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Mixed Finite Element Methods for Flow in
Porous Media

Ivan Yotov

Abstract

Mixed finite element discretizations for problems arising in flow in porous medium ap-
plications are considered. We first study second order elliptic equations which model
single phase flow. We consider the recently introduced expanded mixed method.
Combined with global mapping techniques, the method is suitable for full conductiv-
ity tensors and general geometry domains. In the case of the lowest order Raviart-
Thomas spaces, quadrature rules reduce the method to cell-centered finite differences,
making it very efficient computationally.

We consider problems with discontinuous coefficients on multiblock domains. To
obtain accurate approximations, we enhance the scheme by introducing Lagrange
multiplier pressures along subdomain boundaries and coeflicient discontinuities. This
modification comes at no extra computational cost, if the method is implemented
in parallel, using non-overlapping domain decomposition algorithms. Moreover, for
regular solutions, it provides optimal convergence and discrete superconvergence for
both pressure and velocity.

We next consider the standard mixed finite element method on non-matching
grids. We introduce mortar pressures along the non-matching interfaces. The mor-
tar space is chosen to have higher approximability than the normal trace of the
velocity spaces. The method is shown to be optimally convergent for all variables.
Superconvergence for the subdomain pressures and, if the tensor coeflicient is diago-
nal, for the velocities and the mortar pressures is also proven.

We also consider the expanded mixed method on general geometry multiblock
domains with non-matching grids. We analyze the resulting finite difference scheme
and show superconvergence for all variables. Efficiency is not sacrificed by adding the
mortar pressures. The computational complexity is shown to be comparable to the

one on matching grids. Numerical results are presented, that verify the theory.



iii

We finally consider mixed finite element discretizations for the nonlinear multi-
phase flow system. The system is reformulated as a pressure and a saturation equa-
tion. The methods described above are directly applied to the elliptic or parabolic
pressure equation. We present an analysis of a mixed method on non-matching grids

for the saturation equation of degenerate parabolic type.
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Chapter 1

Introduction

Numerical modeling of physical processes has played an increasing role in solving
engineering problems in recent years. In many applications coupled systems of non-
linear partial differential equations describe the mathematical models. The need for
accurate solutions to these equations challenges numerical analysts to design new
methods. The finite element methods have been the preferred tool for both mathe-
maticians and engineers due to their simple physical interpretation, robustness, and
elegant mathematical form. The mixed finite element methods [67, 22] gained even
greater popularity in the last two decades. The reason is twofold. First, they provide
very accurate approximations of two physical quantities - the primary unknown and
its flux. Second, they conserve mass locally (on any element).

This work concentrates on applications such as ground-water contaminant trans-
port and reservoir simulation which require modeling of fluid flow in a porous medium.
Conservation of mass is a very important property in these cases and motivates the
choice of the mixed finite element method as the main technique for numerical ap-
proximation. Russell and Wheeler [70] showed that special quadrature rules reduce
a certain mixed method on rectangles to cell-centered finite differences, which have
been used by the petroleum engineers for many years.

We first consider a single phase, non-gravitational flow model for the pressure p

and the Darcy velocity u:

Viu=gq

1'.’
u= __‘vpa
7

where K is the absolute permeability or hydraulic conductivity tensor, u is the viscos-
ity, and ¢ is the source term. Even in this relatively simple model, some of the intrinsic
features of the differential problem impose serious difficulties on the formulation and

the analysis of the numerical method.



(3]

e The conductivity K is a full tensor. Most of the existing results for the mixed

methods assume diagonal tensors.
o The medium can be highly heterogeneous with discontinuous conductivity.

¢ The domain can have general geometry. For very irregular domains a multiblock
structure may be desirable to describe the geometry.

o In the presence of faults, non-matching grids in different parts of the domain

may be needed.

o Accurate approximation of local phenomena (e.g., high gradients around the
wells) may require locally refined grids.

The governing equations for multiphase fluid motion through a porous medium
are mass conservation of phases [12, 24]. We consider an immiscible two-phase model
9(¢sipi)

T+V'Piui=0ia

where 1 = w (wetting), n (non-wetting) denotes the phase, s; is the phase saturation,
p;: is the phase density, ¢ is the porosity, ¢; is the source term, and
ki(s)) K
w = —HeR (g, pigV D)

1

is the Darcy velocity. Here p; is the phase pressure, k;(s;) is the phase relative
permeability, u; is the phase viscosity, ¢ is the gravitational constant, and D is the

depth. The two equations are coupled via the volume balance equation
Swt sy =1
and the capillary pressure relation
Pe(Sw) = Pu = Pu-

In addition to the above mentioned difficulties, in this case we have to deal with
a coupled system of highly nonlinear transient partial differential equations. The
equations are degenerate - the relative permeability &;(s;) vanishes at s; = 0, causing
lack of regularity for the solution; therefore, the standard techniques in the analysis

of the parabolic and elliptic equations cannot be applied directly.




A common approach has been to reformulate the two-phase system as a pressure
equation of parabolic or elliptic type and a saturation equation of advection - diffusion
type [24]. Therefore, we first concentrate on the mixed methods for elliptic and
parabolic equations.

The mixed methods for second order elliptic equations have been extensively stud-
ied. Several mixed finite element spaces on triangles, rectangles, and prisms have been
developed [72, 67, 62, 21, 19, 20, 26]. Their convergence and superconvergence prop-
erties are well understood [72, 67, 34, 61, 74, 37, 41]. The quasi-linear case has been
studied in [60, 33, 36], and mixed methods for parabolic equations have been analyzed
in [51, 39].

Most of the above works assume a diagonal tensor coefficient, and while the conver-
gence results and the pressure superconvergence results can be easily generalized for
a full tensor, this is not the case for the superconvergence in the velocity. Recently,
a variant of the mixed finite element method, which we call “the expanded mixed
method”, has been introduced [75, 52, 25, 9]. In [9], [ull tensor coefficients are han-
dled efficiently on rectangles by deriving an equivalent cell-centered finite difference
scheme for the pressure, which generalizes the result of Russell and Wheeler [70] for
diagonal tensors. Moreover, superconvergence for the velocity is obtained at certain
discrete points.

Serious problems arise in the analysis and the implementation of the mixed meth-
ods on domains with irregular geometry. Partitions of triangles or tetrahedra lead to
unstructured data and much larger problems to solve, compared to logically rectan-
gular meshes of quadrilateral-type elements. Also, the computed velocities are not
superconvergent on triangles, even for diagonal tensors. This motivates the choice of
logically rectangular grids. Thomas [72] showed optimal convergence for both pres-
sure and velocity on quadrilaterals. In [5], a modification of the expanded mixed
method is considered for handling full tensors and general domains, leading to cell-
centered finite difference schemes on logically rectangular and triangular grids. All
computations are performed on a regular grid after mapping the problem to a refer-
ence computational domain. Under assumptions of smoothness of the mapping and
the coefficients, optimal convergence for the pressure and the velocity is obtained.
Moreover, superconvergence for both variables is obtained on quadrilateral-type el-
ements. Unfortunately, the theory breaks down if the assumption of smoothness is
omitted and no convergence can be obtained near discontinuities. This is confirmed

by numerical experiments.



As we noted above, in many applications the medium is heterogeneous and the
permeability tensor is discontinuous. Also, in describing the geometry of a highly
irregular domain with a logically rectangular grid, a multiblock structure has to be
used. The true domain is then mapped to a union of rectangles (parallelepipeds)
and the grid may be non-smooth across the interfaces. It turns out, however, that
this leads to a discontinuous tensor on the computational domain. Therefore both
problems can be attacked with similar techniques.

The macro-hybrid form of the mixed method (see [11]) has to be used for handling
discontinuities. In this formulation, pressure Lagrange multipliers are added along the
interfaces of discontinuities. This allows the pressure gradient to be approximated
by a discontinuous function. Numerical results in [5] indicate that convergence is
regained in this case. In Chapter 2 we present theoretical analysis for the macro-
hybrid form of the expanded mixed method for problems with piece-wise smooth
coefficients.

The presence of faults imposes another very interesting problem for the numerical
method. These natural discontinuities in the geological structure are very difficult
to follow by continuous grids. Therefore non-matching grids in different parts of the
domain are needed. Non-matching grids also allow for using a different coordinate
system in each block, leading to a greater flexibility in describing irregular geome-
tries. To the author’s knowledge, no analysis has been done for mixed finite element
methods on non-matching grids.

In our applications, it is important to construct schemes that conserve mass across
the faults. To achieve this we employ “the mortar finite element method” (see [16]
for such work with Galerkin finite elements). The idea is to introduce an interface
finite element space (called a mortar space) and use it to impose continuity of fluxes
in a weak sense. In the mixed method this is the pressure Lagrange multiplier space.
In the case of matching grids, we may use the standard choice of the normal trace
of the velocity space on the interface. Therefore we recover the macro-hybrid form
of the mixed method on matching grids. If the grids on the two sides do not match,
a different mortar space is needed. We show theoretically and numerically that, in
order to preserve optimal convergence in this case, the mortar space must consist of
piece-wise polynomials of one degree higher then the degree of the normal trace of the
velocity spaces. Moreover, we are able to maintain the known pressure and velocity

superconvergence properties of the mixed methods.



[abs

The mortar finite element method provides a new way to handle locally refined
grids. In fact, grids with local refinement are just a special case of non-matching
grids. In the previous research (see, e.g., [18, 40, 23, 59, 43]) authors use the notion
of “slave” nodes, forcing fluxes to be continuous across the coarse-fine interface. This
however, forces all fine interface velocities within one coarse cell to be the same, which
leads to large numerical errors on the interface. A special choice of the mortar space
recovers the known schemes. However, we can relax the strict continuity of fluxes by
taking coarser mortar space. As numerical examples indicate, this reduces the size of
the velocity error.

The above formulations are also computationally attractive when combined with
domain decomposition solution techniques. The Glowinski-Wheeler algorithm [48],
later generalized in [29], and the balancing domain decomposition [57, 58, 28] exploit
similar hybridization techniques. These methods were originally implemented for
the standard mixed method by Cowsar in the simulator ParFlowl, which was later
modified by San Soucie and the author to handle the expanded mixed formulation.
The code was later generalized by the author to handle general geometry domains
with non-matching logically rectangular grids in different subdomains.

Recently some authors showed that the Lagrange multiplier formulation allows
optimal order substructuring preconditioners on non-matching grids to be constructed
1, 53].

We next apply the above methods to the coupled system of multiphase flow equa-
tions. As we mentioned above, a common approach is to rewrite the system as a
pressure and a saturation equation. The latter is a degenerate advection - diffusion
equation with a diffusion term vanishing at s =0, 1.

Many authors have addressed the issues of analysis and approximation of solutions
to degenerate parabolic equations. Existence and uniqueness of weak solutions have
been studied in [65, 46, 54, 3], and low regularity for the solutions have been shown.

A widely used technique is to regularize the original problem, and then approxi-
mate the regularized problem (see, e.g., [69, 50, 63, 45, 44]). A suitable choice of the
regularization parameter allows error estimates to be derived.

Another common tool is the Kirchoff transformation. For the saturation equation
or its simplified version - the porous medium equation, it allows one to simplify the
elliptic term, treating the degeneracy analytically [69, 45, 44, 10]. The obtained form
is very close to the form of the two phase Stefan problem, making the analysis of the
two problems similar [50, 63, 64].



The only previous work that uses mixed methods for degenerate parabolic equa-
tions is [10]. No regularization is used there and via the Kirchoff transformation the
authors bound the discretization error in approximation theory terms.

Very limited work has been done on analysis of the coupled system of equations.
Existence of weak solutions to the incompressible model has been shown in [2, 4]. The
few studies of numerical approximation to the problem treat only the nondegenerate
case [32, 27].

In this work we formulate and study mixed finite element schemes for the numeri-
cal solution of the multiphase flow system. We consider the expanded mixed method
applied to pressure-saturation formulation. The method is shown to conserve mass of
both phases locally. It is also extended to handle discontinuous permeability tensors,
multiblock domains, and non-matching and locally refined grids. Analysis of a mixed
method with mortars for the degenerate saturation equation on non-matching grids
is presented.

The rest of the thesis is organized as follows. In Chapter 2 we recall the expanded
mixed method for linear elliptic problems with tensor coefficients on general geometry
and present theoretical and numerical results for the macro-hybrid formulation of
the method on multiblock domains and discontinuous coefficients. The subject of
Chapter 3 is the standard mixed methods with mortars on non-matching and locally
refined grids. In Chapter 4 we present and analyze the expanded mixed methods for
elliptic problems on irregular multiblock domains with non-matching grids. Mixed
finite element discretizations for the coupled system of multiphase flow equations are

discussed in Chapter 5.



Chapter 2

The expanded mixed method on general
geometry

We consider a second order elliptic problem on a geometrically general domain  C
R? d = 2 or 3, with a Lipschitz boundary 8Q. In its mixed form we seek (u,p) such
that

u=-KVp inQ, (2.1)
Vous=J in 0, (2.2)
p=g° on I'P, (2.3)
u-v=g" on 'V, (2.4)

where K is a symmetric positive definite tensor with L*®(£)) components, and v is
the outward unit normal vector on 99, which is decomposed into I'? and I'V. In flow
in porous medium applications p is the pressure, u is the velocity vector, and K is

the conductivity tensor divided by the viscosity.

2.1 Some notation and formulation of the method

For a bounded domain § C R let (-,-)s denote the L2(S) inner product or duality
pairing. We may omit S if S = Q. The L%(S) norm is given by

bllos = (6, )5

We may also omit the subscript 0. Let (-,:)ss denote the L?(8S) inner product or
duality pairing. Define

H(div; 8) = {v € (L¥(S))*: V- v € L}(9)},

with a norm

1/2
V|| 7 idivisy = {/S (Iv|2+ IV-VI'*’) dw} .



Let ||+ ||mps denote the norm of W™?(S), the Sobolev space of m-times differentiable
functions in LP(S). We will mainly use the Hilbert space H™(S) = W™2(S) with a

norm
1/2
s = (3 [ lovuttas)
lalgm 5

For a non-integer », m < r <m+1, H"(S) is defined by interpolation of H™(S) and
H™*1(S) (see [56]). Let, for any real r,

Hy(S) = closure of C§°(S) in H"(S5)

We denote by H™"(S5) the dual space of H(S) with a norm | - ||-.s. The Sobolev
spaces on 05 are defined in a similar fashion. For 0 < r < 1, H"(9S) is equipped
with the norm

1/2 |uty) — u(ta)|®
lulas = {Jllls +ufs} ™ Julfs = [ [0 s dse

We recall two important trace theorems needed in the analysis. The proof of the
first result can be found in [56].

Theorem 2.1 (Trace) Let 99 be of class C* and 1/2 < s < k. Then
the trace map v, with yu = u|aq for smooth functions u, can be extended

as a continuous map

v Ho(Q) X Ho=12(90).

The next theorem is proven in [67].

Theorem 2.2 (Normal trace) For a Lipschitz domain §, there exists a

continuous map

v+ H(div; Q) 2 H-1/2(9Q),
such that y,u = u - v|gq for smooth vector functions u.

We now continue with the formulation of the expanded mixed method. Following

[9, 5] we introduce the adjusted pressure gradient
i=-M"1Vp,

where M is some symmetric positive definite tensor related to the geometry of .

Then

u = K M.



Let
V={veHdiviQ):v-ve LAV}, V= (LX), W=L*Q), A= LXI'N).

We have the following expanded mixed variational formulation. A weak solution of
(2.1)~(2.4) is (u,i,p,A) € V x V x W x A such that

(Mu,¥) = (MK M@, ?), VeV, (2.5)

(M&,v) = (p,V -+ v) (2.6)
—"'——(gD,V‘I/)I‘D—(/\,V'l/)[‘N, VEV,

(V-u,w) =(f,w), w € W, (2.7)

(w- vy p)en = (g™, wrw, pEA. (2.8)

Our main requirement is that there exists a smooth (at least C?) invertible map
F:R*5RY F()=0Q,

where 2 is a computational reference domain with a standard shape. Let 7, be a
quasi-uniform family of partitions of € into standard shaped elements. Then I defines
a curved element partition 7}, of Q. Denote by V, x W, C H(div;ﬂ) X Lz(fl) any of
t}le known mixed finite element spaces defined on 7}, (72, 67, 62, 21, 19, 20, 26]. Let
V. be a finite element subspace of (L2({2))* such that V, C V. Let AN ¢ Ly
be the Lagrange multiplier space on [V, corresponding to the normal trace of V.

