has a logarithm

equal to zero. To find logarithm of9999900.0000000, Napier proceeded essentially as he did before

seeking an upper and a lower bound which differed by an insensible amount. This time, though, the
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process becomes more complicated. It involves three more properties.

1) The difference of the logarithm of a given number and the logarithm of107 is just the logarithm

of the given number (Article 34).

Proof: This is self-evident since the logarithm of107 is zero. �

2) The logarithms of similarly proportioned numbers are equidifferent (Article 36).

Proof: This property follows directly from Napier’s definition since the pointβ will travel for

equal time increments between any two numbers that are similarly proportioned.Example:From

Table III, the proportion of the numbers9999993.0000021 and 9999991.0000036 is 1 : 5000000,

and the difference of their logarithms is2.0. The numbers9999992.0000028 and9999990.0000045

are similarly proportioned and the difference of their logarithms (10.0000005− 8.0000004) is also

2.0. �

3) The difference of two logarithms is bounded (Article 39).

Proof: Refer to Figure 5. Let the line segmentAB have length107 and let the segments

CB andDB represent the numbers whose logarithms are of interest. Define the pointsE andF

such that
EA

AB
=

CD

DB
(5)

and
AF

AB
=

CD

CB
. (6)

Solving equation 5 forEA, we see thatEA = (AB)(CD)/DB and thus

EB

AB
=

(AB)(CD)
DB + AB

AB
=

AB
(

CD
DB + 1

)
AB

=
CD + DB

DB
=

CB

DB
.

Therefore by the second property, the logarithms ofCB and DB differ by the same amount as

the logarithms ofAB and FB since they are similarly proportional. By the first property, this

difference is simply equal to the logarithm ofFB, and as before, is bounded byEA and AF .
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Fig. 5. The lengths of the line segmentsEA andAF are upper and lower bounds for the difference of the logarithms ofCB

andDB

Therefore, Napier concluded that the difference of two logarithms is bounded.

(AB)(CD)
CB

= AF < Nap log (CB)−Nap log (DB) < EA =
(AB)(CD)

DB
�

This last property is the key to finding the bounds of the logarithm of9999900.0000000 and to

determining all of the logarithms of the Second Table. Specifically, Napier found the number closest

to 9999900.0000000 in the First Table (9999900.0004950) and noted its logarithm (100.00000050) and

bounds (100.0000100 and100.0000000). Using property 3, he determined that.0004950 should be added

to the bounds of9999900.0004950 to yield the bounds of9999900.0000000. The result being100.0005050

and100.0004950. Finally, as before, Napier reasoned these bounds differed by an insensible amount so

either bound or any number between them could be taken to be the true logarithm of9999900.0000000.

Thus, Napier completed the Second Table by repeating what he had done for the First. He doubled,

tripled, quadrupled, etc. the logarithm of9999900.0000000 as he stepped through the progression. See

Table IV.

Napier was now ready to find the logarithms of the Third Table. The problem boiled down to finding

the logarithms of two numbers. If he could find the logarithm of9995000.0000000 (first element, first

column), he could calculate all of the logarithms in the first column since they are in a particular

geometric progression. Likewise, if could calculate the logarithm of9900000.0000000 (first element,

second column), he could fill in all of the remaining columns since all of the these elements are

geometrically related. Using the same method as before, Napier determined the upper and lower bounds

for the logarithm of9995000.0000000. The closest number in the Second Table to9995000.0000000 is

9995001.224804. The bounds for this logarithm as calculated before are5000.02525 and 5000.02475.

Seeking the bounds for the difference of the logarithms results in1.2254167 and1.2254165 for the upper

and lower bound respectively. Adding these bounds to5000.02525 and 5000.02475 yields the bounds

for the logarithm of9995000.0000000. These are5001.2506667 and5001.2501665. The true logarithm

of 9995000.0000000 was taken to be the average of these bounds or5001.2504166. Following the same
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Number Logarithm

10000000.0000000 0.0000000
9999900.0000000 100.0005000
9999800.0010000 200.0010000
9999700.0030000 300.0015000
9999600.0060000 400.0020000
9999500.0099999 500.0025000
9999400.0149998 600.0030000
9999300.0209996 700.0035000
9999200.0279994 800.0040000
9999100.0359992 900.0045000

...
...

9995001.2248040 5000.0250000

TABLE IV

COMPLETED SECOND TABLE .

process, Napier determined the logarithm of9900000.000000 to be100503.35853072.

Taking 5001.2504166 to be the logarithm of9995000.0000000, Napier once again doubled, tripled,

quadrupled, etc. it to determine the logarithms for all of the numbers in the first column of the Third

Table. Then starting again with5001.2504166, he successively added100503.3585307 to it to obtain all

of the logarithms of the first row. To fill in the remainder of the Table, one can either take the first element

in each column and successively add to it5001.2504166 to obtain the logarithms for each column, or

take the first element in each row and successively add to it100503.3585307 to obtain the logarithms

for each row.

Having found all of the logarithms in the Third Table, Napier instructed the reader to arrange it as

seen in Table V so that in his own words, it “may be made complete and perfect.” (Article 47) From

this point forward, Napier referred to the Third Table as The Radical Table and stated that it be used to

construct the Logarithmic Table of sines. The only work left undone was to determine how to calculate

the logarithms of all the numbers in between the numbers tabulated in the Radical Table and to calculate

the logarithms from zero to5000000.

