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Abstract

My decision to first read and studyhe Construction of the Wonderful Canon of Logarithms
was not motivated by an interest in logarithms. | was trying to learn more about the origin of the
natural exponential function. | had known Leonhard Eul€r07 — 1783) probably did the most to
engender wide spread understanding and acceptance of modern exponential functions (including the
natural exponential function), but John Napier had over one hundred years earlier written a couple of
papers creating something he called logarithms, which through hindsight, we have learned have a very
intimate relationship with the natural exponential function. | wanted to understand this relationship with
the hope that it would help me understand the context in which the natural exponential function was
born.

| also discovered something unexpected. Napi€esonis a marvelous example of how engineering
problems are solved in practice. Often times engineers are prohibited from directly applying textbook
solutions because of the complexity of the problem. They, instead, make simplifying assumptions and
estimate quantities of interest. Napier faced a similar situationdéfmedlogarithms, yet he could not
directly compute them. So, he computed their estimates. His ability to do so, | believe, shows the real
ingenuity and inspiration of John Napier.

Throughout this paper, | have tried to preserve most of Napier's original proofs and arguments,
updating the language and mathematics where necessary. At the end, | added a section hopefully
answering some nagging questions a modern reader might have abibit year old paper. Such
as, why did Napier choose the word logarithm and how do Napierian logarithms relate to ordinary
modern logarithms? | enjoy placing mathematics into historical context and | hope the reader gains a
new understanding and appreciation of logarithms which goes beyond what is usually gleamed from

modern texts.



Remembering John Napier and His Logarithms

. INTRODUCTION

John Napier(1550 — 1617) was a laird of the Merichston estate near Edinburgh, Scotland. He was not
employed as a professional mathematician, although he is now most remembered as one of the inventors
of logarithms. From what is known about his life, Napier spent a considerable amount of time studying
mathematics searching for easier and more efficient ways of multiplying numbers [1, 2]. During the late
sixteenth and early seventeenth centuries, multiplication as well as, division and the extraction of roots
were in general slow and tedious calculations. The invention of logarithms almost certainly, came as a
long awaited relief to the labor of these calculations.

The sum of Napier's work on logarithms is found in two treatisHse Description of the Wonderful
Canon of Logarithmsand The Construction of the Wonderful Canon of Logarithriibe Description
was published in 1614 and ti@onstruction although written before thBescription was only published
posthumously by his son Robert Napier in 1619. This paper focuses on the ideas and arguments presented
by Napier in theConstruction

Napier devised an ingenious mathematical tool without the advantages of modern mathematics.
Differential and integral calculus had not been invented nor had exponential notation (terms like base
and exponent were not routinely used until much later). In fact, most of our contemporary mathematical
language did not exist, so Napier could not even express his thoughts as we would today. Consequently,
he initially described logarithms through geometry and not as the inverse of the exponential function. It
was in Napier’s lifetime, decimal notation began to be widely accepted and Johann Kiggler 1630)
derived his laws of planetary motion.

Similar to modern mathematical texts, t@enstruction is written in a more or less axiomatic format.
Napier begins with a few basic definitions and then progressively builds on them. The logarithmic function
he describes is not the natural logarithmic function known today, but forms the basis and very essence
of modern logarithms. As the name implies, the bulk of @@nstructionexplains how to tabulate values
for this function.

Napier did not develop an explicit mathematical expression for the logarithm of a number. He
estimated them by finding a number whose logarithm possesses upper and lower bounds that differ
by an “insignificant amount”. He then reasoned the average of these bounds was a good estimate of

the actual logarithm. Through these types of estimates and by taking advantage of certain properties of



logarithms, Napier built his entire Table.

II. ARITHMETIC AND GEOMETRIC PROGRESSIONS

The first portion of theConstructionis introductory, but nevertheless, presents some ideas which are
seen throughout the treatise and which are crucial to understanding central concepts. Arithmetic and
geometric progressions (sequences) are two such topics worth highlighting. An arithmetical progression
“proceeds by equal intervals” (Article 2) such that succeeding terms differ by a constant. A geometrical
progression advances by “unequal but proportionally increasing or decreasing intervals”. That is, the ratio

of succeeding terms is constant. As examples, Napier offers

Arithmetical progressions: 1,2,3,4,5,6,7,...
2,4,6,8,10,12, 14,16, . ..
Geometrical progressions:1,2,4,8,16, 32,64, ...