The spaces V,, Wy, Vh, and AY on the partition 7}, of Q are defined by the Piola
transformation for the vector spaces and by the standard isomorphism for the scalar
spaces as follows (see also [72, 5]). For each ¥ € V, (V,), & € Wy, and i € AN,
define v e V, (V)), w € Wy, and p € AY by

v(z) = (-}DF v) o F~1(2), (2.9)
w(z) = wo F~Y(z), (2.10)
pe) = o F~Y(z), (2.11)

where DF is the Jacobian maftrix of I and

J = |det(DF)|.
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In the expanded mixed method on general geometry we solve for u, € Vy, 1), € \7;,,
pi € Wy, and M, € AY satisfying

(Muy, %) = (MK M, V), VeV, (2.12)

(Mg, v) = (pn, V- V) (2.13)
= ~(g®,v - v)ro — (M, V - V)rw, v eV,

(Vuy,w) = (f,w), w € Wy, (2.14)

(un - vy u)rn = (g", phrw, pe Ay (2.15)

Optimal convergence for |[p — pallo, [|A = Anll-1/2,0~, U — wp]lo, ||& — @nllo, and
|V« (u—up)|jo has been shown in [9, 5] under the assumption of smoothness of K
and M.

2.2 A Cell-centered finite difference scheme on logically

rectangular grids

The main motivation to study the expanded mixed method is that it can be imple-
mented as cell-centered finite differences for the pressure, even for problems with full
tensor coefficients on general geometry domains. Special choice of M simplifies the
interactions of the vector basis functions in (2.12) and (2.13). Define

M(F(&)) = (J(DF="' DF~1)(#). (2.16)

A transformation of (2.12)—(2.15) through (2.9)-(2.11) leads to the following problem
on the reference domain €. Find u, € \Afh, ﬁh € Vh, Ph € I/i/h, and :\h € /\f:’ such
that

(tn,¥)g = (JOF T K(DF )4, %), VeV, (2.17)

(i, V) = (P, V- 9)g (2.18)
= —(§° 9 2)po — (A V- D), VeV,

(V- tu, d)g = (I f,d)g, b € Wh, (2.19)

(O - 0, e = (Jog™ s i) vy e A, (2.20)

where

Jo (&) = J(&)|(DF~)T|.
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To obtain cell-centered finite differences on logically rectangular grids, we consider the
lowest order Raviart-Thomas spaces [67] and take Vh = V). We employ quadrature
rules to approximate the vector integrals in (2.17), (2.18). The two equations are

replaced by

(80 V)rmg = (JDF' K(DF),,9), ., VeV, (2.21)
(ﬁha {')TM,ﬁ - (ﬁha 6 ) ‘A’)Q (2.22)
= _(gD’O'D)FD _<;\'H{"I>>[“Na ‘Afevln

where (-, *)m,s, (+, * )1,5 denote an application of the midpoint and trapezoidal rule,
respectively, to the L2(S) inner product with respect to 75, and (+y)rMm,s is the
trapezoidal-midpoint rule, defined for vectors v = (vy, ve,v3) and q = (g1, ¢, q3) as

(v, a)r™,s = (v1, q1)TxMxM,s + (V2, @2)MxTxM,s + (U3, G3)MxMxT,s - (2.23)

This choice of quadrature rules gives diagonal coeflicient matrices for @1, in (2.21) and
for {1, in (2.22), since the TM rule uses exactly the nodal velocity points. Therefore
the vector unknowns can be eliminated, leading to cell-centered finite differences for
the pressure with a 9 point stencil in two dimensions and a 19 point stencil in three
dimensions.

The convergence properties of this scheme have been analyzed in [9, 5] under the
assumption of smoothness of K" and F'. There, superconvergence for the pressure,

velocity, and its divergence at the midpoints of the elements is shown.

2.3 The expanded mixed method for problems with discon-
tinuous coefficients on multiblock domains

The results of the previous section required the conductivity K and the mapping F' to
be smooth functions. As we mentioned in the introduction, this is often not the case.
The conductivity of heterogeneous media can be discontinuous. On the other hand,
very irregular domains are difficult to map to a regular shape domain via smooth
mappings. In those cases, multiblock structures may have to be used, with different
mappings for the different blocks. Therefore the global map is piecewise smooth and
could be non-differentiable across the interfaces.

Computational results in [6, 5] indicate loss of convergence along interfaces of map

or coefficient discontinuities. Note that the transformed computational tensor is

K = JDF'K(DF YT, (2.24)
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so a nonsmooth mapping leads to a discontinuous coefficient on the computational
domain. This implies discontinuous pressure gradient. In the scheme, however, i1, =
vﬁh is continuous in the normal direction. This inconsistency causes the loss of
convergence along the discontinuities.

To correct for the above problem, we need to relax the continuity of V, across
the interfaces. However, we would like to keep the matrices arising from vector inner
products of type (v, V) square. In this case we can eliminate both vector unknowns to
obtain finite differences for the pressure. Therefore we also relax the continuity of V,,
across the interfaces and then impose it weakly. We do so by adding pressure Lagrange
multipliers along the interfaces, obtaining a partially hybridized mixed formulation.

Assume that £ can be decomposed into a set of non-overlapping subdomains such
that the restrictions of ' and I to any subdomain are smooth functions. This can be
achieved by aligning large discontinuities in K™ (like interfaces between rock strata)
with subdomain boundaries. If K varies on a smaller scale, homogenization can be
used to obtain conductivity that is smooth within a subdomain (see [15, 17, 38] and

references therein).

Let
Q=UL,Q, T[;=00000;, TI;=a\l'°, I'=ur,l.
Let .
Vi={veHdiv;):v ve X))}, V= EBV,-,
Vi = (L3())", EB = (L*(Q))*
Wi= LX), W=@W =L¥Q)
i=1
and
A = L4(T).

The following weak form for (u,1,p,A) € V X V x W x A can be obtained by
integrating the original equations over each §); and summing.

(Mu,V) = (MK Mi, V), VeV, (2.25)

(2, V- V)i = (A v - 0)r) = (6P, v V)0,  VEV, (226)

M:

(Mu,v)

i=1
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Z V- u,w)g, = (f,w), we W, (2.27)
Z u- v, i = (g", prw, peA (2.28)
The flux continuity equation (2.28) implies that u € H(div;), and we recover the
weak form (2.5)—(2.8).

Let I" maps a union of reference subdomains = U™, ); onto 2, F() = Q. Let

Th,i be a curved element partition of Q;, 1 < i < n, defined by mapping a standard
shape element partition 'f?,,; of Qi, and let 7,; and 73,,; match on I';;. Let

Vii x Wy C Vi x W;

be any of the known mixed spaces on ;. Let
n ~ n ~ n
Vi=@Vii, Vi=@ Vi, W,=PW,
i=1 i=1 i=1

and let A, denote the Lagrange multiplier space on I' associated with V;, x W,. For
convinience we assume that Ay, is extended by zero on I'P. We then solve for u;, € Vy,,
U, € Vh, pi € Wy, and A, € Ay, satisfying

(Muy, V) = (MK Miy, ¥), Ve Vi, (2.29)

(Mitn,v) =3 (0 V- V)as = (o v 0)1,) = (P, v - v)ro, v € Vi, (2.30)

t=1

i(v up, we; = (f,w), w € Wi, (2.31)
i=1
> {un - vyphr; = (g™, pow, 1€ Ay (2.32)

-
—

Following [5] we refer to (2.29)-(2.32) as the enhanced method. Note that the flux-
matching condition (2.32) guarantees that u, € H(div; ), while @1, is discontinuous

across the subdomain interfaces.
With M defined in (2.16), (2.29)-(2.32) is transformed into the following problem

on the reference domain §2. Find a, € V;L, t'Aih € V;L, Pn € Wh, and :\h € Ay such that
(G, V)g = (Kiig, V)g, VeV, (2.33)

n
(i, )g = 3 (50, V- 9)g, = Q¥ 0)p) = (42,0 - D)o, 9 € Vi, (2.30)

i=1
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SV g, d)g, = (If,d)g, b € Wy, (2.35)
i=1
Z(ﬁh ‘ 191 A)f‘i = (Jule,/l)[‘w, ,12 S /A\h. (2.36)
i=1

Now take Vj x W} to be the RT spaces on a curved logically rectangular grid 7, ;
on §2;. As in Section 2.2, quadrature rules are employed to approximate the vector
inner products. Equations (2.33) and (2.34) are replaced with

A
~

VeV, (237)

A

(84, V) g = (K,

<v

)T,fv

n

(@ Ve = D (B V- D), = (hiy ¥ 0, ) = (9P, 9 D)po, ¥ € V). (2.38)
i=1

Elimination of the velocities leads to a sparse symmetric positive definite system for
pr and A,. The stencil is slightly modified only near the interfaces where Lagrange
multipliers are added. Therefore the computational cost for the enhanced method is
compatible with the one for the expanded method. Moreover, we use the Glowinski-
Wheeler domain decomposition algorithm [48, 29] to solve the linear system. There,
Lagrange multipliers are introduced on subdomain interfaces for the purpose of par-

allelism, so the solution to the enhanced method comes at no extra cost.
Computational results in [6, 5] show that convergence along the discontinuities is
regained for the enhanced method. Using techniques similar to those used in [9, 5]

we are able to confirm these results theoretically.

2.3.1 A regularity theorem

For the error analysis we need a regularity result for the solution of the transformed
problem. To avoid technical complications, we assume for the rest of the chapter that
the union of Q,‘ forms a rectangular block and I'p = 9.

We need some preliminary results. Let e; be the unit coordinate vector in the a;

direction. For any function u on €, define the difference quotient in the direction e;

by
Stu(z) = e+ hfz) — u(l), h #0.

The following two results can be found in [47], Lemma 7.23 and Lemma 7.24.
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Lemma 2.1 If u in H}(Q), then 8fu € L2(QY), for any @ CC Q such
that |h| < dist(§Y',9Q). Moreover,

Ju

o

2y < .
L(Q)

Lemma 2.2 Let v € L?(2) and suppose there exists a constant M such
that &fu € L) and ||fu|r2@y < M for all h # 0 and Q' CcC
satisfying |h| < dist(€', 0Q). Then the weak derivative du/dz; exists and
satisfies ||Ou/0wi||12(q) < M.

We now state the regularity result.

Theorem 2.3 Let p be the solution to

-V .- KVp=f in Q, (2.39)
p=g on 0}, (2.40)

where  C RY, d = 2,3, is a rectangular domain decomposed into a union
of rectangular blocks £2;, 1 < ¢ < n, K is a symmetric positive definite
matrix with components that are uniformly Lipschitz continuous on Q;,
S € L*Q), and g € H*(Q:) N HY(N). Let Qf = Q;\(UB.(£)), where £ is
any corner of {); that is not a corner of £ if d = 2, or any point on an edge
of §); that is not an edge of Q if d = 3, and B.(£) is a ball with a center
¢ and a radius . Then p € H%(£¥) and there exists a positive constant
C = C(K,R,¢€) such that

2 lIpllzge < CUAlo + llglh + D llgllze:)-
=1 i=1

Proof Cover the compact set { by open sets Uy, ..., Un, where U; CC Q2,1 < i < n,
and the rest are balls B.(£) with centers £ on I'U 99 and a small radius €. Assume
that, for any corner ¢ of ;, a ball with a center ¢ is an element of the covering set.
If d = 3, assume also that the balls that cover the subdomain edges have centers on
the edges. Next, find a partition of unity ¢y, ..., n subordinate to this cover, i.e.,

N
Z(I)j(m) =1, z€q, and ¢; € Cg°(U;), 1<j<N.
J=1




16

Since ||p]| < Z;V:I ll#;pll, it is enough to consider each ¢;p. Let Lp = =V - K'Vp and

note that
L(¢p) = ¢Lp+ pLep — 2KVp- V. (2.41)
Iirst consider the open sets U; CC Q;, 1 < j < n. With K Lipschitz on 9, we
have by elliptic regularity (see, e.g., [47], Theorem 8.12, Corollary 8.7) and (2.41)

Idipllay, < CllL(Bip)loy; < CIfllow; + IPllw,) < CUUIfNlo+ llgll), 1< 5 <n.
(2.42)

Next consider any ball U; = U on an interior interface away from the corners (and
the edges if d = 3). Let the interface divide U into two semi-balls U~ and U*t. To
simplify the notation, let u = ¢;p. Since w = 0 on dU, using Poincare’s inequality we

have
lull? o < CollVulla y < CLEVu, Vu)y = Ci(Luyw)y < Cr|| Ll -1 plfufliv;

therefore,

lelliw < CullLufl-1p- (2.43)

Let U’ CcC U be the smallest ball that contains supp(u). For any A such that
0 < 2/h| < dist(U',0U), define U, = {a € U : dist(z,0U) > |h|}. Now consider
Shy = 6f‘u € H}(U,) for any direction 2; tangential to the interface. Let

up(x) = u(a + hey).
A bound for §*u on Uy, similar to (2.43), gives

18" ull1.0, < CIL(E" -0, S CUISH Lae)l-1,0, + 18" LYunl| 1,0, (2.44)

using

S (Lu) = (6" L)wy, + L(6"u)

for the last inequality. We claim that the right hand side of (2.44) is uniformly
bounded as |[h| — 0. TFor the first term, take any ¢ € H3(U,) and write

(6’1(Lu)"P)Uh = _(Lu’ J—hSD)Uh S ”Lu”01Uh“(S—hSDIIOth S C”LUHO,U',”(;OHI,U/,,
using Lemma 2.1 for the last inequality. Therefore, with an estimate similar to (2.42),

8% La)ll-ru, < C (U fllo + llglh)- (2.45)
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For the second term, since L has Lipschitz coefficients on €;, 6"L is a second order

operator with coefficients bounded uniformly in A. Hence,
(6" Lyunll-1,0, < Cllenllizn, = Cliwllron < CUIfllo + llglh),
which, combined with (2.44) and (2.45), implies

18" ]l10, < CCIS Mo + llgl)

uniformly in £, Lemma 2.2 now implies that all second order derivatives of u are
in L2(U), except 9*u/0x%, where xy, is the direction orthogonal to the interface. We
now use the equation Lu = L(¢;p) = ¢;f + pLe; — 2KKVp - V¢; to solve for §%u/dx?
in terms of the other derivatives. Thus we conclude that 8%u/d2? € L*(U~) and

*u/0a} € L3(UY), and
éiplloav- + dspllzu+ < C(lfllo + llgll).

Now consider any ball U; = U with a center on 902 N 9f); away from the corners
(and the edges if d = 3). Let Ut = U N Q;. A similar argument as above gives

#pllzw+ < CUIfllo + Nlgll + llgllzi)-

It remains to show that the solution is regular near the corners (edges if d = 3) of

1. Consider any such corner (edge) and assume it is shared by ;. Choose a sequence

Q" of convex domains with C? boundaries I'" such that Q™ C Q; and I'"* = [y U™,

where I'f is fixed away from the corners (edges) of Q; and dist(y™,09) — 0 as

m — oco. By the Trace theorem and the above analysis, the trace of p on I} is in
H32(T¥) and

Ipllazz,r: < CUIfllo + lglls + llgllz:)- (2.46)

Now consider the sequence of problems

Lp, =f in QF, (2.47)
Pm =D on I}, (2.48)
Pm =y on " = 9Q\I, (2.49)

For the regular problems (2.47)-(2.49) we have

pmll2gy < C(1fllogr + llpllaszrs + lgllsszam) < CU o + gl + llgll2:),




18

using (2.46) and the Trace theorem for the last inequality. An argument by Grisvard
[49], Theorem 3.2.1.2, implies that p,, — p weakly in H? and

IPliz0; < CUIfllo + Nlgll + llgllz),

where Q" — QF as m — oco. This completes the proof of the theorem. a

Remark 2.1 The above estimate is sharp. A two dimensional exam-
ple of a problem with a piese-wise smooth coeflicient in [71], Section 8.1
shows that the solution may have a regularity H'*?, 0 < 8 < 1, in a

neighborhood of an interior subdomain corner.

For the analysis, we assume that the solution is also regular near the corners
(edges).
(HO) The solution p of (2.39)-(2.40) is in H?(£;) and

2_lIpllze; < CAIfllo + gl + 3= llgllzg)-
i=1 i=1

2.3.2 Error analysis of the finite difference scheme

We start with some relatively standard finite difference notation, given here in two

dimensions for simplicity. Denote the grid points on (4, 1 < k < n, by
(.’%,‘.*_1/2,@]'.}.1/2), 1= O,..., N;;, ] = 0, ceny N;,

and then define

& = %(i'm/z + &i_1/2), i=1,Nf,
Y A | .
9i = 3(ivrs2 + Gi-1p), J=1,Ny,
ilf = "i'i+1/2 - 53‘:'-1/2, i =1, le',
W = 54172 = Dim1/2, j=1N;.

These points are mapped to points in Q defined by the corresponding symbol without
the caret. We write v = (v%,vY) for v € R?, and for any function z/A)(i,gj), let J’z’j
denote z[S(.%i,Qj), let '1/3i+1/2|j denote 1/;(.13';“/2,_1)]-), etc., with a similar definition for
functions and points without carets.