Fortunately, Napier already had the answers. For any number greater than9996700, the logarithm can

be determined by simply computing its lower bound (subtract given number from107) as was done in

estimating the logarithms of the First Table. To find the logarithm of any number embraced within the

Radical Table, the bounds should be computed as was done in estimating the logarithms of the Second
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and Third Tables. To find the logarithms of numbers less than5000000, Napier further exploited the

property that the logarithms of similarly proportioned numbers are equidifferent. Given a number, one

can multiple it by any convenient proportional factor and obtain a number which will lie within the limits

of the Radical Table. This number is, of course, in proportion to the original number and its logarithm

will differ from the logarithm of the original number by an amount dependent upon the proportional

factor. The logarithm of the proportional number can be determined as before and all one has to do to

obtain the logarithm of the original number is to add to it the difference of the logarithms.

Napier concluded by describing how his Logarithmic Table should be arranged. “Prepare forty-five

pages” (Article 59) each with seven columns. Each page was devoted to two degrees. The first and the

last columns each listed every minute within the two degrees in such a way that they were complements

of each other. Wherefore, the first column began with0 degrees,0 minutes and ended with0 degrees,60

minutes, and the last column began with89 degrees,60 minutes and ended with89 degrees,0 minutes.

In the second and sixth columns the corresponding sines were listed next to the angle with which it

was associated and likewise, the logarithms of the sines were tabulated in the third and fifth columns.

Lastly, the difference of the two logarithms from each row appeared in the fourth column. This was

Napier’s Logarithmic Table, the culmination of over twenty years work and a milestone in the history of

mathematics.

V. REMAINING QUESTIONS

Why Napier’s logarithms are essentially to the basee−1?

Napier required the velocity ofβ to be the same as the remaining distances, hence he necessarily, if

unknowingly, specified the base of its geometric motion. To see this, suppose

xβ(t) = 107 − 107(1− p)t (7)

describes the motion ofβ, wherep is an arbitrary proportional factor.

Thus,

zβ(t) = 107(1− p)t (8)

describes the lengths of the remaining distances.

The velocity ofβ is the derivative of equation 7

vβ(t) =
d

dt

[
107 − 107(1− p)t

]
= −107(1− p)t ln (1− p). (9)



13

According to the definition, equations 8 and 9 must be equal. But equality holdsonly if − ln (1− p) =

1, or if 1− p = 1/e. Therefore, by definition, the base of the exponential function describing the motion

of β is e−1.

This fact has direct bearing on determining the base of Napier’s logarithms.If the total length of the

second line equaled1, Napier’s logarithms would exactly be to the basee−1. However, since Napier

choose107, he multiplied his numbers and logarithms by that amount. For example, the logarithm of

9811277.6670907 as listed in the Radical Table is190525.8660295. But the (modern) logarithm to the

basee−1 of 190525.8660295/107 is 0.01905258660379. Multiplying this result by107 yields an answer

which agrees with Napier’s tabulated value up to eleven significant figures! The majority of the small

error derives from the method of estimation for the logarithm of9999999.

If the factor 107 is strictly taken into account, it can be argued that the true base ise−107
(shown

below), however it is my opinion, that describing Napier’s logarithms as having basee−1 best preserves

their true nature.

Relation between Napierian and modern logarithms

Solve equation 3 forkT to obtain

kT = − ln
(

zβ(kT )
107

)
.

Substituting this result into equation 1 yields

xα(kT ) = −107 ln
(

zβ(kT )
107

)
.

Thus equation 4 becomes

Nap log zβ(kT ) = −107 ln
(

zβ(kT )
107

)
= −107 ln zβ(kT ) + 107 ln 107.

Changing the base of the natural logarithm we can rewrite−107 ln zβ(kT ) as logb zβ(kT ) where

b = e−1/107
. Therefore, Napierian logarithms can also be thought of as logarithms to the baseb shifted

by 107 ln 107.

Nap log zβ(kT ) = logb zβ(kT ) + 107 ln 107

Why the word logarithm?

Napier coined the Latin wordlogarithmuswhich derives its meaning from two Greek words:logos

meaning a principle relationship between numbers or ratio, andarithmosmeaning number. Napier did

not explain his view of the literal meaning of logarithimus, but seems appropriate since the concept of

proportion is central to the idea of logarithms.
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Utility

Modern logarithms derive most of their computational utility from the following three properties:

loga(xy) = loga x + loga y

loga

(
x

y

)
= loga x− loga y

loga(x
n) = n loga x

Since Napier used107 instead of1, his logarithms do not strictly possess the first and third properties.

However, if this factor is properly taken into account, his logarithms behave and can be used like modern

logarithms. Certainly, Napier recognized the advantages early on, for he writes, “by it [his logarithmic

table] all multiplications, divisions, and the more difficult extraction of roots are avoided.” (Article 1)

VI. CONCLUSION

As a closing note, it should be remembered that Napier did not exist in a vacuum. The full development

of logarithms sprang from the efforts of many individuals. Without Burgi, Briggs, Vlacq and many others

logarithms would not have reached the mathematical maturity nor the usefulness they have. Napier himself

welcomed collaboration and encouraged further development. For he said, “Nothing is perfect at birth.”
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