243,81,27,9,3,1,...

Despite the fact that the terms in these examples are integers, Napier required them to be real numbers
in his definition. (This fact is important to remember but easily forgotten when one delves into the
construction of the Table.) If Napier had modern notation, he might have described arithmetic and

geometric motion by the functions

Arithmetic motion: f(t) =ct+b

Geometric motion: f(t) = ca

where in both caseg(-) is a real valued function of a real variable, and, c € R.

[11. DEFINITION

Today, the natural logarithmic function is usually defined as the inverse of the natural exponential

function (e.g. [3]), or through the integral equation
Inz = / 1 dt, x>0
1t

(e.g. [4]). Napier offered a more qualitative definition. Consider two paint$ moving along the lines
shown in Figure 1. Letx move arithmetically from left to right along the first line such that in equal
time incrementsl” it moves equal distances. In other words, detravel with constant velocity. Set the

length of the second line equal 10" and let3 travel geometrically from left to right so that the distance
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Fig. 1. 3 moves such that its speed geometrically decreases whilavels at a constant velocity. The position®for o at

each moment in tim&T is denoted byrg, andx.y respectively. The logarithm of the distante’ — gk IS defined ascqa.

travelled in each time increment equals a constant fractional proportion of the remaining length. (Napier’'s
choice of 107 is discussed below.) Since these lengths decrease, the velogitgleéreases in time.

Set the magnitude of the velocity of equal to10” and require the velocity of at any moment in
time be equal (in magnitude) to the remaining distance at the same time. Thus &t timeevelocity of
3 equals10’, at timeT the velocity would equal0” — x4, and at time27', it would equall0” — gs.
“Hence, whatever be the proportion of the distance¥,[ 107 — 251, 107 — 252, 107 — 23], etc. to
each other, that of the velocities of][at the points ,x31, 232, x33], €tc. to one another, will be the
same.” (Article 25)

Finally, let 3 move geometrically as described above frOmo zg; in time k7" and leta move
arithmetically (with constant velocity equal t®”) for the same amount of time froh to z,;. The
distancez,,. is called thelogarithm of the distancel0” — x ;. (Article 26)

To the modern reader this definition may seem imprecise, nevertheless, it explicitly expresses the
relationship between a number and its logarithm. In particular, setting the velocityegfual to the
lengths of the remaining distances forced the base of the exponential function describing the motion of
3 to bee~!. (Refer to section V for a more complete explanation.)

Thus, knowing this base, Napier's definition can easily be restated in modern terminology. Let the

functions

To(t) =107t 1)

zp(t) =107 — 107e"" (2)



Fig. 2. In the sixteenth century the sine of an anfjl@as defined as the half chord AB of a circle of radius

describe the motion ofc and S respectively. Then the function
z5(t) = 107e™" (3)

describes the remaining distance frghto the end of the second line as a function of time.

Thus for a given timeT, the Napierian logarithm of(kT') is defined as
Nap log (2(kT)) = zo(kT). 4)

Napier chose to tabulate the logarithms of sines of angles because many intensive computational
problems of the day involved trigonometry. Note that in the sixteenth century the sine of an angle was
not normalized to a circle of radius one. Instead, it depended on the radius of the circle of interest.
Specifically, the sine of an angkewas defined as the half chord AB of a circle of radiusRefer to
Figure lll. The length of the second line represents the radius of Napier’s circle.

He chosel07, in particular, because he wanted to guarantee accuracy and ease of computation. (Article
3) Multiplying everything by10” produced large integral numbers and achieved this goal.

Unfortunately, requiring the length of the second line to equ@l instead of one, convolutes
the computational advantages normally seen in modern logarithms. Napier himself was aware of the
improvements which would be gained by rescaling and he, in fact, proposed a new and “better kind” of

logarithm in the appendix of th€onstruction

IV. CONSTRUCTION OF THETABLE

Besides reflecting his approach, the arrangement of Napier's Table and his method of constructing it
reflect the challenge of computing logarithms. As said before, his definition did not provide an explicit
expression. Calculating the logarithm of a number wasn’t simply a matter of plugging numbers into an

equation. Napier cleverly built his Table in a specific way so that he could take advantage of certain