We need the following definition.
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Definition 2.1 An asymptotic family of rectangular grids is said to be
generated by a C? map if each grid is the image by a fixed map of a grid
that is uniform in each coordinate direction, where each component of the

map is strictly monotone and in Cz(fl).
Denote this map by G(&,§) = (G”(m), 1’”(3})) and note that in this case

i ix Yald 1 dez(‘i‘) LT
hiyy — hi = Gf+3/2 - 2Gi+1/2 + Gi-l/z = ‘W( )2a

where & is between &;_,/, and #;,3/0, and A® is the uniform grid spacing. This
i-1/ +3/2» )

together with the smoothness of G, implies
|iz}"‘+1 — h?| < Ch?* and, similarly, IIAz;J-+1 - fzj’l < Ch2. (2.50)

In the analysis we will need several projection operators related to the mixed finite
clement spaces on the reference grids. For 1 < ¢ < n, let P;, denote the L?-projection
of W,- onto Wh,;. For p € I/V,-, Pip € Wh_; is defined by

(Prp — pr0)g, =0, w € W

For p € HY($Y),

IPie = ellog; < Cliglly g, b (2.51)
Similarly, let Q; denote the L2(3f2;)-projection onto \‘/,,,i Vg, For i € HI(BQ,-),
194% = #llope; < Clllly 00, b (2.52)

We also need the standard mixed projection operator IT : (Hl(fl,-))d — \Afh,,' satisfying,
for g € (H'())°,

(V- (a-Tlq),w), =0, w € Wiy, (2.53)
((a=Tq) - 2,v 1), =0, ve Vi (2.54)

For q € (H' ()Y,
la — Idqllgg, < Cllall; o, b (2.55)

Equations (2.53) and (2.54) imply that V - [Iq = P,V - q and fiq -0 = Qiq - 7;
therefore, with (2.51) and (2.52),
IV - (@~ Tla)log, < CIV -l 0, b,
I(a = 1a) - 2llo00, < Clla- 21l oq, h-

—_
o
[@]

o

—_
SR
[oh ]
~J

o
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We next note that the quadrature rules (-,-)m, (*,+)1, and (-,*)pm introduced
in (2.21), (2.22) on 75, are natmally defined on 7}, via the mapping F". For w €
Wneo@), vevn (CO(Q)) and h implicitly fixed, let

lwlli,s = (w,0ms,  [Vliims = (v, V)rms, and  |[v[fs = (v, v)ns,
where again we omit S if 5 = (2; these can also be defined on W), or V,, where they
are norms squared. Clearly for ¥ € V),
L
C

that is, these three norms are equivalent on the reference velocity space.

v

lo <

™ =

We are now ready to state the main result of this section.

Theorem 2.4 Assume that (H0) hold. For the cell-centered finite differ-
ence approximation of the enhanced mixed method (2.37), (2.38), (2.35),
(2.36) on a logically rectangular grid, if the corresponding computational
grids are generated by a C? map, and if p € C3(Q)NC°(Q), u €
(C' (@) NW(0:)) N H(div;Q), and K € (C'(@)nWree(@)™,
then there exists a constant C, independent of A but dependent on the
solution and K as indicated , and on ||F|ls.co0is [|F " l3,0005 [|DF 0,005
and || DF~!o,00, such that

[[u = uallm + [|8 = @allm < CHY?, (2.58)
IV (u—=u)|lm < Ch?, (2.59)
lp — pullm < CR2. (2.60)

For the proof of Theorem 2.4 we need several auxiliary estimates.

Lemma2.3 Under the assumptions of Theorem 2.4, there exist UeV,,
Ue Vln Pe W;,, and \* € A;, such that

n

(I:j,{’)TM = Z((P,ﬁ‘ Vg, — (30 ’A’>l‘-')

i=1

. I>>[ao, A Vh, (2.61)
v eV, (2.62)

qc)
<v
=g
Z
?..
c
<l>
<




and there exists a constant C, independent of k, but dependent on the
solution, K, and F as indicated in Theorem 2.4, such that, for all 7, j,

|P; — pij] < Ch2, (2.63)
A Az 2Y Ay A~

IUi+l/2,j = Uigrsagl Ui jp12 = Ui ja ol < CHT, (2.64)
1021125 = @a ol + 102410 = @400l < CHY (2.65)

where 7 = 2 for all points not on I® and not on Vi [, and 7 = 1
otherwise, r = 2 for pomts strictly in the interior of ; that lie on an edge

or face e such that €N F =0 anden F” ={, and r = 1 otherwise.

Remark 2.2 The velocity space V) is discontinuous acros interior in-
terfaces. For such points, (2.64) and (2.65) hold for the values on both
sides of the interface, i.e.,

22yt 2 Yt st

Ui+1/2,j uz+1/2,;| +1U; RESY, R “1J+1/2| < Ch, (2.66)
2 Ty— 2% AYy—
IUi+1/2,j z+1/2._1l + IUt Jrr/2 T u; ]+l/2| < Cha (267)
where
2z, 2z ATy AT
Uigr/2,5 = hm u (x,y;), Uip1/2,j = lim u (x,y;),
:L---):z,"_“/2 "—)m:+1/2

with a similar expression for (2.65).

Remark 2.3 To avoid confusion, we note that 7 and j used for indexing
the subdomains differ from 7 and j used for indexing the grid points.

Proof (Lemma 2.3) On a subdomain ;, we apply a construction due to Weiser
and Wheeler (fee [74], Lemma 4.1 and appendix) to (ﬁ,f)), that gives a P satisfying
(2.63), and a U, satisfying (2.61) and (2.64) with 7 = 2 strictly in the interior. Note
that the constants in this construction depend on the Lipschitz constant of 33]3 on
(%, and, through (2.10), on the Lipschitz constant of 3%p on ©; and on || F||3,c0,0,- On
a0 N Ty we define A* to give
U'+1/2J = “1+1/2J and UiJ.j+1/2 = 12‘?,]41/2’
therefore (2.64) holds with # = 2 on I'V. Clearly (2.64) holds with # = 1 on ['P.
Finally, let
A:-H/z,j = ’A\i+l/2,j» ’A\:",j+1/2 = ;\i.j+1/2
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on any interior interface f‘,"j. Then, with (2.61) and (2.63),
:m'_ Pi"_x? . Ai._xi 4 AL~
J +1/2,5 _ Pij ;‘z/;/m +O(h) = ai-;-l/z,j + O(h).
b

Uinifai = — 73 I

2T+ 2= 2 Yyt
Similar estimates for U ,U ,and U  imply (2.66) and (2.67).

To show (2.65), we choose ¥ in (2.62) to be the basis function associated with
node (¢ + 1/2, 7). For the interior of {; we have

AT

o 1.
Ui = 5 [(’\»11):'+1/2,j—1/2 + (/Cn)i+1/2.j+1/2] Uir1/2.i

1
+#
2(hF + /zﬂ-l){
XY " 2 Y o
[(’Clz)i+1/2,j—1/2U;+1,j—l/z + (N12)i+1/2,j+1/2Ui+1,j+1/2J hiy

+ [(’Clz)iﬂ/z,j—1/20,7J,j..1/2 + (K:I2)i+l/2,j+1/20,'1{j+1/2] /Al'f}, (2.68)

and on 9%); we have

r 1 . . 2T
i+1/24 = 5{ [(Ku)igrzzigmrzz + (Kuigrzzinne] Uigaag

2V Y
+ [(I\/lz)i+1/2.j—1/2U;+1,j_1/2 + (’C12)‘+1/2J+1/2U?+1,j+1/2} }, (2.69)

where i = i = 0 for the left boundary and i = i+ 1 = N} for the right boundary.
Taylor’s theorem for i = Kti gives

1 s

Uig1/2 = 3 [(Ki0)insszimrze + (Ki)igsszganse] fipaga

1
+—AA—{
2(hF + ki)
[(K12)5+1/’2:J’—1/2a?+1.j—1/2 + (’Cw)i+1/2,j+1/2ﬁ:‘J+1.j+1/2] hi
+ [(,Clz)““/zj‘l/?ag.j—l/z + (K12)i+1/2,j+1/2ﬁ?,j+1/2] izf+l}
+0(h?), (2.70)

1 Y

Wipra,y = 5{ [(K11)£+1/2,j—1/2 + (’Cu)i+1/2.j+1/2] Uiy1/2,5

2Y 2y
+ [(K12)i+1/2.j—l/2ui+1,j_1/2 + (/Cm)z‘+1/2,j+1/2u,-+1,j+1/2] }

+O(h), i=i=0o0ri=i+1= N}, (2.71)



23

&

with constants depending on u and K as indicated in the assumptions, and on
| Flls,00,0: and || F~!||3,00,0:, because of (2.9) and (2.24). Note that the coefficients
in (2.68) and (2.70) differ only in the weights 4¢ and fzfﬂ. Adding and subtracting
fzﬂ_l and h? to the weights of the second and third term on the right side of (2.70),
respectively, and subtracting from (2.68), we have

| /2 — Wl
LT AT
< O{h + lUi+1/2.j - “i+1/2.j'

LY

Ay LY 2y
| Visri-172 = “i+1.j—1/2’ t{UVijoap = U',j 1/2’
2y £y 2y
+|Ui+1 dr/2 T Wig j+1/2' +|U; Hi+1/2 U ,]+1/2'}
ik
{ (Ki12)i+1/2,5-1/255 o (&, Yj-1/2)
o’

+|(’Cl2)z+l/2.1+l/2 ER (", Y41/2) }lilfﬂ — b, (2.72)

where &’ and 2 are points between #; and &;4,. Estimate (2.65) follows in the interior

from (2.72), (2.64), and (2.50); and on 9€; from (2.69) and (2.71). O
Since UP_,04); is a set of dimension d — 1, the following corollary holds.

Corollary 2.1 For the functions in Lemma 2.3, there exists a constant
C, independent of /, such that

10 = Gllppg + 10 =il g < CH2.

Lemma 2.4 Under the assumptions of Theorem 2.4,there exists a con-
stant C, independent of iz, such that

16 — Gallpn.g + 18 — allp o < CRY2.

Proof (Lemma 2.4) Subtracting (2.33)-(2.36) from (2.62), (2.61), the transformed

(2.27) and (2.28), respectively, we obtain the error equations

1)

o= L ((P=pnV 9 =0 =ho0)), vV, (274)

A A

(0 =, V)gy g = (K(0 V€ Vi, (2.73)

:»
<o

)’I‘Qa

Cv

G

(




(V- (ITd — Gy), b)g, =0, b € Wy, (2.75)
i=1
S((Ta — ) - 2, 4)p, = 0, fi € Ay (2.76)
i=1
We take v = U — ﬁh, V=10~ 1y, 0= P - Pn, and [i = A — X, to obtain

An application of Schwarz inequality gives

G = Ginllp,0 <
Take v = U — iy, in (2.73) to get

L8 0 S COlIU =]l g-

The Lemma now follows from Corollary 2.1 and the known estimate [37]
I - Ul g < Cch?.
O

Finally, we need a bound on p — #;. From (2.33) - (2.36) and the transformed
(2.25) - (2.28) we get the error equations

(& — g, V)g = (Kl = §), ¥)g — Erm(tn, V)
+ Ep(Ki, v), § eV,
(& - gj ((Pap = 9, V- 9)g, = (@43 = Dy ¥ - 2z,
— Em ({5, ¥), v e V,,(2.78)
SV - (@ - 6u), g, =0, b € Wi(2.79)
_z";«ﬁ — @) By g, = 0, i e An (280)
where

Eq(q,v) =(q,v) = (q,V)qy, Q=TMorT.
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It is well known [30] that the error in approximating an integral by either of these

rules is of order AZ:

h2, (2.81)
o,1,E

[Bo(av)I<C3_ 3. la=(a-v)

E laj=2

The following lemma is proven in [9]. The proof is included for completeness.

Lemma 2.5 Tor the lowest order RTN spaces on rectangles, for any
q=(¢*,¢") € H'(Q4) and £ € T,

0 ,» oq® 0 ,» dq¥
—_ z < y < | ——
’aj(Hq) 5 % and 637(Hq) _l % |, ;

Proof Without loss of generality, assume that £ is the unit square. By definition,

11 satisfies on each edge é of E
/(q-z?—flq-z))dé = 0.
Writing this for the two vertical edges, we have

L) - (a9 =0 and  ['[g%(0,5) - (ha(0,5)]d = 0.

Subtraction of the above equations and the fundamental theorem of calculus imply

I .
//[ (&, 9) 81(H)(a’y)] 5% dtdj=0, veEV,

Therefore (Hq) is the Hi-projection of ¢* in the & direction. Similarly, (IIq)? is the
Hj-projection of ¢¥ in the § direction, which proves the lemma. O

We now present a bound on p — py,.

Lemma 2.6 Under the assumption of Lemma 2.3,there exists a constant

C, independent of A, such that
Pip = pullg < Ch2
Proof To estimate the pressure error, we use a duality argument. Let ¢ solve

~V KV =P — pu in 0, (2.82)
w=20 on 992 (2.83)



With (HO) we have

S llellza; < ClIPLp — bulla- (2.84)

i=1

Take ¥ = —IIK Ve in (2.78) and get

P56 — prll
= =3 ((6 = i, TIKVp — KV)g, — (K(fi - fin), Voo — 1TV)

=S (K(f = iy), [TV)g,
i=1
= =3 (& — 6, 1V — Vip)g, — (8 — s, Vip)g,)
i=1
— Erm (i, TIVQ) + Er(Kiy, TVe)
= =3 (6 — i, [TV — Ve)g, + (V- (8 = ), 0 — Pip)g,
i=1

Therefore,

1756 — Bl

n
< O{JI& = Gullog + 110 = Qullgg + SNV - (& = t)llog,

i=1

+ 3 N0 =) - 2o 00, } D Nl 0 b
i=1 i=1
-}-‘ETM(I?I;” fIlC@c,o)l + ‘E’I‘M(ﬁha ﬁv‘/’)' + ’ET(K:ﬁ’H ﬁ@(p)’, (2.86)

using (2.55), (2.51), and (2.52).
Using (2.81) and the fact that the functions are in the discrete space, we have

d

ad
Ou,,

| Brw (g, TIK V)| < © Z{ —([IKVp)?
i Bw O.E‘ 8.1 O,E
O O ae L )
b _(IIKV)? }h?. (2.87)
A9 o599 0.5



By the inverse inequality (valid for quasi-uniform grids) and Lemma 2.5,

ot ) d

— A i :' : a5 ﬁ:‘ i‘
0t |y 5 = |75t — (Ha)° ,‘+‘5’2( " 0.
S -
< Cllw, — (La)*lo,5h™" + | == o

< Cllay, — fly zh™" + |14l 5
A similar expression holds for the g-direction. Now, with (2.87) and Lemma 2.5,

| Erm(tiy, TIKC V)|
< CZ {16 = fiflg sh=" + 1611, 5 }IK Vo, 552

<C Z {ldn — 118l 5 + 16, 5B el o
B

< C{l1t - Mdillg.g + 3" [16ll, 0, 2} 3 llelly g, b (2.88)
i=1 i=1

We bound the other two quadrature error terms similarly:

h}znsoum.

|Br(K i, IV)} < C{|l& — Tl 4 + Z [ Z o, By
=1 i=1

| B (i, 1]

noting that the constants depend on i, ||K|l, . o, From (2.86), then,

|P;p — pulld
< C{lli - finllyg + 10

F3Y (= 8)lags + SN — 64) Dllgan, + 5} 3 g, b (259)
i=1 =1 i=1

a+ 8, = 18]l  + [6s — Tl g

The first four terms on the right are bounded by Lemma 2.4 and (2.55). To bound
the fifth term, we note that (2.79) and (2.53) imply V - (Ild — G;) = 0; therefore,
with (2.56),

IV - (& = @)llog, = IV - (& = [Ta)llyq, < Ch.
For the sixth term, using the inverse inequality, (2.57), the Normal trace theorem,

and Lemma 2.4, we have

(I — G4 - g o0,

(&~ dy) - ﬁllo,afl.- = ||(a - IIa) - »




28

S Clh+ R 2|(10 = 6) - D1y 5 00,)
< Clh + 71—t i)

< C(h+ h12|1Th - Ul 6,

< Ch

With the above bounds, (2.89) gives

llpﬁﬁ - ﬁh 52']

n
<CY lglla, i

=1

which, combined with (2.84), proves the result. O

We are now ready to prove the main theorem.
Proof (Theorem 2.4) To show (2.58), we write

— A A 2 A
[lu—us)l = “J 'DF(t — u;,)”M < I
Now
167 = afli}= Yo (4" — a3 E|
B
A 2 A
= Z{ (@7 = 45)ic1yny + (87 = )i/ + Chz} |5
< C(Jle = bl + 18 = dullrmh? + B*) < CR, (2.90)

using Lemma 2.4 for the last inequality. A similar estimate for ||&¥ — @}||m completes
the proof of (2.58). To prove (2.59), we observe that V - &, = Piﬁ -0 implies

IV (8 = )l < C NV - dll, 4, 72,
i=1
and, since V-u = J-'V . 4,
IV (u—up)|lm < C|V - (& — @a)[|m < Ch2.

Finally, (2.60) follows from Lemma 2.6. O

Remark 2.4 Theorem 2.4 implies super-convergence of the computed
pressure, velocity and its divergence at the midpoints of the elements. The
loss of half a power of & for the velocity is due to the O(h) approximation

on the interfaces and on 9.



2.4 Numerical experiments

We present computational results from the 3D parallel single phase flow simulator
ParFlowl. To illustrate the theoretical results, we solve a 2D problem with a known

analytic solution and mapping

xy for @ < 1/2,
p(,y) = |
2y + (@ —1/2)(y +1/2) forz > 1/2,

21 for < 1/2,
1 2

K(z,y) =
Y 10 forz > 1/2
1 ‘ ’

= . = . L. . .
(y) (y) (y+msm(6-’v))

The computational domain is the unit square. Neumann boundary conditions are im-
posed on the boundary. We compare the results from solvimg the above problem with
and without Lagrange multipliers on the interface of the discontinuity. In the first
case the domain is divided into two subdomains with an interface along the & = 1/2
line. The discrete norm errors and convergence rates are given in Table 2.1. The
results show loss of convergence for the expanded mixed method. Superconvergence
for pressure and velocity is regained by adding Lagrange multipliers. Note that this is
achieved at no extra computational cost, since the Glowinski-Wheeler substructuring

algorithm, used in the code, is in fact a macro-hybrid formulation over subdomains.

No Lagrange multipliers With Lagrange multipliers
1/h __ {llp=pallm | lu — unllrm | {[p = pallv | [Ju = wsflem [T = Anllm
8 1.23E-2 1.19E-1 5.11E-3 3.62[5-2 6.90E-3
16 3.78E-3 1.01E-1 1.73E-3 1.57E-2 2.10E-3
32 1.83E-3 7.49E-2 4.99E-4 5.48E-3 5.83E-4
64 9.585-4 5.39E-2 1.33E-4 1.85E-3 1.53E-4
128 — — 3.4215-5 6.34E-4 3.93E-5
levels 1-5 [ O(h'-?h) O(h39) O(h'?%) O(h148) O(h187)
levels 4-5 — —_ O(h!-98) O(h!5%) O(h'*%)

Table 2.1 Discrete norm errors and convergence rates.
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The slight degradation from the theoretical convergence rates is due to only approxi-
mate computation of the derivatives of the map and the cell centers of the true cells,
where the error is computed. The relative importance of this approximation becomes
negligible for fine enough grids and the theoretical rates are reached asymptotically.

The computed solution in each case on a 16 x 16 grid is shown on Figure 2.1.
Although both solutions look the same, the errors from Table 2.1 indicate that they
actually differ. This can also be seen on Figure 2.2, where the magnified error is

shown,
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Chapter 3

Mixed finite element methods on non-matching
and locally refined grids

In many applications the geometry of the domain or the behavior of the solution may
require using different grids in different parts of the domain, possibly non-matching
on the interface. Typical examples are reservoirs with faults or locally refined grids for
accurate approximation of local phenomena such as high gradients around wells. This
chapter is devoted to mixed finite element approximations on non-matching grids.

A number of papers deal with the analysis and the implementation of the mixed
methods for elliptic problems on regular grids (see, e.g., [72, 67, 62, 21, 19, 20, 26, 34,
61, 74, 37, 41, 9, 5]). Mixed methods on nested locally refined grids are considered in
[40, 43). These works apply the notion of “slave” nodes to force continuity of fluxes
across the interfaces. The results rely heavily on the fact that the grids are nested
and cannot be extended to non-matching grids.

In the present work we employ a partially hybridized form of the mixed methods
to obtain accurate approximations on non-matching grids. We assume that Q is a
rectangular domain decomposed into a union of non-overlapping rectangular blocks,
each of them covered by a rectangular grid. Pressure Lagrange multipliers are in-
troduced on the interblock boundaries (see [11, 22]). Since the grids are different
on the two sides of the interface, the Lagrange multiplier space can no longer be
the normal trace of the velocity space. A different boundary space is needed, which
we call a mortar finite element space, using the terminology from previous works on
Galerkin and spectral methods (see [16] and references therein). As we show later
in the analysis, the boundary space has to possess higher approximability than the
velocity space. In the case of the lowest order Raviart-Thomas spaces considered in
the analysis, we take continuous or discontinuous piecewise linears for the Lagrange
multiplier space. Both choices provide optimal convergence rates and superconver-
gence at certain discrete points. The discontinuous mortars, however, have better
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local mass conservation properties across the interfaces, because they force the fluxes
to match on every element of the boundary grid.

The considered scheme is also computationally efficient when implemented in par-
allel using non-overlapping domain decomposition algorithms. In particular, we mod-
ify the Glowinski-Wheeler algorithm [48, 29] to handle non-matching grids. Since this
algorithm uses Lagrange multipliers on the interface, the only additional cost is com-
puting projections of piecewise multilinear functions onto the normal trace of the

local velocity spaces and vice-versa.

3.1 Formulation of the method

For simplicity of the presentation we assume that I'? = Q. A weak solution of
(2.1)—(2.3) is a pair u € H(div;Q), p € L*(Q) such that
(K'a,v) = (p,V-v) = (¢°,v - V)aq, ve H(iv;D), (3.1)
(V-u,w) = (f,w), w € L*(Q), (3.2)
It is well known (see, e.g., [22, 68]) that (3.1)-(3.2) has an unique solution.

We now introduce another weak formulation related to the mixed method with

Continuous or discontinuous mortar elements.
Let @ = UL, Q;, Li; = o0 N an, I'= Uﬁj=lr‘,~'j, and I'; = 0Q; NI, Let

Vi={veH(divi%):v.-ve LX)}, V=@V,
i=1

Wi=LAQ), W=@W.=IL*Q), A=L¥D).

i=1

LetGeV,peW, eA satisfy, for 1 <7 < mn,

(I\"—lﬁav)ﬂ.‘ =(p V- V)Q.‘ - (:\,V ) V)I‘.‘ - <gD,V ’ V)BQ;\I‘, vEeV, (3-3)
(V ) ﬁaw)ﬂi = (faw)ﬂn w € Wi, (34)

(@ v, ), =0, peA (3.5

M=

i=1

We first observe that (3.3)-(3.5) has at most one solution. The proof of this fact is
essentially the same as the uniqueness proof in the finite dimensional case, Lemma 3.1.
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Next, under the assumption that the solution (u,p) of (3.1)-(3.2) bhelongs to
(H(div; Q)NV) x HY(Q), it is easy to see that (u,p, p|r) satisfy (3.3)-(3.5). Therefore

u=ﬁa P-—'—-ﬁ, pIF=/\-

For the purpose of the analysis, we introduce a reduced problem involving only
the function A. This reduced problem arose naturally in the work of Glowinski and
Wheeler [48] on substructuring domain decomposition methods for mixed finite ele-
ments and is closely related to the inter-element multiplier formulation of Arnold and
Brezzi [11]. Define a bilinear form d: A x A — R by

n n

d(A,p) =D di(A 1) = =3 {u*(A) vy,

i=1 i=1

where (u*(A),p*(A)) € V x W satisfy, for 1 <i < n,

K- (’\) V)g‘ ( *()‘)a V. V)Q.' - <)\,V ' V)l".‘, vV E V,', (36)
(V -u*(A), w)e; =0, w € Wi. (3.7)

Define a linear functional g : A — R by

th (1) =zn: (@ v, ),
where for 1 <i < n, (0,p) € V x W solve
(K7, v)g, = (3, V- V)a; — (¢°, v )aaar, V€V, (3.8)
(V- a,w)e; = (f,w)e;, w € Wi (3.9)
Then, as shown in [48], the solution (u,p, A) of (3.3)-(3.5) satisfies
d(Ap)=g(p), peA, (3.10)

u=u'(A)+a, p=p"(A)+p (3.11)

3.1.1 Mixed finite element approximation

Let 7y, be a quasi-uniform rectangular partition of ;, 1 < ¢ < n, allowing for the
possibility that 74 ; and 74 ; need not align on I';;. Let

Vi x Wy CV; x W,



be the lowest order Raviart-Thomas-Nedelec (RTN) spaces on Ty; (see, [67, 62, 68,
22]). Let

Vh = @ Vh.t', I/Vh = @ I/Vh,i'
i=1 i=1
Recall that
V-V =Wy,

and there exists a projection IT onto V},;, satisfying amongst other properties that
for any q € (H'())¢

(V. (lIq—q),w)g; =0, w € Wy, (3.12)

((q—1Mq) - v,v-v)ag, =0, vVEV. (3.13)

r - s
Let 7, "’ be a quasi-uniform rectangular partition of I'; ;. Denote by A, ; C L% ;)
the space of either continuous or discontinuous piecewise multilinears on 7, 7. Let

A= P Anij
1<igj<n
In the following we treat any function ¢ € Aj, as extended by zero on 9. An
additional assumption on the space A, and hence 7]}""’ will be made below.

Remark 3.1 We limit our presentation to the case of the lowest order
RTN spaces on rectangles. However, many of the results can be general-
ized in a straightforward way to any of the known mixed spaces of higher

order and to simplex-type elements.

In the mixed finite element approximation of (3.3)-(3.5), we seek u;, € Vy, p), €
Wy, A € Ay such that, for 1 <7 <n,

(I\”—luh,v)ni = (pha \x V)Q.' - (/\[;,V ' U)[‘.‘ - (_(/D,V . U)aﬂ,‘\l‘, vV E V/l,i, (3.14)
(v ) ulnw)ﬂi = (faw)ﬂn w E Wh,,',(3.15)
> (wi vy =0, p €A (3.16)
i=1

For each subdomain £, define a projection Qp; : L2(9Q;) = Vi - v|ag; such that,
for any ¢ € L?(99;),

(¢ - Qh,iﬁb,v ' V)BQ,' = 0, \AS Vh,i' (317)




Lemma 3.1 Assume that for any ¢ € Ay,

36

Qnid=0, 1 <i<n, implies that ¢ = 0. (3.18)

Then there exists a unique solution of (3.14)-(3.16).

Proof Since (3.14)-(3.16) is a square system, it is enough to show uniqueness. Let
f=0,g" =0. Setting v = uy, w = ps, and i = Ay, adding (3.14)-(3.16) together,

and summing over 1 < i < n, we arrive at
n
el
Z([\ Uy, uh)ﬂ.‘ = 0.
i=1

Hence, u;, = 0. Denote, for 1 <7 <mn,

1 1
Phi = lﬂ_tl-/Y‘L Pu d.’L, Qh,l/\h = W/BQ.' Qh.z/\h ds

and consider the auxiliary problem
-V I\"VQO,' = pn — Ph;i in Q,‘,
— KV v=— (Qh,i/\h - Qh.i/\h) on 0.

Note that the problem is well posed with ¢; determined up to a constant.

v = —IIK'Vy; in (3.14), we have

(PhsPh — Pri)e + <Qh,¢'/\h, Qnidn — Quidn), =0,

a

implying

Phles =Pri =piy  Qmidn = Qnidn.

Since
pi(1,V - v)a, — Quidi(l, Vv - V)ag, =0,

the divergence theorem implies p; = Qy ;Ap.

Setting

Note that A, = 0 on 0%, therefore p; = Qp:;A, = 0 for those domains with
90; NN # (. For any ¢ and j such that 9 N IN; = Ty; # 0, (3.17) implies that

1
Qh,i/\hh‘.'j = Qh,j)\hll‘.'_, = IF_'l'/F /\h ds.
t7 t]

We conclude that Qp;A, = 0 for all 1 < ¢ < n; hence, A, = 0 by the hypothesis of

the lemma.

O
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Analogous to the continuous variational formulation, we consider the following

equivalent reduced mixed finite element formulation. Define a bilinear form dj, :

A x A — R by

=1

dh(/\,,“) = Z dh,i(’\’ﬂ) =- Z(UZ(/\) ) V,ﬂ)l‘;,
=1

where for A € A, (ui(A),pi(X) € Vi, x Wy, solve, for 1 <7 < n,

(K73 (M), V) = (05 (A, V- V)a, = (A, V-0, VE Vi, (3.19)
(V- uj(A), w)e; =0, we Wy (3.20)

Note that, with v = uj () for some p € A, we have
dii(ps A) = = (A ui(p) - vry = (K73 (A), i (4)a; = dpi(A ) (3.21)

Define a linear functional g, : A — R by

gn(p) = Z.(Jh.i(/‘) = Z(ﬁh Uy )Ly
i=1 i=1
where (@, pn) € Vi, x W), solve, for 1 <i < n,
(I\,_lﬁha Vg, = (Pn, V- V), ~ (gDv v: l/)agi\[‘, V€ Vi, (3.22)
(V . l._lh,'w)m = (f, 'LU)Q” w € W, (3.23)

It is straightforward to show (see [48]) that the solution (up,pr, As) of (3.14)—(3.16)

satisfies
dh(/\haﬂ) = .(/h(tu)’ nE Aha (324)

with
w, = uwp(Ap) +0n,  pr=pi(Mn) + P (3.25)

3.2 Error analysis

For the error analysis we assume that

(H1) IuNoNAD, 1<i<n.

This hypothesis is needed for the proof of Lemma 3.2 and may be omitted if a lower

order term with a positive coefficient is added to the equation.
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In the analysis we will use several projection operators. Let P}, be the L? projection
onto Ay, satisfying for any ¥ € A
(¥ = Puth,i)r =0, p € Ay
Let , for any ¢ € L*(Q), ¢ € W, be its L? projection satisfying
(p—p,w)=0, weW,.

These operators, along with the defined earlier projections 1T and Q,;, have the

following approximation properties:

Z ”'l/) — ’Ph'l/)“s,'r < C”"/)”I,P.',jhl'—sa 0 S l S 2a 0 S S S la (326)

€T,

le = ¢l < Cligllih, (3.27)
la — qlle; < Cllallna:h, (3.28)
IV (a—-Tq)lle; < CIIV - alliaih, (3.29)
1% = Quitll-srs < Cllgpllar;h™*, 0<1<1, 0<s <1 (3.30)
l(a=Tq) - vll-or, < Cllalir,h*®, 0<1<1,0<s< 1. (3.31)

Let
('3')S,Ma <'9'>35,M
denote an application of the midpoint rule associated with 7}, ; for computing the L?

inner product on S or 5, respectively. Let

|- llsms I - llosm

be the induced seminorms. The error in approximating integrals by the midpoint rule
is bounded by O(h?) (see [30]):

aa
s ()

h2. (3.32)

0,1,

|Bv(e, )| = (0, %) = (@, S C Y S

E |a|=2

Let 7]319' be a refinement of 7y :|oq, with vertices at the centers of the elements
of Tp.ilaq; and the vertices of Ty, ;|aq,. Let lA/;,',' be the space of continuous piece-wise
linears on 7]3?' Let, for any ¢ € Vy,; - v, I%%¢ € 0/1,,'|agi be such that

I%%¢p = ¢, at the midpoints,
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and

I%%¢p = the average of the adjacent midpoint values, at the other nodes.

Recall that two quadratic forms @, and Q, are equivalent on D, if there exist

positive constants ¢; and ¢z, such that

c1Q1(,¢) < Qa(d,9) < 2Q1(d,¢), Vo€ D.

When the constants ¢; and ¢, are independent of &, we will denote this equivalence

by Ql o~ Qz.

For the error analysis we need the following lemma.

Lemma 3.2 Assume that (H1) holds. Then for any ¢ € @%, QpiAn,

(9, ) = Z IZ°% 1} /2,00,

Proof It is proven in [28] that

dy(d, o) ~ 3 IIBQ‘Gbe/z.an;-
i=1

The discrete bilinear form dy(-,-) in [28] is defined via the full hybrid form of the
mixed method, which is equivalent to our macro-hybrid formulation [11]. Since ¢ = 0

on d), by Poincare’s inequality,
IIBQ‘¢|1/2,89; x>~ ”Ian"(/’”l/z.an.-, 1<i<n. (3.33)

O

Let us introduce, for any pu € Ay, the norm

1/2

Melllyzrs; = | 32 lell/en

TET';F"J

We need the following hypothesis.

(H2) Allelllyar, < CUTP%Quinllijzr., + 1Z°% Qu pllijor,)s Vi € An.
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Note that, because of the solvability assumption (3.18), both sides in (H2) represent
norms on A,. Therefore (H2) holds with a constant possibly dependent on 4. Since
the highest derivatives involved in both norms are of order 1/2, we should expect that
the constant is independent of h. The following lemma shows that this is indeed the
case for a particular choice of A, and indicates why (H2) is reasonable in general for
any choice of Ay satisfying (3.18). Note also that the left norm requires only local
smoothness (on an element), so the inequality in the other direction does not hold.

Lemma 3.3 Let '771,,-|1~,.,J be a refinement by two of 77F . Then, for any
IS Ay,
Meelllajar,,; < CUZ%Qualliser,;-

Proof Denote § = 79%Q,, ;. It is easy to see that, for any element 7 of hr.'_,’ and

for any element 7 of Ah[: M,
ulf o 772 S (w(w) — p(ok)?, (3.34)
vertices
VLU ET
33 > #2430 (3(0) — 3(w))?, (3.35)
vertices

O, 0 € T
s, =171 Y p(w)?, (3.36)
vertices
nerT

or I Y 8D (3.37)

vertices

§

0 €T
Denote
pi = p(vk).