First Table Second Table

10000000.0000000 10000000.0000000
9999999.0000000 9999900.0000000
9999998.0000001 9999800.0010000
9999997.0000003 9999700.0030000
9999996.0000006 9999600.0060000
9999995.0000010 9999500.0099999
9999994.0000015% 9999400.0149998
9999993.0000021 9999300.0209996
9999992.0000028 9999200.0279994
9999991.0000036 9999100.0359992
9999900.0004950 9995001.224804

TABLE |

NAPIER'S FIRST AND SECOND TABLES OF DECREASING GEOMETRIC PROGRESSIONSHE FIRST PROCEEDS WITH A
PROPORTION OF ONE ONE MILLIONTH AND THE SECOND WITH ONE ONE HUNDRED THOUSANDTH

properties and arrive at estimates for his logarithms. He began by creating a decreasing geometric sequence
which was easy to compute. Starting with the numige= 107, he subtracted one one millionth from it
to obtain the second number in the sequence. That is, he subtiaftted 107 to 0btain9999999.00000.
Similarly, he subtracted one one millionth 8999999.00000 from 9999999.00000 to obtain the third
number, i.e.aa = a; — a1(.0000001) = 9999998.0000001. In general,a,, = a,—1 — a,—1(.000001).
Napier continued the sequence fdl0 iterations and called it the First Table (Table I).

Next, he created a second decreasing geometric progression starting again with the Miningr
using a different proportion. This time in order to make everything fit together, he looked at the first and
last elements in the First Table and noted that their difference was rou@hhyrhich is one one hundred
thousandth ofl0”. He used this proportion to build his Second Table. It continued in the same manner
as the First Table, but only fdi0 iterations ending with the numb®&©95001.224804 (Table I). He did
not use the exact proportion existing between the first and last elements of the First Table for the very
simple reason that using a round number [IK® made the computations easier.

Building on these two tables, Napier created a larger Third Table. See Table Il. This talié rads

This number mistakenly appeared in t@enstructionas 9995001.222927. Napier most likely made a computational error
when constructing the Second Table. This error impacted later calculations, the effects of which are seen in Napier’s final

logarithm table. [1]



1st Column 2nd Column 3rd Column 69th Column

10000000.0000000 9900000.0000000 9801000.000000( 5048858.8878707
9995000.0000000 9895050.0000000 9796099.500000( 5046334.4584268
9990002.5000000 9890102.4750000 9791201.450250( 5043811.2911976
9985007.4987500 9885157.423762% 9786305.849524¢ 5041289.3855520
9980014.9950006 9880214.8450506 9781412.696600] 5038768.7408592

—— OO0

9900473.5780233 9801468.842243]1 9703454.1538206 - -- 4998609.4018532

TABLE Il
NAPIER'S THIRD TABLE. THE PROPORTION IN EACH COLUMN IS ONE TWO THOUSANDTH AND ONE ONE HUNDREDTH IN
EACH ROW.

and69 columns and each row and column was a decreasing geometric sequence. The proportion in each
column was one two thousandth; in each row one one hundredth. The first element in the first column
was 107 like before and the last element in the 69th column W@88609.4018532.

Napier began with these decreasing geometric progressions because his goal was to build a table which
listed the logarithms of sines between zero and ninety degrees. This meant, given the archaic definition
of the sine of an angle (and a radius16f'), he was ultimately searching for the logarithmsdahrough
107. He did not tabulate progressions with a proportioreof since he could not directly compute the
terms. He instead created progressions which were easy to compute and which yielded estimates of their
logarithms.

It follows directly from Napier's definition that the logarithm a@f)” is zero since the distance has
traveled at timeé) is 0. Napier estimated the logarithm 8999999.0000000 by introducing the following
bounds.

Consider the abstraction of Figure 1 shown in Figure 3. Denote the endpoints of the line along which
0 travels asA and B and fix a pointC' arbitrarily between them. Extend this line to the left to the point
D such that the length of the line segmdnB is in the same proportion td B asAB isto CB, i.e. let

DB _AB
AB OB’

Allow (5 to move geometrically to the right beginning Atsuch that it moves fronb to A and from
A to C in equal times (the speed of at D is equal to the length of the line segmedtB which is
greater thari0”). Allow o to move arithmetically fromE to F in the same amount of time.