Now consider an element 7 of 77?'” in the case d = 3. We note that the following
argument works also for d = 2. Denote the vertices of T by vy, v12, Va1, va2. Let a

and y be the boundary variables and

1z, y) = e(x)b(y).
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We have that
tik = plow) = @up, Lk =1,2.

Let
U w7 € Tilr,,-
Lk=1,2
Let
qr = Qniftln,, Lk=1,2. (3.38)

Assume for simplicity that the grids are uniform. The generalization to non-uniform
grids is straightforward. Now we have

<,01+902)(1/1+1/’1+¢2)

= %(901 +

901+<P2)( ¢1+¢2)

1
21 = 2(302 -+ P+

with similar expressions for g2 and gqz;. Denote by ¢ the value of Z9% Qi at the
center of 7. We have that

2[(‘1 —aqu)’+ (¢~ (121)2] > (qu1 — qa1)?
=%(Sol ) (¢1+¢1+¢2) )
Similarly,

2[(‘1 —qi2)* + (¢ — (122)2] > (q12 = q22)?

= “1%(801 ©2)* (1/)2 + bt %)2-

Therefore

(0= @) + (g — q)* + (= @12)* + (¢ = q22)
> Clp1 — 2)* (7 + ¥2)
= C(k1s = 1) + (2 = prz2)?]. (3.39)

A similar argument gives

(0= qu1)* + (g = 421)* + (7 — 12)* + (¢ — q22)’
2 C[(#u — pt12)® + (p21 — sz)z]- (3.40)




Combining (3.39), (3.40), (3.34), and (3.35) we conclude that
|1 < CITP% Quiptly . (3.41)

Similar argument as above implies

1 Y1+ P22
2 2 2 2
i+ 9 2 E(‘Pl + ‘Pz)(‘/’l + _2—) )
and : —
2
T2 + 33 2 E(‘P? +90§)(¢‘2 e 9 2) :
Therefore,

1
Gy + G+ aha + G2 2 501+ @)(¥] +¥7)

1
= ﬁ(/‘%l + piy + gy + #3),
which, combined with (3.36) and (3.37), implies
I,UIO,T S CIIaQiQIz,iNIO,T- (3.42)

The interpolation theory of Sobolev spaces [56] and bounds (3.41) and (3.42) imply

the statement of the lemma. O

In the analysis we also need the following Lemma.
Lemma 3.4 For any function v € V;,

Iv - vllopn: < CA7Y2||v]|o,q;

Proof Since v v is piece-wise constant on 9§);, we have
v viidon, = D, lelv(e)?, (3.43)
e€Th,ilon;
where v(e) is the value of v - v on e. Since the first component v; of v is piece-wise
linear in the first direction and piece-wise constant in the other directions, we have
. 1
lorllog, = 22 5lrl(ei(m 1) 4 vi(r,2)%), (3.44)
TETh,i
where v(7,1) and v,(7,2) are the values of v, on the left and the right face (edge) of
T, respectively. Similar expressions hold for v, and vs. The lemma now follows from

(3.43), (3.44), and the fact that
|7| ~ hle|.
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We continue with the error analysis by deriving a bound on A — A,. Subtracting
(3.24) from (3.10) we get

di(A = Ay pt) = di(A, ) — d(A 1) + 9(p) — (), 1 € A (3.45)
We have that
dp(A = /\h, ©)
= Z (= (i) womdry = (B v ) + (W (A) - v )y + (i vy o)),
Define
up(A) = uwj(A) +Gn, pu(A) = pi(A) +
and note that (u,(A),pr(A)) € Vi x Wy, satisfy for 1 <i<n
(K™ un(A), v)a: = (Pa(A), V - V)a, = (A, v - 0)r,
— (g7, v aanrs vE Vi (3.46)
(V-uu(A), w)a; = (f,w)a;, w € W, (3.47)
We now have

di(d = dnspe) = 32 (= (ur(A) vy ) + (u - v, ),

o

[
—_

t

(= un(A) - v phry + (Tu - v, i, = (T =) - 1, ), )

Il
.M=

1

-

(= () = Tu) vy ), = (Mu—w) v, ). (3.48)

]
.M=

=1

Since p = 0 on 0Q, for the first term on the right we have

((un(A) = Tu) - v, p)r,
= ((un(A) — M) - v, Qnipt)an, M
= ((up(X) = ) - 1, %% Qpiphag;,m — ((un(A) — M) - 1, T2% Q) 1o,
+((up(A) — M) - v, I%% Q) ;o
(

C Y (ua(A) = ) - vl | Z%% Quipells b
T€Th,ilr,

1l

(FAN

I (un(A) = ) - vl 172,001 %% Quittll 12,00,
< C(h"’/zlluh(/\) - Hll”o,sz;/l_l/zuzan‘Qh.i#“l/z.an.-h
+lun(A) = T rgaivien 1Z°% Quitelly2.00,)
< Cllullieh || T2 Quiptll1/2.00: (3.49)
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where we used (3.32) for the first inequality, Lemma 3.4 and the Normal Trace
Theorem for the second inequality, and the standard mixed method estimates for
(3.3)~(3.4) and (3.46)-(3.47) (see [72, 67, 34]) for the last inequality.

For the second term on the right in (3.48), using the fact that ITu - » is the

L*-projection of u - v onto V,; - v and (H2), we have

(M —u) - v, pr,

<C Z l(TTu —u) - ’4]-—1/2,7”“”1/2,7‘
TE'T,{“'J

< Cllulls2h (IZ°% Quittll a0, + IZ°% Qujullijz.00,)- (3.50)

Combining (3.48), (3.49), and (3.50) we obtain

du(A = M) £ C Y |ulleib |22 Quiptll 12,00, (3.51)

i=1
Now take i = PpA — A; and get
([11(7311/\ - ’\ln Ph/\ - /\h)
< Ndh(Pud = X Prd = M) + C Y- [lullio )| Z%% Qui(Prd — A)|l1/2,00,43.52)

i=1

Since, for any ¢, € A,
dii(b ) = di,i( i, Q,i®h),

an application of Lemma 3.2 and Schwartz inequality for dj ;(-, ) gives

S IZ2%QuilPid = M)l n, < € (dha(Pid = X, Pid = A) + [Jullig,h?) (3.53)
i=1 i=1

To bound the first term on the left, in (3.19)-(3.20), we replace A by Pp) — A, and
take v = uj}(PrA — A) and w = p},(PrA — A) to obtain

(K73 (Pid = A), ul(Pid = A))a, = —(Pud — A u}(Pad = A) - ),
< 1IPuA = Mo i (Pad = A) - vlor
< Cl sk i (Pud = llo.aih ™2, (3.54)

using (3.26) and Lemma 3.4 for the last inequality. Therefore, with (3.21),

dii(Phd = A, Pud = X) < C|Ipll2 o, 8%



implying, together with (3.53),
n 1/2 n
(Z IZ°% Qi (P — ’\h)”?/z,am) < C 3 (lIpllze; + llulle)k
i=1 i=1
Now, with (H2) we have

1/2 .
1PuA = Aulllyy2r = ( >, P - /\hlllf/z,n,j) Z (lpllze: + llullie.)k,

1<i<j<n
and, with (3.26),

1A = Alllzzr < C Y (Ipllag: + luflie;)b. (3.56)

i=1

We next derive estimates for u — u; and p — py. Subtracting (3.14)-(3.16) from
(3.3)-(3.5) we get the error equations

(K= (u—wp),V)e, = (p=pi, V- V)a, = (A = M, Vv, v € Vi, (3.57)

(V. (u—u),w)g =0, w € W, (3.58)
Y {(uw—up) - v, ), =0, p €A, (3.59)
i=1

Note that (3.58) implies
V. (Iu-u,)=0o0n 0, (3.60)
Take v = Ilu — uy, w = p — py, and p = PpA — Ay, to get

n

Z([\'"l(u —up), [Tu — uy)g,

( (A =PpA, (Tu —uy) - v)p; + ((u = TIu) - v, PLA — /\h)r.-)

I/\ PuMlo,r [(TTu — ) - vlo,00;

+ Z Z ”(U - Hll) ‘ U”-—-l/?,'r”Ph/\ - /\11“1/2,7'
fy=1 TE?;F‘.J

< C Y (lIpll2g bl Tu — upllog; + llullee[IIPad = Malll1/2.rs, (3.61)
i=1
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using Lemma 3.4, (3.26) and (3.31) for the last inequality. Therefore, with (3.28) and
(3.55),

lu —usllo < C D (lIpll2s + llulls.a;)k. (3.62)
=1
The estimate
”v : (u - uh)Houni S C”V ! u”lvnl'h (3‘63)

follows from (3.60) and (3.29).
We next use a duality argument to derive a superconvergence estimate for p — py.

Let ¢ be the solution of

-V KV =—(p—p) in Q,
=0 on ON.

Assuming that K restricted to any subdomain is smooth, we have by (H0)
n
Y- liellza: < Clip = pallo. (3.64)
i=1

Take v = KV in (3.57) and get

1 = pallo = (6 — pu, V - 1K Vip)g,

=1

=3 (K7 (0 = wy), IK Vg, + (A = M, [IK Vi - v)r,). (3.65)
i=1

The first term on the right can be manipulated as

n

Y (K7 (u =), IKVe)g,

i=1

-
=

> ((K“l(u —u), [IKVep — KV)a, + (u — uy, Vz,o)g..)

1

-
1l

(K~ (u ~ ), IK Vg — KVo)q,

i

+ (V- (u—wp), 0 = @)a, = ((u—un) - 1,0 — Pusphan;) (3.66)

<CY (I~ wnllog, + 17+ (a = un)llogs + 1(a = ws) - vllsjzonl) e Y e llec,

=1 i=1

ii

using (3.28), (3.27), and (3.26) for the last inequality with C' = C(max; || K |1 00,0,)-
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For the second term on the right in (3.65) we have

Z(/\ - /\;,,H[\’Vgo . 1/)[".

i=1

(Qni(A = M), KV - v)r,

g

=i

(Qn,i(A =) = (A=), KV vy,

P (”Qh,i(’\ = An) = (A= )|[-1/2

1<igj<n 7'67',{"’

H1Qai(A = M) = (A= M)ll-1/2r) 3 el
=1

i

IN
Q

< ChIIN = Mulllsjzr D2 llellaiy (3.67)

i=1
using (3.30) for the last inequality.
Combining estimates (3.65), (3.66), and (3.67) with elliptic regularity (3.64) we
obtain
15 = pallo < Gl = wallo+ 32UV - (0 = wllogs + 1A = Mulllyar) b (3.68)
i=1

With (3.56), (3.62), (3.63), (3.68), and (3.27) we have shown following theorem.

Theorem 3.1 For the mixed method on non-matching grids (3.14)-
(3.16), if (HO)—(H2) hold, then there exists a positive constant C depen-
dent on max; || /{||1,00,0;, but independent of h, such that

lu = unllo < CD (lIpllzi0i + lulls0i)k, (3.69)
i=1
[V - (u = w)llogq: < ClIV - ull1:h (3.70)
1A = Aulllijar < C X (Ipllz0: + lulle:)k, (3.71)
i=1

Ip = pullo < C 3 (Ipllac + ullug, + IV -ulli)h,  (3.72)

=1

15 = pallo < C 3 (Pl + Iullie: + IV - ullie)h® (3.73)

i=1




3.2.1 Superconvergence for the velocity

To obtain a velocity superconvergence estimate, we need a better bound on the
Lagrange multiplier error. For the rest of the section we assume that the tensor

K is diagonal. We now modify the last inequality in (3.49) to get
((ui(A) =) - v, phr; < Cllullzgk?|T°% Quintlli 00, (3.74)
using a superconvergence estimate for the standard mixed method derived in [37] (sce
also [61, 41]). Estimate (3.50) can be modified as
((Mu — ) - v, p)ry,

<C Y IMa—w) - vlloapzellellyer
Teﬁi’j

< Cllulla/z,sz‘/za/z(IIIaQ‘Qh.iHHl/z,an.- + IIIBQ’le.j#||1/2,Bﬂj)a (3.75)
using (3.31). Combining (3.74) and (3.75) with (3.48) we obtain

dp(A = A, p) £ CZ “u”ZQihS/QHIaQi Qh,i”lll/Z,aQi' (3.76)

=1

Take p = PyA — Ay and continue the argument as in (3.52)-(3.53), to obtain

D NZPHQui(Pid = M} 200 < C X (di(Pud = A, Pud = A) + [Jul2 0,h%) (3.77)
i=1

i=1

To bound the first term on the left, we proceed as in (3.54), using a sharper bound
PuA = Alor: < Cl|A|lz,r;h*
from (3.26) for the last inequality of (3.54), to conclude that
dpi(Pud — A, Prd — A) < C|Ipll3/o,0,4°. (3.78)
Combining (3.77), (3.78), and using (H2) and (3.26), we obtain

1A = Mulllzre < €S (lIpllsres, + lullag,)h2. (3.79)
i=1

To obtain a superconvergence estimate for the velocity, we modify the last in-
equality in (3.61), using (3.26) and (3.31):

n

Z([\‘"l(u — uh), ITu — uh)gi

=1

< C Y (lIplls/zeh®?ITu = unllog; + [ullajzeh%2/IPaA — Aulllayar,).(3.80)
=1 ’
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Now, a combination of (3.80), (3.79), and an estimate by Duran ([37], Theorem 3.1)
(K~ (TTu ~ u), ITu — wp)g; < Ch*|ullzg (ITTu - upfjog;,

gives that
I = uillo < €3 (lull2; + [Iplls/20:)8%> (3.81)

i=1
This estimate implies superconvergence of the velocity at Gaussian points. Recall
that || - |ltm is a seminorm in V, induced by the quadrature inner product (:,+)pm
(see (2.23)). Note that this seminorm only involves function values at the Gaussian
points and is equal to the L%-norm on V.
Now (3.81) and the bound (see [37])

lu — Hullrme; < Clluflzhk?

imply that
lu —willem < C D (l[ullzq + [1plls/2.0,)h% (3.82)
i=1

We have shown the following theorem.

Theorem 3.2 TFor the mixed method on non-matching grids (3.14)-
(3.16), if (H1) and (H2) hold, and K is diagonal, then there exists a
positive constant C dependent on max; || K|1,c0,0;, but independent of £,
such that

n
Ilw = wallrm + 1A = Aulllyzr < €3 (lullze; + [Iplls/z0,)h.

i=1

3.3 Numerical experiments

The method described above has been implemented in the parallel simulator ParFlowl.
The domain decomposition algorithm by Glowinski and Wheeler [48] has been modi-
fied to handle non-matching grids. The algorithm solves the interface problem (3.24)
using the conjugate gradient method. On every iteration Dirichlet subdomain prob-
lems (3.19)-(3.20) has to be solved. Because of the property

dni(A 1) = dpi(Qnid, Qnit),

the conjugate gradient is performed in the space @, Qi A, and the subdomain
solves use Dirichlet data @, ;A,. Therefore the local solves are the same as the solves
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in the case of matching grids and standard Lagrange multipliers. The only additional
steps are projecting the local boundary flux onto A, using Q,{i and then projecting
the jump in the flux back to Vy,; - v, using Q. ;. This makes the computational effort
for non-matching grids comparable to that for matching grids.

We present some numerical tests that exhibit the theoretical convergence rates.
In the first example we solve a problem on the unit square with a known analytic
solution

p(z,y) = 2%? + sin(ay)

and conductivity tensor

K= 10 + 5cos(zy) 0 .
0 1

The boundary conditions are Dirichlet on the left and right edge and Neumann on
the rest of the boundary. The domain is divided into four subdomains with interfaces
along the = 1/2 and y = 1/2 lines. The domains are numbered starting from the
lower left corner and first increasing @. The initial non-matching grids are shown on
Figure 3.1 We test both continuous and discontinuous mortars. The initial mortar
grids are chosen as shown in Table 3.1. Convergence rates for the test case are given
in Table 3.2. The rates were established by running the test case for 5 levels of grid
refinement and computing a least squares fit to the error. We observe numerically
convergence rates corresponding to those predicted by the theory.

In the second example we would like to compare the mortar element mixed method
on locally refined grids to the more common “slave” nodes local refinement technique
(40, 43]. In the latter, the fine grid interface fluxes within a coarse cell are forced
to be equal to the coarse grid flux. We note that this scheme can be recovered as a

special case of the mortar element method with discontinuous mortars, if the trace of

Continuous mortars | Discontinuous mortars

interface | # elements | # d.o.f. | # elements | # d.o.1.
I'o 4 5 2 4
I3 3 4 1 2
[a4 3 4 1 2
[a4 4 5 2 4

Table 3.1 Initial mortar grids.



Figure 3.1 Initial non-matching grids.

Continuous mortars Discontinuous mortars
1/ | llp = pallm | lu — aaflzm | [|A = Mullm [ P = pallm | Ju —asfliem [ TA = Anllm
8 1.45E-3 5.37E-2 2.75E-3 1.71E-3 9.36E-2 9.76 E-3
16 3.56 -4 1.66E-2 7.80E-4 3.97E-4 3.32E-2 1.47E-3
32 8.72E-5 4.99E-3 1.96E-4 8.90E-5 7.16E-3 2.71E-4
64 2.17E-5 1.40E-3 4.87-5 2.20E-5 2.52E-3 6.74E-5
128 | 5.42E-5 3.90E-4 1.21E-5 5.46 -6 8.76E-4 1.66E-5
rate | O(h%9%) O(h!-8) O(h'95) O(h*98) O(h*™%) O(h%%)

Table 3.2 Discrete norm errors and
convergence rates for the first example.

the fine grid is a refinement by two of the interface grid. Indeed, in this case the flux
matching condition (3.16) becomes a local condition over two (four if d = 3) fine grid
boundary elements and forces all fine grid fluxes to be equal to the coarse grid flux.
Our theory also recovers the convergence and superconvergence results derived by
Ewing and Wang [43]. In the mortar method however, the flux continuity condition
can be relaxed by choosing a coarser mortar space. In this case the fine grid fluxes are
not forced to be equal and approximate the solution better. Qur numerical experience
shows that choosing the mortar grid to have one element less in each direction than

the coarse grid, generally reduces the flux error on the interface by a factor of two.
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We solve the problem of the first example on locally refined grids. The initial
grids are 4 X 4 on ;-3 and 16 x 16 on Q4. We use discontinuous piese-wise linear
mortars on the non-matching interface. We report the numericall error on four levels
of refinement for two cases. If the coarse grid is n X n, we take a mortar grid with
n— 1 elements in the first case and 2n elements in the second case, which is equivalent
to the “slave” nodes method. The results are summarized in Table 3.3. The pressure
and velocity error on the second level of refinement are shown on Figure 3.2 and

Figure 3.3.

Disontinuous mortars “Slave” nodes

1/he | llp = pullm | u — wnflrm [ 1A = Aullm [ llp = pallm | Tu = wnJlem [ 1A = Aullm
8 1.12E-3 6.70E-2 3.80E-3 1.30E-3 1.45E-1 5.741-3
16 2.67E-4 2.48E-2 1.03E-3 2.90E-4 5.00E-2 1.39E-3
32 6.57E-5 9.77E-3 2.72E-4 6.86E-5 1.74E-2 3.41E-4
64 1.64E-5 3.62E-3 6.93E-5 1.66E-5 6.09E-3 8.42E-5

I'a,te 0(/22.03) O(hI.'lO) 0(/2'1.93) O(hZ.Og) 0(,)’1.52) O(/L2.03)

Table 3.3 Discrete norm errors and
convergence rates on locally refined grids.



Figure 3.2 Pressure (shade) and velocity (arrows) error on
locally refined grids with discontinuous mortars.

Figure 3.3 Pressure (shade) and velocity (arrows) error
on locally refined grids with “slave” nodes.
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Chapter 4

The expanded mixed method on non-matching
grids and general geometry

In this chapter we combine techniques from the previous two chapters to formulate
and analyze efficient and accurate mixed methods for elliptic problems on multiblock,
irregularly shaped domains with non-matching grids on the interface. By introduc-
ing piece-wise linear mortar pressures on the subdomain boundaries we recover the
superconvergence properties of the expanded mixed method on matching grids. We
do not sacrifice the ease of the implementation. The mixed method is reduced to
finite differences for the pressures and all computations are performed on a union of

reference rectangular blocks.

4.1 Formulation of the method

We again consider problem (2.1)-(2.3), assuming 'Y = 99 for simplicity. Here Q
is a union of non-overlapping irregularly shaped blocks ©;, 1 < i < n. We assume
that there exists a continuous piece-wise smooth (at least C?) map F from a union

of rectangular blocks Q = U2 ,€); onto 2, such that
F() = .

Recall that in the expanded mixed formulation i = —M~!Vp is the adjusted
pressure gradient, for some symmetric positive definite matrix M. Using the notation
from Section 3.1, we have the following variational formulation. Find u € V, it € V,
p € W,and A € A, such that, for 1 <7 <mn,

(Mu,V)q, = (MKM,v)q,, ve \7,-, (4.1)
(M, v)a, = (p, V- V)a, = (N, v v)r, — (gD,V U)o\l v EV,, (4.2)
(V- u,w)e; = (f,w)a;, w € W, (4.3)

Z(u ' Va/J‘)[‘.‘ =0, KE A, (4'4)
i=1
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where V; = (L3())¢ and V = @, Vi. The argument that (4.1)-(4.4) is equivalent
to the more standard variational formulation (2.5)~(2.8) is similar to the one from
Section 3.1.1.

To formulate the expanded mixed method, we first define the reference mixed
finite element spaces, as in Section 3.1.1. Let 71; be a quasi-uniform rectangular
partition of fl,-, 1 £1 £ n, allowing for the possibility that 7A71,,- and 771,j need not align
on f‘,-j. Let

\A’h‘,' X Vi/h’,' - \7’,- X I/i/,

be the lowest order RTN spaces on 7A7L,,-. Let
=P Vi Wi = D Wi,
=1 =1

Lct Vh, be a finite element subspace of (Lz(Q ))¢ such that Vh, - \7;” and let
V = @ IV;” Let T “ be a quasi-uniform rectangular partition of F . Denote
by A;, ,,J C A;; the space of either continuous or discontinuous piecewise multilinears

on . Let

]\h = @ Ah,i,j-

1<i<j<n
Given the reference grids, the mapping I defines logically rectangular grids 7;,; on
2; and 'T “ on I; ;. The finite element spaces on these curvilinear grids are defined
via (2.9) for V), and Vy, (2.10) for W;, and (2.11) for Ay
In the expanded mixed method for (4.1)(4.4) we solve for u, € Vy, i, € Vy,
pr € Wy, and A, € Ay, such that, for 1 <7 < n,

(Muy, V)q, = (MK My, ¥)q;, VeV, (4.5)
(M, V), = (pr, V V), = (A v )y = (9P, v - agars vV E Vi, (4.6)
(V- w)e, = (f,w)a;, w e Wi, (4.7)
Z(uu ‘v, p)r; =0, peh, (4.8)

i=

—

The choice M(F(%)) = (J(DF"‘)TDF‘I)(.%) leads to a significantly simplified
problem after a transformation to §0. In Theorem 2.4 we showed that, if I is piece-
wise smooth, the analysis of the original problem is reduced to the analysis of the
transformed problem. We therefore concentrate on solving the following variational
problem on the reference domain {2, wherein we omit the hats and the Jacobian
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factors that appear after the transformation. Findu € V,i € V,pe W, and ) € A,
such that, for 1 <z < n,

(u, V)o, = (K1, V)q;, veV, (49
(&, V), = (3, V- Vg, = (M Vv, = (6P, v agrs,  VEVL,  (4.10)
(V- u,w)q, = (f,w)a;, weW, (4.11)
Eyuwﬂh=0, pehn,  (4.12)

For the purpose of the analysis, we consider the following equivalent variational

formulation. Define a bilinear form d : A x A = R by

A p) = Zdw Z -

where (u*()), @*()),p"(A)) € V x V x W satisfy, for 1 < < n,

(u*(\), ¥)a, = (Ka*(X), ¥)a;, VeV, (4.13)
(@A), V), = @A),V -V)a, — (A, v-)r,, VEV;, (4.14)
(V-u*(A),w)q, =0, w € Wi (4.15)

Define a linear functional g : A = R by
= gi(p) =D _(a v,
i=1 1=1

where, for 1 <i <n, (@,4,5) € V x V x W solve

(l_l,{'/)Q,- = (I,ﬁ){’)ﬂn Ve vi, (416)
(Q,V)a; = (5, V- V)a, = (¢°, v - Vagar, Vv E Vi (4.17)
(V- u,w)q, = (f, w)a;, w e W, (4.18)

It is easy to see that the solution (u,q,p, A) of (4.9)-(4.12) satisfies
d(A, i) = g(n), pEA, (4.19)

u=u(A)+a, =)+, p=p\)+p (4.20)



We now formulate the expanded mixed method on non-matching grids with quad-
rature for approximating (4.9)-(4.12). We take V,; = V;; to be the lowest order
Raviart-Thomas spaces on ; and seek for u, € Vy,, i), € Vy,, p, € Wy, and A, € Ay,
such that, for 1 <17 < n,

(un, V)rm, = (K, V)1,09;, VeV, (4.21)

(Gn, V)rmas = (Pns V- V) = Ay Ve ) — (92, v v)agar, v € Vi, (4.22)

(V- upw)e; = (f, w)a, w € Wy, (4.23)
Z(uh ) Va/")l‘.‘ =0, it E Ay, (424)
i=1

The proof of the following lemma is a trivial modification of the proof of Lemma 3.1.

Lemma 4.1 Assume that for any ¢ € Ay, Qui¢ =0, 1 <i < n, implies
that ¢ = 0. Then there exists a unique solution of (4.21)-(4.24).

Analogous to the continuous variational formulation, we consider the following
equivalent reduced mixed finite element formulation. Define a bilinear form d), :
Aj X Ah - R by

n

dh /\ ,Lt Zdht /\ ﬂ Z(u,]:(/\) 'I/,,Lt)[‘,-,

i=1

where (uj(A),05(A),pr (X)) € Vi, x Vi, x W), satisly, for 1 <i < n,

(u;;(’\)a {')TM,Q,- = (A'ﬁl‘t(’\)a{')T.ﬂn vV E Vh,i, (425)
(ﬁ;;(/\)’v)’rM’Qi = (pl*x(/\)’ V. V)Qi - (/\,V : V)Fn vV E Vh.i, (426)
(V- u;(A), w)a, =0, w € Wy, (4.27)

Define a linear functional g, : Ay, = R by

n
gh ,u) Zghz = Z uh ¢ Vau)rg,
i=1

=1
where, for 1 < ¢ < n, (Oy, l'_i/,,ﬁh) €V, x V,, x W, solve
(Tp, V)v0 = (K Gpy V)1 0201 V€V, (4.28)

(4
(V- ap,w)g, = (f,w)e,, w € Wy, (4.30)

V)tma = (Pn, V -+ V), — (97, v Vaaars V€ Vi, (4.29)

=u
=



It is easy to see that the solution (us, Gs,pr, As) of (4.21)-(4.24) satisfies
dh("‘hnu) = gh(/.t), ©E Ah, (4-31)

u, = u;‘l(/\h) + ay, ﬁh = ﬁ;:(/\) + l::-iln Ph = p;;(’\) + . (4‘32)

We finish the section with a characterization of d,(-, ), needed later in the analysis.

Let Af}‘ be the standard space of interelement Lagrange multipliers on €, i.e.,
ASY = {p € L}Ue) : u = constant on any face (edge) e}.

Given A € A, define A () € A} as follows. For any internal face (edge) e, let A ()],
be the average of the values of pj;(A) on the two adjacent elements. Let A;()) = Q) ;A
on J€;. For any element T € T}, ;, let the set of nodes on 7 be the center of 7 and the

centers of the faces (edges) of 7.
Lemma 4.2 Let ¢ = [pi(A), \i(A\)] € Wi x A, Then
dii(MA) & 30 I 3T (g(n) — g(m))?

7€Ths nodes

nL,nNLET

with constants dependent on the maximum and minimum eigenvalue of

K, but independent of h.

Proof TForany pi € Ay, take V = (1), v = uj(p), and w = pj(u) in (4.25)-(4.27).

We have

iy A) = (A i (i) - ey = (KG5(A), G5 (1)1 = dii( A, 1) (4.33)
Therefore
dhi(WA) 2 D0 Il D0 (@A)l > X0 1 Y (g(m) —g(nw)
7€ edges €T nodes
e C Ot n,ng €T
where the last equivalence follows from (4.26) and the definition of A}()). (]

Remark 4.1 We introduce the space Af‘ only for the purpose of the
analysis. It is not involved in the actual computation. The above result is
a counterpart of Theorem 4.3 in [28] and allows us to employ the theory

developed there.
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4.2 Error analysis of the finite differences scheme

Let Z%%¥ be the interpolation operator defined in Section 3.2. Because of Lemma 4.2,

the theory of [28] applies to give
di(, ¢) ~ Z IZ%% 61} 200 Vb E D Vi v

The proof of the following lemma is analogous to the proof of Lemma 3.2.

Lemma 4.3 Assume that (H1) holds. Then for any ¢ € @™, Qu.:A4,

dn(o, ¢) Z IZ%% 112,00,

Throughout the analysis we assume that the subdomain grids are generated by a
C? map (see Definition 2.1). We proceed by deriving a bound on A — A;. Following
the argument (3.45)~(3.48), we have, for any u € Ay,

n

di(A = o) =3 (= ((ua(A) = ) - v e, = (Mu =) v, ), (4.34)
i=1
where uy(A) = uj(A) + y, Gu(A) = Q5(A) + Gs, and pu(A) = pi(A) + Py satisfy, for
1<i1<n,

(un(A), V)rme; = (KQx(A), V)10, VeV, (4.35)
(Gr(A), v)rme: = (Pu(A), V- v)a, — (A, v - v)r,

—{gP,v - VYaanrs veV, (4.36)
(V- uu(A), w)e, = (f, w)ai, w € Wy (4.37)

Now, as in (3.49), we have for the first term on the right in (4.34)

((ua(A) = u) - vy phr; < Cllun(X) — Mullog, |Z%% Qi1 /2,00,
< CRPIT?% Quiplly 2,000 (4.38)

where the last inequality follows from the analysis of the finite difference scheme
(4.35)-(4.37) in [9), Theogem 5.6, with a constant C depedniliing on p € C3(£),
€ (Cl(ﬂi)ﬂwz'“’(ﬂ,—)) ,and K € (Cl(Qi)ﬂwz'“(Q;)) *“. Tor the rest of the

section C' will be a generic positive constant that may depend on the above quantities.
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With (4.34), (4.38), and (3.75), we have

(A = My ) < C 3 BHZP% Quiplls 2,00, (4.39)

=1

Now take u = PpA — A, and get

di(Prd = Ay Prd — Ap)
S Ndu(Prd = A, Pud = M|+ C 32 R Z%% Q4 i(Pud — M)ll1jzon;-  (4.40)

i=1

Since, for any ¢,9 € A,
dii(d, ) = dini( i, Quith),

an application of Lemma 4.3 and Schwartz inequality for dj (-, ) gives

DT Qua(Pud — M)} j2.00; < C(Z Ahi(PrA = A, PrA — A) + ha) (4.41)
] i=1

=1
To bound the first term on the left, we replace in (4.25)-(4.27) A by PyA — A, and
take v = uj(PpA — A), V = i (PpA — A), and w = p; (P — A) to obtain
(IX’ﬁZ('Ph/\ - )\), ﬁ;;('Ph/\ - ’\))T.ﬂi = —<7Dh/\ - /\, u;;('Ph/\ - /\) . I/)r,
S NPuA = Mo llui (PrA = Mlor,
< CllMlarh®[[ui (Pad = Mlo.a,h ™2, (4.42)
using (3.26) and Lemma 3.4 for the last inequality. With ¥ = u}(P,A — A) in (4.25),

we have

lui(PeA = Mt < CllE5(PRA — At

and, since the norms ||-||tm,a;, ||| 7,25 and || |lo,o; are equivalent on V},;, we conclude
from (4.42) that
I83(PiA = Mllo.ai < ClIA a2,

Therefore, with (4.33),
dni(Prd = A, Prd = X) < ClIpll3/p0,4°,

implying, together with (4.41),

n 1/2
(Z 1Z2% Qu:(Pu) — /\h)llf/z,an.-) < Ch32.
i=1
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Now, with (H2) we have
”I’Ph/\ —_ ’\h”|l/2,l‘ S 0123/2, (4.43)
and, with (3.26),
I”/\ - ’\h”|1/2,F S Cha/z. (444)

Next, we derive an estimate on u — u,. In the following we use the 2D finite
difference notation from Section 2.3.2. We start with the following auxiliary result.

Lemma 44 If p € COQ)NCD), u € (CHQ)NWEe(R))"

N H(div;2),and K € (Cl(Qk) N W2’°°(Qk))d)<d, then there exist U € V,,
Uc Vi, P € Wy, and A* € A, such that, for 1 < k < n,

~

(U7V)TMka = (P V- V)Qk - <’\*’V ’ V)Fk
- (gD,V * U)o\l VeV (445)
(U, ¥)rme, = (KU, ¥)rg,, VE Vi, (4.46)

and there exists a constant C, independent of h, but dependent on the

solution, and K as indicated, such that, for all 7, j on a subdomain §,

|Pyj — pis| < OR?, (4.47)
U172 = Wagal + 108 00j2 = @l < O, (4.48)
Ui1/2 = Wngasl + Uigpje = wigagl < O, (4.49)
1A = Alllyy2r, < CR2, (4.50)

where 7 = 2 for all points not on ' U 89, and # = 1 otherwise, » = 2 for
points strictly in the interior of £ that lie on an edge or face e such that
enNoQ, =0, and » = 1 otherwise.