The logarithm of the length of the segmefiBB is, by definition, the length o F. From the figure



Fig. 3. The logarithm of the line segme@tB has an upper bound equal to the lengthZofl and a lower bound equal to the
length of AC.

we also see that the logarithm 6fB is greater than the length of the segmeii becausex moves at
a constant speed as it travels fradto F' while g continuously slows down as it moves fromto C.
Thus, the length ofAC' is a lower bound of the length af F'. Similarly, the length ofD A is an upper
bound since3 moves at higher speeds betwePrand A thana does betweerE and F.

Expressions for these bounds are easily found. Note that the lenglld’afquals the length oA B
minus CB, that is 107 minus the number with which you are taking the logarithm. An expression for
the upper bound is found by noticing that the segmPuat is in the same proportion td B as AC' is

to CB. This yields
(AB)(AC)
CcB

With these bounds Napier returned to the problem of computing the the logarith®a%sf99.0000000.
If the length ofC' B equals9999999.0000000, the lengths oAC' and D A equal1.0000000 and1.0000001,

DA =

respectively. Napier reasoned that these bounds differed “insensibly” (Article 31) and that any number
between the bounds sufficed as an estimate of the logarithm. He decided to take the average of the bounds
and set the logarithm d#99999.0000000 equal to1.00000005.

If Napier had started with a different proportion in his progressions, his bounds could have very easily
yielded an inaccurate estimate. If, for example, he used one tenth instead of one ten millionth in his First
Table, he would have computed the bound9@j0000.0000000 as 1000000.00 and11111111.11!

It is evident from Napier's definition that as the remaining lengths decrease geometrically, their
logarithms increase arithmetically. For a given time intef¥aB3 will move from 0 to =3, (Figure 4) and
by definition, the logarithm ol07 — xg1 IS T41. At time 27, the remaining length becomas” — x4,
and the logarithm of this distance is simply twice the logarithml@f — x5, sincez,s is twice z41.

Likewise, the logarithm ofl0” — z33 equals three times,;.
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Fig. 4. As the length of the remaining distancé8’(— z51, 107 — z 2, etc.) decrease geometrically, their logarithms increase

arithmetically.

Using this logic, Napier took his estimate for the logarithm96$999.0000000 and doubled, tripled,
quadrupled, etc. it and computed all the logarithms of the First Table (Table IlI).

Number Logarithm
10000000.0000000 0.0000000
9999999.000000¢0 1.0000000
9999998.0000001] 2.0000001
9999997.0000003F 3.0000002
9999996.0000006 4.0000002
9999995.000001(¢ 5.0000002
9999994.0000015 6.0000003
9999993.000002]]  7.0000004
9999992.0000028 8.0000004
9999991.000003¢¢ 9.0000004
9999990.000004% 10.0000005
9999900.000495(@ 100.0000050

TABLE 11l
COMPLETED FIRST TABLE.

Napier now tackled the Second Table. The first valu&0is which we already know has a logarithm
equal to zero. To find logarithm d#999900.0000000, Napier proceeded essentially as he did before

seeking an upper and a lower bound which differed by an insensible amount. This time, though, the



process becomes more complicated. It involves three more properties.

1)

2)

3)

The difference of the logarithm of a given number and the logarithmoéfis just the logarithm

of the given number (Article 34).

Proof: This is self-evident since the logarithm o7 is zero. O

The logarithms of similarly proportioned numbers are equidifferent (Article 36).

Proof: This property follows directly from Napier's definition since the pophtwill travel for
equal time increments between any two numbers that are similarly proportiBrathple:From
Table Ill, the proportion of the numbef$99993.0000021 and 9999991.0000036 is 1 : 5000000,
and the difference of their logarithms29). The number9999992.0000028 and9999990.0000045
are similarly proportioned and the difference of their logarithits((000005 — 8.0000004) is also
2.0. [l

The difference of two logarithms is bounded (Article 39).

Proof: Refer to Figure 5. Let the line segmentB have length10” and let the segments

CB and DB represent the numbers whose logarithms are of interest. Define the pbats F

such that

FA CD

15~ DB )
and

AF CD

1B CB (6)

Solving equation 5 folZ A, we see thaFA = (AB)(CD)/DB and thus

Ep _UEED) 4 AB _ AB(SB+1) _CD+DB _CB
AB AB AB DB DB’

Therefore by the second property, the logarithmsCd® and DB differ by the same amount as
the logarithms ofAB and F'B since they are similarly proportional. By the first property, this
difference is simply equal to the logarithm &fB, and as before, is bounded iyA and AF'.
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Fig. 5. The lengths of the line segmeriisA and AF are upper and lower bounds for the difference of the logarithms Bf
and DB

Therefore, Napier concluded that the difference of two logarithms is bounded.