Proof On asubdomain Q, we apply a construction due to Weiser and Wheeler (see
[74], Lemma 4.1 and appendix) to (i, p), that gives a P satisfying (4.47), and a U,
satisfying (4.45) and (4.48) with # = 2 strictly in the interior and # = 1 on 90 N 9N.
Note that the constants in this construction depend on the Lipschitz constant of 9%p
on §. Let

A" = PyA on Iy,
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therefore, with (3.26), (4.50) holds. For any point (2t1/2,¥;) on the left edge of Iy,

(4.45) gives
/20 = T » (el //\ :+1.:>

where e is the element edge with a center (2;41/2,y;), and by Taylor theorem,

o 2
Uir1/2, = FH(’\HI/%J' - Pi+1,j) + O(h)-

Then, with (4.47),
~ 2
Uﬁl-l/zj - '”f+1/2,j A |e|/ A) + O(h) = O(h),

where the last equality follows from the approximation properties of P,. Treating
similarly the rest of 'y, we conclude that (4.48) holds on Iy with 7 = 1.
The proof of (4.49) is analogous to the argument (2.68)-(2.72) from Lemma 2.3.

(
Since U, 0€); is a set of dimension d — 1, the following corollary holds.

Corollary 4.1 For the functions in Lemma 4.4, there exists a constant

C, independent of £, such that
10 — Gllem + U — uflrm < CRY/2

Subtracting (4.21)-(4.24) from (4.46), (4.45), (4.11), and (4.12), respectively, we ob-

tain the error equations

(U — up, ¥) e = (K(0 = @), V)10, V€ Vi, (4.51)
(U = Gip, V)M = (P — pn, V- V), — (A" = A, vy, v eV, (4.52)
(V . (Hu - uh),w)g, = 0, w e I’Vh',‘, (4.53)
Z((u - uh) ) Va,u)l‘.' =0, ne Ay, (4'54)

Il
-

With v =Ilu —u,, w = P — pp, and g = A* — A, we obtain

n

(ﬂ - ﬁh,Hll - uh)TM = Z((u - Hu) ) A" — /\h>F.'

1=

—

< Z Z [[(u — ) - V”—1/2.T”’\* - /\h||1/2,7-
Hi=1 G7J'i1

[1
[

< OO+ 1IN = Mllla) < CH, (1
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using the triangle inequality, (4.44), and (4.50) for the last inequality. Now, with

v =U -1, in (4.51),
(K(0 =), U = @ip)r = (U — i1y, U = Hu)py + O(R3).
An application of Schwarz inequality gives
|0 - tixllm < C(J|U = Mu||ry + h%?) < CH?,
using Corollary 4.1 and the bound [37]
lu — Mu|ltm < CH? (4.56)
for the last inequality. Taking ¥ = U — u,, in (4.51) implies
U = unllem < CJ| T — dinflrm < CHY/2.

An application of Corollary 4.1 now gives the following bound on the velocity error.

lu = usllrm + ||@ = Gxllrm < CH3/2, (4.57)

To bound V- (u — u,), we observe that (4.53) implies V - (ITu — u,) = 0; therefore,
with (3.29),

IV (u=wllog; = IV (u~Tu)llo,e; < CIIV - ulls0.h. (4.58)

We next use a duality argument to derive a superconvergence bound for p — p,.
From (4.21)-(4.24) and (4.9)-(4.12) we get the error equations

(u—uy, V)g, = (K(Q —0,), V)g, — Erm(uy, Vg,

+ Er(Kiy, V)e;, VEVh, (4.59)

(=10 V)e, =@~V V)a, = (A= A, v ),
— Erm(tin, v)g;, vE Vi, (4.60)
(V . (u - uh),w)g,. =0, w e I/Vh,,', (4.61)
Z((u —uy) v, =0, B E Ay, (4.62)

—

where
EQ(q,V)Q,« = (q’v)ﬂi - (an)Q.n,-, Q =TMor T.
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Let ¢ solve

V. KVp=p-—p, in §, (4.63)
=0 on 0f. (4.64)
With (HO) we have
> lplla, < Cllp = il (4.65)
Take v = —IIKV in (4.60) aln—d get
lls
=— Z (it — @i, IK Ve — K'Vip), + (K (i — iin), Vip — TV)g,

i=1

HE (@ = ), TV)g, + (A = M, TIK Vo - )r,) + Ema(iin, ILK Vi), (4.66)
and, using (4.59), (4.61), and (4.62), the third term on the right is

— 2(K(E = ), IVg)q,

i=1

z ((u =, TV — Vo), + (u — uy, Vep)g,)
E’T (up, IV) + Ex (K, IV e)
== (( —u, [IVp — VSO)Q.' - (V-(u- u),p — P)a

i=1

+((u = wn) - vy = Pupon;) — Erm(us, IVe) + Br(Kiiy, IV ),
The fourth term on the right in (4.66) is

n

Z()\ - /\h, H[\"VQO . l/)[".

i=1

= Zj:(gh t(/\ /\h) [(V(p . V)F.'
= :Z(Qh 1(/\ /\h) ()\ - /\h), I(Vsp ' V)l‘;
<C Y Y (1QniA = M) = (A= M)l-1/ar

1<igj<n reﬂf’"’

H12us (= ) = (A= Mllcajzr) 3 Ielae,

i=1

< ChYlIA = Mllljar D llellz, (4.67)
i=1




using (3.30) for the last inequality.
Therefore, using (3.28), (3.27), and (3.26),

”ﬁ - Ph”(z)
n
< O{Jld - diullo + lu = urllo + NV - (0 — up) o,
=1

n n
+ 30w = wa) - vllosjzon; + 1A = Malllyjzr} 3 lellzoih
i=1 i=1

+| B (0, T Vep)| + | Brw(wi, TV)| + | Br(K 1, TIV)|.  (4.68)

The quadrature error terms are bounded as in the proof of Lemma 2.6 (2.87)-(2.88):
| Brw (8, TTK V)| < C{Jln — Miilloq + Y I1llne £} Y llellza b
i=1 i=1
| Brw(un, 11V)| < C{flun — Tuflog + 3 [ullse; b} 3 Ielle; b
i=1 i=1

| Ex (K, IVe)| < C{|l — Miifloq + 3 lllue i} 3 llellza b,
i=1 =1

with constants depending on 3%, || K|2,c0,0:-
From (4.68), then,

15 = pull3
< C{Jld = dillo + [lu — wpllo + |fix — iflo + [Jus — ITullo

+ Z [V« (0 —up)lloq; + D [[(u —up) - vl|—1/2,00;

i=1 i=1

HIIA = Mlllyyzr + b} 3 llpllag; b (4.69)
i=1

The first four terms on the right are bounded in (4.57) and (4.56); the fifth term is
bounded in (4.58)

For the sixth term, using the Normal trace theorem, we have
(u —ur) - v|l-1/200; < Cllu~ up|lg(aive:):-
With (4.44), (4.65), and the above bounds, (4.69) gives
15 = pullo < Ch2. (4.70)

With (4.44), (4.57), (4.58), and (4.70), we have shown the following theorem.
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Theorem 4.1 For the cell-centered finite difference approximation of
the expanded mixed method on non-matching grids (4.21)-(4.24), if (HO);
(H2) hold, and if p € C*(L)NC°N), u € (C‘(Q;)ﬂwz'“({li»

N H(div;2), and K € (CI(Q;)DW""":’(Q;))dXd, then there exists a con-
stant C, independent of A but dependent on the solution and K as indi-

cated , such that

llu— uslltm + |8 — Gaflem < CH¥?, (4.71)
IV - (u—us)llo < Ch, (4.72)
lp~pullm < CR?, (4.73)
1A = Malll1jer < CH32. (4.74)

4.3 Numerical experiments

The parallel simulator ParFlowl, developed originally as a rectangular code, was
modified to handle logically rectangular grids. A preprocessor was added to modify
the coeflicients of the problem as described in Section 2.2, and a postprocessor was
added to transform the reference solution (py, Gy, 5\h) to the solution (pp,us,As) on
the physical domain.

Our first example exhibits the theoretical convergence rates. We solve a problem

with a known analytic solution and mapping

ay for e £1/2,
p(z,y) = .
ey + (v —1/2)(y +1/2) forz > 1/2,

(? ;) for < 1/2,

K(z,y) = Lo
( ) forx > 1/2,
01

=Fy . l=!. .. ...1]
(3) =7 (5) = (oo

The computational domain is the unit square. The boundary conditions are Dirichlet
on the left edge and Neumann on the rest of the boundary. The domain is divided
into two sub-domains with an interface along the = 1/2 line. The non-matching
grids are initially 4 x 8 on the left and 4 x 11 on the right. Continuous mortars on

=
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a grid of 7 elements with 8 degrees of freedom or discontinuous mortars on a grid of

3 elements with 6 degrees of freedom are introduced on the interface. Convergence

rates for the test case are given in Table 4.1. As in the example from Section 2.4, we

observe slight degradation from the theoretical convergence rates due to approximate

computation of the derivatives of the map and the cell centers of the true cells. The

relative importance of this approximation becomes negligible for fine enough grids

and the theoretical rates are reached asymptotically.

Continuous mortars

Discontinuous mortars

1/h | llp=pullm | lu—usllm | A= Aullm | llp = pallm | lu = usllm [ 1A = Mullm
8 5.97E-3 3.62E-2 7.80E-3 5.97E-3 3.62E-2 7.78E-3
16 2.07E-3 1.58E-2 2.29E-3 2.07E-3 1.58E-2 2.28E-3
32 6.11E-4 5.50E-3 6.08E-4 6.11E-4 5.51E-3 6.09E-4
64 1.65E-5 1.86E-3 1.55E-4 1.65E-5 1.87E-3 1.56E-4
128 4.26E-5 6.34E-4 3.91E-5 4.26 -5 6.39E-4 3.93E-5
levels 15 | O™ | OGI™) | OGI™) | O™ | OGI™y | OG™)
levels 4-5 | O(R'®) | OR') | O(h'®) | OKr) | O(h¥5) | O(h1)

Table 4.1 Discrete norm errors and convergence rates for
the example with a known analytic solution.

slafofefaf

sbadsle]s

LLUL
A4

o] of of of o
«

T
u]‘-
jnutrcrrruon)

[
{
\

Figure 4.1 Computed pressure (shade) and velocity
field (arrows) for the more practical example.
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Our second example shows a more practical application. We model flow through
a three dimensional aquifer with a vertical fault cutting the domain near its middle.
A vertical cross-section, perpendicular to the fault, of the computed pressure and
velocity field is shown in Fig. 4.1. The injection well on the left and the production
well on the right penetrate through half the aquifer depth; no flow is specified on
the boundary and gravity is neglected. The aquifer is divided into four sub-domains.
The fault coincide with two sub-domain boundaries, and the grid is refined around

the wells for a better approximation of the velocities.
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Chapter 5

Mixed finite element methods for multiphase flow

In this chapter we discuss mixed finite element discretizations of the coupled system
of two-phase flow equations. The original system is reduced to a pressure equation
of elliptic type and a saturation of degenerate parabolic type. The mixed methods
developed in the previous chapters are then directly applied to the pressure equation.
For the saturation equation, following [10], we employ the Kirchoff transformation to

handle the degenerate diffusion.

5.1 Fractional flow formulation

We consider two phase immiscible flow in an irregular, heterogeneous reservoir Q. It

is modeled by the system of conservation equations [12, 24]

—a%+v-piu;=q,- in  x (O,T], (5.1)
_ _/c,-(s,-)[\"

{ =

(Vpi — pigV D) in Q x (0,77, (5.2)

i

i = w (wetting), n (non-wetting), coupled with

(&

Swt+sp=1, (

.3)
Pc(Sw) = Pn — Puw, ( A

)

[ 4

where s; is the phase saturation, p; is the phase density, ¢ is the porosity, ¢; is the
source term, u; is the Darcy velocity, p; is the phase pressure, K is the absolute
permeability tensor, k;(s;) is the phase relative permeability, u; is the phase viscosity,
g is the gravitational constant, and D is the depth. For simplicity we assume that no
flow boundary conditions are imposed, although more general boundary conditions
can also be treated. Initial wetting phase saturation sp(z) is specified on Q.

We start by reformulating the problem in a fractional flow form (pressure and

saturation equation). Later we show that the proposed numerical scheme is equivalent
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to direct discretization of the conservation equations. Let
Ai=—, i=w,n,
Mi

denote the phase mobilities, and let
A= /\w + /\n

be the total mobility. Let
u=uy+u,
be the total velocity. For simplicity of the presentation, assume incompressible flow

and medium (constant p; and ¢), and neglect gravity effects. Multiplying (5.1) by
1/p; and adding them together, we get

V. u=q, (5.5)

where ¢ = qu/pw + @n/pn. Let s = sy, and define the global pressure [24] to be

p=pu+ /OPC(S) (%) (p21(0)) d.

Thus
u=-AVp. (5.6)
Equation (5.5) is referred to as the pressure equation. Since A > 0 and K is a
symmetric positive definite tensor, this is an elliptic equation. For compressible flow
the pressure equation is parabolic.
To derive the saturation equation, we first observe that

/\—wu-—u _ 2ok
= u, 3

A

Substituting this expression into the water conservation equation (5.1), we get the

KVp(s).

saturation equation
0 . ~
%—f + V- (B(s)u + a(8)KVpe(s)) = Gus (5.7)

where B(s) = A/, a(s) = ApAn/A, and §u = qu/pw. Note that p.(s) is a strictly
monotone decreasing function. We can write the last term on the left in (5.7) as

9. Vs = —o(s)KVs.

a(s)K 55 VS =
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Therefore (5.7) is an advection-diffusion equation. The diffusion term vanishes at
s = 0,1 - the minimum and maximum values of the saturation. This is due to the
behavior of the relative permeability and the capillary pressure functions (see [13]).

This double degeneracy is the main source of difficulties in the numerical approx-
imation. The solutions of degenerate parabolic equations have very low regularity. It
has been shown that (see [65, 46, 54, 3, 2, 4]

s € L®(0, T; Li()), (5.8)
s, € L0, T; H-1()). (5.9)

The solutions can have compact support, thus behaving very differently form the so-
lutions to non-degenerate parabolic problems. Many authors introduce a regularized
problem and then approximate it [69, 50, 63, 45, 44]. The numerical error is then a
sum of the discretization error for the regularized problem and the difference between
the solutions to the regularized and the original problems.

Another difficulty in the analysis comes from the treatment of the degenerate
diffusion term. Because of the degeneracy, certain error terms cannot be directly
bounded. A common technique is to handle the degeneracy analytically via the
Kirchoff transformation [69, 45, 44, 10]. Let

D(s) = [ (¢)d.
Then
VD(s) = o(s)Vs,

and (5.7) becomes

%% +V. (,B(s)u - I\"VD(S)) = Gy (5.10)

5.2 The expanded mixed method for multiphase flow

In the following we omit the porosity ¢, assuming that a linear change of variables
s' = ¢s has been made. To obtain the expanded mixed variational formulation of

(5.1)~(5.7) we introduce the variables

i =—Vp, (5.11)
% =—VD(s), (5.12)
= B(s)u+ Kep (5.13)
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Because of (5.9), s; is not in L?(Q) for a given ¢, thus we integrate (5.7) in time to

obtain the equivalent equation
t t
3+V-/1/)(lr=/(}wd7'+so. (5.14)
0 0

Let

V ={ve H(div;Q):v-v=0o0n 0}
We now have, for every time ¢ € [0, T}, the variational form for u(-,#) € V, ii(,,t) €
(L*(2))¢, and p(-,t) € L*(Q) as

(u,¥) = (\(s)K i, V), v e (LA(Q))Y, (5.15)
(4,v)—(p,V-v) =0, vVEV, (5.16)
(V- u,w) = (¢(s),w), w € L*(Q), (5.17)

and the variational form for 9(-,t) € V, 9(-, 1) € (L*())¢, and s(-,t) € L2(Q) as
(%, %) = (B(s)u, ¥) + (K¢, ¥), v e (LA(Q))%(5.18)
(%,v) = (D(s),V-v) =0, vev, (5.19)

(s,w) ( / Y dr, ) = (/Ot Guw(s) dr, w) + (so0, w), w e LANQ). (5.20)

Let V), x Wi, C 'V x L*(Q) be any mixed finite element spaces on a partition 7y, of
Q, and let V, be a finite element subspace of (L%())? such that V, C V.. We then
have the following semidiscrete expanded mixed finite element approximation to the
system (5.15)~(5.20). For each ¢ € [0, T, let (wp(+,t), An(+, 1), pu(-, 1)) € Vi x V}, x W),
be the approximation of (u(-,¢),@(,t),p(+,t)) such that

(un, ¥) = (A(sp) K1y, ), VeV, (5.21)
(ﬁh,V) - (ph, V. V) = (, v € Vy, (5.22)
(V- up,w) = (q(sh),w), w e W, (5.23)

(W(,1),%(-,1), s(-,t)) such that

(¢Iu ) ﬂ(sh)uh, ) (I\I;bha ) \76{,]1, (524)
(%1, v) = (D(s4),V - v) = 0, v € Vy, (5.25)

and  (Yu(-1), 1/;( t),sn(-y2)) € Vi x V), x W, be the approximation of
) 8(+
(

(sh,w) + / Py dT, w) = (/ Gw(sp) dr, ) + (so,n, W), w € Wy, (5.26)




where sq,, is an approximation of sq.
N
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We next consider a backward Euler time discretization. Let {¢,}Y_, be a monotone
partition of [0,T] with o = 0 and ¢y =T, let At™ = ¢, — 1,1, and let f* = f(1,).
In the fully discrete mixed method we seek, for any 0 < n < N, (u}, G7,p}) €

V; x \7;, x W), such that

(u}, %) = (Ms})Kap, v), v eVy,
(ag,v) = (pp,V-v) =0, v €V,
(V : u;:aw) = (q(s;:)aw)’ w e Wha

and (¢, 7, s7) € Vi, x Vi, x W), such that

(Y7, ¥) = (B(s})u}, ¥) + (K4}, ¥), VeV,
(p,v) — (D(s}),V - v) = 0, vV E V),

(52 w) + (v - Zwimf‘,w)
Jj=1

= (Z(iw(s‘;;)Atj,'w) + (SO,Iuw), w € Wy,
J=1

Equation (5.32) can be rewritten in the usual backward Euler form

n_ on—l
(Sh A;’t—,w) + (V- 9p,w) = (Gu(sh), w), w € Wy,

(Sg’w) = (So,h,'w), w € W,

Remark 5.1 The choice of fully implicit time discretization is motivated
from the fact that all explicit or semi-implicit schemes suffer from severe
stability limitations when advection processes are dominating.