(AB)(CD) (AB)(CD)
CB DB

This last property is the key to finding the bounds of the logarithmd%9900.0000000 and to

= AF < Nap log (CB) — Nap log (DB) < EA = O

determining all of the logarithms of the Second Table. Specifically, Napier found the number closest
to 9999900.0000000 in the First Table $999900.0004950) and noted its logarithm1(0.00000050) and
bounds {00.0000100 and 100.0000000). Using property 3, he determined thé004950 should be added

to the bounds 0$999900.0004950 to yield the bounds 0§999900.0000000. The result being00.0005050

and 100.0004950. Finally, as before, Napier reasoned these bounds differed by an insensible amount so
either bound or any number between them could be taken to be the true logaritf$9660.0000000.

Thus, Napier completed the Second Table by repeating what he had done for the First. He doubled,
tripled, quadrupled, etc. the logarithm 9$99900.0000000 as he stepped through the progression. See
Table V.

Napier was now ready to find the logarithms of the Third Table. The problem boiled down to finding
the logarithms of two numbers. If he could find the logarithm9695000.0000000 (first element, first
column), he could calculate all of the logarithms in the first column since they are in a particular
geometric progression. Likewise, if could calculate the logarithm938f0000.0000000 (first element,
second column), he could fill in all of the remaining columns since all of the these elements are
geometrically related. Using the same method as before, Napier determined the upper and lower bounds
for the logarithm 0f9995000.0000000. The closest number in the Second Table®$65000.0000000 is
9995001.224804. The bounds for this logarithm as calculated before H@).02525 and 5000.02475.
Seeking the bounds for the difference of the logarithms resuli2264167 and1.2254165 for the upper
and lower bound respectively. Adding these bound$100.02525 and 5000.02475 yields the bounds
for the logarithm 0f9995000.0000000. These aré001.2506667 and 5001.2501665. The true logarithm
of 9995000.0000000 was taken to be the average of these bounds)0t.2504166. Following the same
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Number Logarithm

10000000.0000000 0.0000000
9999900.000000(¢ 100.0005000
9999800.001000¢) 200.0010000
9999700.003000¢) 300.0015000
9999600.006000¢] 400.0020000
9999500.0099999 500.0025000
9999400.0149998 600.0030000
9999300.020999¢ 700.0035000
9999200.0279994 800.0040000
9999100.0359992 900.0045000

D000 (OO O OO

9995001.224804( 5000.0250000

TABLE IV
COMPLETED SECOND TABLE.

process, Napier determined the logarithm9660000.000000 to be 100503.35853072.

Taking 5001.2504166 to be the logarithm 0P995000.0000000, Napier once again doubled, tripled,
qguadrupled, etc. it to determine the logarithms for all of the numbers in the first column of the Third
Table. Then starting again wits001.2504166, he successively adddd0503.3585307 to it to obtain all
of the logarithms of the first row. To fill in the remainder of the Table, one can either take the first element
in each column and successively add t&(01.2504166 to obtain the logarithms for each column, or
take the first element in each row and successively add 160%03.3585307 to obtain the logarithms
for each row.

Having found all of the logarithms in the Third Table, Napier instructed the reader to arrange it as
seen in Table V so that in his own words, it “may be made complete and perfect.” (Article 47) From
this point forward, Napier referred to the Third Table as The Radical Table and stated that it be used to
construct the Logarithmic Table of sines. The only work left undone was to determine how to calculate
the logarithms of all the numbers in between the numbers tabulated in the Radical Table and to calculate
the logarithms from zero t6000000.

Fortunately, Napier already had the answers. For any number greate399@i0, the logarithm can
be determined by simply computing its lower bound (subtract given number ffdjnas was done in
estimating the logarithms of the First Table. To find the logarithm of any number embraced within the

Radical Table, the bounds should be computed as was done in estimating the logarithms of the Second
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and Third Tables. To find the logarithms of numbers less thzo0000, Napier further exploited the
property that the logarithms of similarly proportioned numbers are equidifferent. Given a number, one
can multiple it by any convenient proportional factor and obtain a number which will lie within the limits

of the Radical Table. This number is, of course, in proportion to the original number and its logarithm
will differ from the logarithm of the original humber by an amount dependent upon the proportional
factor. The logarithm of the proportional number can be determined as before and all one has to do to
obtain the logarithm of the original number is to add to it the difference of the logarithms.

Napier concluded by describing how his Logarithmic Table should be arranged. “Prepare forty-five
pages” (Article 59) each with seven columns. Each page was devoted to two degrees. The first and the
last columns each listed every minute within the two degrees in such a way that they were complements
of each other. Wherefore, the first column began Witthegrees() minutes and ended with degreest0
minutes, and the last column began wih degreest0 minutes and ended witk9 degreesp) minutes.

In the second and sixth columns the corresponding sines were listed next to the angle with which it
was associated and likewise, the logarithms of the sines were tabulated in the third and fifth columns.
Lastly, the difference of the two logarithms from each row appeared in the fourth column. This was
Napier's Logarithmic Table, the culmination of over twenty years work and a milestone in the history of

mathematics.

V. REMAINING QUESTIONS
Why Napier’s logarithms are essentially to the base?

Napier required the velocity of to be the same as the remaining distances, hence he necessarily, if

unknowingly, specified the base of its geometric motion. To see this, suppose

z5(t) =107 — 107(1 — p)’ )

describes the motion of, wherep is an arbitrary proportional factor.
Thus,

25(t) = 107(1 — p)* (8)

describes the lengths of the remaining distances.
The velocity of 3 is the derivative of equation 7

vg(t) = % (10" —107(1 — p)'] = —107(1 — p)* In (1 — p). (9)



13

According to the definition, equations 8 and 9 must be equal. But equality bolgsf —In (1 —p) =
1, orif 1 —p = 1/e. Therefore, by definition, the base of the exponential function describing the motion
of pise 1.

This fact has direct bearing on determining the base of Napier's logaritiirtie total length of the
second line equaled, Napier's logarithms would exactly be to the base'. However, since Napier
choosel0”, he multiplied his numbers and logarithms by that amount. For example, the logarithm of
9811277.6670907 as listed in the Radical Table i€90525.8660295. But the (modern) logarithm to the
basee™! of 190525.8660295/107 is 0.01905258660379. Multiplying this result by107 yields an answer
which agrees with Napier's tabulated value up to eleven significant figures! The majority of the small
error derives from the method of estimation for the logarithn®@§9999.

If the factor 107 is strictly taken into account, it can be argued that the true base!f§ (shown
below), however it is my opinion, that describing Napier's logarithms as having d/dsbest preserves

their true nature.

Relation between Napierian and modern logarithms

Solve equation 3 fokT to obtain

KT = —In (Zﬁl(gf))

Substituting this result into equation 1 yields

2o(kT) = —107In (Zﬁl(gf)).

Thus equation 4 becomes

107
Changing the base of the natural logarithm we can rewsit®" In z5(kT) as logy, 23(kT) where

kT
Nap log 25(kT) = —107 In <Zﬁ( )> = —10"In z5(kT) + 10" In 10".

b = e~ Y107 Therefore, Napierian logarithms can also be thought of as logarithms to the Ishifeed
by 107 In 10”.
Nap log z5(kT) = log, z5(kT) 4+ 107 In 107

Why the word logarithm?

Napier coined the Latin wortbgarithmuswhich derives its meaning from two Greek wordsgos
meaning a principle relationship between numbers or ratio,aitdmos meaning number. Napier did
not explain his view of the literal meaning of logarithimus, but seems appropriate since the concept of

proportion is central to the idea of logarithms.
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Utility
Modern logarithms derive most of their computational utility from the following three properties:
log, (zy) = log, z +log, y
€T
loga () = loga T — loga Yy
Yy
log,(z") = nlog, =

Since Napier used0” instead ofl, his logarithms do not strictly possess the first and third properties.
However, if this factor is properly taken into account, his logarithms behave and can be used like modern
logarithms. Certainly, Napier recognized the advantages early on, for he writes, “by it [his logarithmic

table] all multiplications, divisions, and the more difficult extraction of roots are avoided.” (Article 1)

VI. CONCLUSION

As a closing note, it should be remembered that Napier did not exist in a vacuum. The full development
of logarithms sprang from the efforts of many individuals. Without Burgi, Briggs, Vlacq and many others
logarithms would not have reached the mathematical maturity nor the usefulness they have. Napier himself

welcomed collaboration and encouraged further development. For he said, “Nothing is perfect at birth.”
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