Remark 5.2 Equation (5.33) is a locally mass conservative approxima-
tion of the wetting phase conservation equation (note that by construction
¥ = uy). Subtracting (5.33) from (5.29) we get

n __ on-—-1
_ (sh 3] ’w) + (V- (0} = $7),w) = (Ga(s}),w), w € Wi, (5.35)

which is an element by element approximation to the non-wetting phase

conservation equation, so the scheme conserves the mass of both phases

(5.27)
(5.28)
(5.29)

(5.30)
(5.31)

(5.32)

(5.33)

(5.34)
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locally. Therefo-re the mixed method for the pressure-saturation formu-
lation preserves the conservation properties of the cell-centered finite dif-
ference scheme applied directly to the phase conservation equations, a
method commonly used by the petroleum engineers [66, 12].

In the case of RTy mixed spaces, the use of quadrature rules for approximating
the vector inner products in (5.27)-(5.32) (see Section 2.2, (2.21)-(2.22)) allows the
vector unknowns to be trivially eliminated, if V), = V. Thus, a coupled cell-centered
finite difference system for the pressure and the saturation is obtained. The stencil
for the pressure or the saturation is 5 points for d = 2 and 7 points for d = 3 if K is
a diagonal tensor, 9 points for d = 3 and 19 points for d = 3 if K is a full tensor.

5.2.1 Extensions to general geometry domains, discontinuous coefficients,

and non-matching grids

An advantage of the pressure-saturation formulation is that the methods discussed in
the previous chapters can be applied to handle irregularly shaped domains, discon-
tinuous coeflicients, and non-matching grids. For the case of general geometry, we
only need to modify definitions (5.11)-(5.13) by

i=-M"1Vp, (5.36)
h=—M"'VD(s), (5.37)
P = B(s)u+ KM, (5.38)

where M is defined in (2.16). Now, the procedure from Section 2.2 can be applied to
give cell-centered finite differences for p and s on logically rectangular grids.

If the permeability tensor is discontinuous, or the domain has a multiblock struc-
ture with non-smooth grids across the interfaces, the macro-hybrid form of the ex-
panded mixed method has to be used. It introduces Lagrange multipliers for p and
s along the discontinuities. If the grids match, we may use the usual normal trace
of the vector space. If the grids do not match, a higher order mortar finite element
space, as described in Chapter 3 and Chapter 4, must be used on the interface.

The expanded mixed method for the pressure equation has been analyzed in the
previous chapters. In the next section we concentrate on the saturation equation.




75

5.3 A mixed method for the saturation equation on non-

matching grids

Let 2 be a union of n non-overlapping subdomain blocks €;, 1 < ¢ < n. The

saturation s(z,t) satisfies

5tV (B(s)u ~ KVD(s)) = Gu(s) in  x (0,7, (5.39)
(B(s)u— KVD(s)) - v =0 on 99 x [0, T, (5.40)
s(z,0) = so(a) on . . (5.41)

We need several assumptions on the coefficients of the above equation. Recall that

D(s) = [; 0(¢) d¢, and assume that

Bils|™, 0<s<a,
o(s) 2§ B, ) < s < ag, (5.42)
Bs|l — s|*2, a; <s<1,

where 3;, 1 <¢ <3, are positive constants, and o; and v;, 1 = 1,2, satisfy
0<a;<1/2<ay<l, O0<y; <2

Note that (5.42) controls the rate of degeneracy of the diffusion. It is based on the
physical behavior of the relative permeabilities and the capillary pressure (see, e.g.,
[13, 55]). We also have that there exists a positive constant C such that

|D(s1) — D(s2)||2 < C(D(s1) = D(s2),81 — s3), for s1,s2 € L*(Q). (5.43)
A sufficient condition for (5.43) is

0< aa—f(rc,t;s) <C for (2,t) e 2 x[0,T],0<s<1,

which again follows from the behavior of the relative permeabilities and the capillary

pressure (see also [10]). Finally, we assume that, for 0 < s;,s, < 1,

18(s1) — B(s2)[> < C(D(s1) — D(s2))(s1 — s2), (5.44)
|Guw(s1) — Gu(s2)|* < C(D(s1) — D(s2))(s1 — s2). (5.45)

Bounds (5.44) and (5.45) are justified by the following lemma, proven in [45].
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Lemma 5.1 Suppose ¢ satisfies (5.42). If f € C'[0,1] and f'(0) =
F'(1) = 0 with f’ Lipschitz at 0 and 1, then there exists a positive constant
C such that

|f(a) = f(b)|*> < C(D(a) — D(b))(a—=10), for0<ab<]l.

Note the fractional flow function 3(s) satisfies the conditions of Lemma 5.1. The
well term §,(s) satisfies the conditions of Lemma 5.1 at the injection wells. At the
production wells, G, (s) ~ ky(s), so ¢,(0) = 0. Therefore (5.45) holds, if s < s* < 1

at the production well, which covers all cases of physical interest.

Remark 5.3 The fractional flow function 3(s) and the integrated dif-
fusion function D(s) are both S-shaped with zero derivatives at the end
points. Bound (5.44) relates the rates of degeneracy of the derivatives of
the two functions and indicates, in a sense, that the diffusion dominates

the advection.

Let [';; = NN an, I'= U?,j=1Fi'j, and I'; = 9Q; N T. Let

Vi={ve H(div;%):v-v e L*) and v-v =0 on 09}, V=PV,
i=1

Wi=IA), W=@W=ILQ), A=ILXD).
i=1

With @ = K1, ¢ = f(s)u — KV D(s), and v = the trace of D(s) on I, we have the
following variational formulation. For every time ¢ € [0,T], (-,t) € V, s(-,t) € W,
and y(-,t) € A satisfy, for 1 <7 < n,

(e, v)a, = (D(s), V- V)a; — (7, v - v)r; + (af(s)u, v)q,, v €V, (5.46)

(s, w)g, + (v [ wn, w) - ( [ ) ) § (sorw)ay, W € Wi(547)
0 Q; 0 Q;

;(/0 P VdT,u>n =0, 1 e A (548)

Let 73, be a finite element partition of ; with maximal element diameter h. We
allow for the possibility that 74,; and 75 ; need not match on I'; ;. Let Vj; x W), ; be
the RTq spaces on 7. Let 773‘ “I be a finite element partition of I'; ; with maximal

element diameter h. Let A;; C A;; be the space of continuous or discontinuous
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piece-wise multi-linears on ,F"’. An additional assumption on Aj;; and hence on
T, will be made later.

In the continuous time mixed finite element method for approximating (5.46)-
(5.48) we seek, for each t € [0,T], ¥Yn(:1t) € Vi, su(+yt) € Wy, and (-, 1) € Ay such

that, for 1 <1 < n,
(ad)hav)ﬂg = (D(Sh)av : V)Q.' - (')'hav * V)F.' + (aﬁ(Sh)u,V)Q“ vV E Vh,i)(5-49)

t
(Sh,'{U)m + (V / 'l/)h dT, w)
° Q

!

= (/0 Gw(sn) dr, w) + (so,ny W)a;, w € Wy i(5.50)
Q;

n ¢

</0 d)h : VdT1H>P‘ = 0) JTS Ah, (5.51)

=1

where so,, € W), is an approximation of so.

5.3.1 Error analysis of the semidiscrete scheme

We combine ideas from [10], where the mixed method for the saturation equation on
a single block is analyzed, with techniques from the previous chapters, to analyze the
mixed method for the saturation equation on a multiblock domain with non-matching
grids.

We need the following projections onto the finite element spaces. The standard
mixed projection operator II : (H!(€;))? — V,,; satisfies, for q € (H'(%))¢,

(V:(q-1q),w)e, =0, w € Wi, (5.52)
((@—=Tq) - v, v v)sq, =0, v E Vi (5.53)

In the analysis we apply II to f{ ¥, which is justified, since ff v € (H'(Q: x (0, T])),
as shown in [10].
Let, for any ¢ € W, @ € W), be its L2-projection, satislying

(p—@,w)=0, weW,.

In a similar way we define the L2-projections P, : A = Ay, and Qp; : A = Vi -
v. Tor smooth enough functions, these operators have optimal order approximation
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la - Iqlle; < Cllalls,aib, (5.54)
le — @l < Cllelin!, 0<i<1, (5.55)
¥ — Puibllor < Cllllirk!, 0<1<2, (5.56)
”1/) - Qh,i‘/’”o.n S C”"/)”I,F.'hla 0 S l S L. (557)

We make explicit the following assumption on the mortar space Ay,
(H3) ”/‘”0'[‘.',,' < C(”Qh,iﬂllo.r‘i,j + ”Qh,jullo.l"i.j)a Vi € Ay,

which is a weaker version of hypothesis (H2) from Section 3.2 and is justified by
Lemma 3.3.

We now proceed with the error analysis. Subtracting (5.49)~(5.51) from (5.46)-
(5.48), we obtain the error equations

(a(¥ = ¥n), V)a, = (D(s) = D(s1),V - V)q,
= v 2, + (@ Bls) ~ Blsn))ur Ve VeV, (559)
(S - Slnw)ﬂi + (V : /:(¢ - ¢h) dTa w)

Q;

t
= (/O (Guw(s) — Gu(sn)) dr, w) + (so — sops W)y  w € Wiy, (5.59)
Qi

n

Z </:("p - '/"h) ' VdT7 /'l‘>r'_ = Oa n e Ah, (5.60)

i=1
To simplify notations, let ®(¢) = Hfot(“l/) — ¢p)dr. We choose sp;, = §p and take
v=20, w=D(s) — D(sp), and g = Py — vy, in (5.58)—(5.60). We then have

(s = s, D(5) = Ds1)) + (alsp ~ ), )
= ( [ (@uts) = duon)) r, D) - D(?h))

Ha(B(s) = B(s1))u, B) — iw Py B i,
+i:<(/0'¢dr—n/0‘¢dr) -U,Ph’)’—’)’h>n (5.61)

We integrate (5.61) in time form 0 to ¢. The first term on the left becomes

/0 (5 = s, D(3) — D(sn)) dr = /0 (s = 1, D(s) = D(su)) dr + T, (5.62)
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where t
Ty = /0 (8§ — 8, D(s) — D(sp))dr.

The second term on the left-hand side of (5.61) becomes

[t~ ), ®ydr = g [~ i) ar|} + 12, (5.63)

where . . .
T2=/0 (a(zb—zph),H/O «pdg—/o ¥ dé) dr.
Combining (5.61)-(5.63), we obtain

/Ot(s — s, D(s) = D(sp)) dr + —“a‘/?/ b= = ZTL, (5.64)
where
Ty = fo ’ ( /0 "(Gu(s) = Gw(sn)) €, D(3) — D@)) dr,
= [ (a(B(s) — B(s1))u, B) dr,
_g}/;(y — Puy, B - V), dr,

We now bound each Ty, & =1,...,6. For any ¢ > 0, we have
il < C [ 116 = slizdr +< [ ID(s) ~ Dlsu)ll3dr
- Jo 0 0 0T
Tl <C [ [(s=sn Dls) = Disa)) de dr +¢ [ |[D(s) = Disi)|3d
|T5| < A shy D(s Sh T+e | I1D(s sn)llo dr,
t t
ul < _— — D(s, 2
|Ty] < 6’/0 (s — sn, D(s) D(s;))d'r-i-C./(; |®]|5 dT,
t t
i < o{at [ =Paliar+ [ 1BlRer ),

using (5.45) for the bound of T3, (5.44) for the bound of T, and Lemma 3.4 for the
bound of Ts. To estimate 75 we integrate by parts in time:

=—f(/ (6 ) d, (11 [~ /wf)dr
+(/0 a('z/)—-d:h)dr,H/O zpd'r—/o z/ulr);
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therefore,
< c{ [ [[w-wddyar+ [ 701 [ vie- [ wae)sen

i [ par - /thpdrl’;} ve| [ -]

Integration by parts in time for Ty gives
t, 0 T T T
To= =3 [(g;( [ vae =11 [ wae) v, [ (Piy—m)de), ar

+ <(J/Ot1/)dT—H/0tzde) -l/dT,/Ot('P;{y—'yh)d7‘>n.

n

n
i=1

Therefore,

1Ts| < C{ _/Oi ”%(/sz/)df - H/0T¢d£) 'V”z,r dr
+“ (/Otz,bd'r - H/Otzl)dT) . 1/”;[‘ dT} + (-:/ot ” /OT('P;;)' - ) dﬁ“:r dr

vl [Py =) .

To bound the last two terms, we consider, for 1 < ¢ < n and any fixed ¢ € (0,7, the

auxiliary problem
p—Ap =0, in Q;, (5.65)
Vov= [ "19% Q) (Pay = ) dr, on A%, (5.66)
where Z9% is the interpolation operator, defined in Section 3.2. By elliptic regularity,

, m=1,2 (5.67)

lellm,a < C’" /Ot %% Q4 ((Pry — ) dr

We now integrate in time from 0 to ¢ and take v = IIV¢y in (5.58) to obtain

m-3/2,09Q;

</ot Qni(Pry — ) dr, /Ot 7% Qni(Pwy = ) dT) o0

= ([ v - vura nw)m +( [[00) - DGy iny )

Q;

t t
+(A a(ﬂ(s) - ,8(8],))[1 de HVQO) o + <A Qh,i(fph')' - 7) dTv VSO ) I/>39‘_
=T7+Tg+ Ts + Tho. (5.68)
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It is casy to see, from the definition of Z%%, that

( /0 ‘o wi( Puy — ) dr, /0 7o Oni(Pry = 1) dT>an.~

> C” /Ot Qi (Pry — Y1) dT“z,an.- (5.69)
and
” /OtIaﬂ‘ Qhi(Pry — ) dT“O,BQ.- < C“ /Ot Qni(Pry — 1) dT”O,an;' (5.70)

We bound the terms on the right-hand side of (5.68) as follows. For any & > 0,
< S{| [ wdr =11 [varll, + IBOIBa,} + 5050 - ol + 19lRa)
< c{”/ wdT—H/ par|, . + 1T, } +5”/ QuiPry—m)drl, o,
using (5.54), (5.67), the inverse inequality, and (5.70) for the last bound. Similarly,

t
|Ts| < C/O |D(s) — D(sp)lla e, ‘17'+5”/ i(Pry — 1 dT”oan
1To1 < C /(s = s, D(s) = Do)y dr + 8] [ Qui(Pry = 1) |

[Tyo| < C/ |Pry — ’7”039. (IT+5“/ Qi (Pry — dT”oaQ.

0,09;’

Combining together (5.68), (5.69), the bounds on T7-T)g, and (H3), we obtain

t 2
| [P =wer;.
<o{“/ wdr—H/ pr|; +18(t) ||0+/ 1D(s) = D(si)|)2 dr
+/0 (s — sy, D(s) — D(sy)) dr + h™! /0’ NPuy = 7l (l'r} (5.71)
Combining (5.64), the bounds on Ti-Tg, (5.71), and using (5.43) and Gronwall’s
inequality, we arrive at the following result.

Theorem 5.1 Assume that (5.42)-(5.45) and (H3) hold. For the semi-
discrete mixed finite element approximation (5.49)-(5.51) of problem
(5.39)-(5.41), there exists a positive constant C' such that, for every



t € 0,77,
/0'(3 — s, D(s) = D(sn)) dr + | /Ot(zb ~n)dr
< c{/O’ 18 = s|fZ dr + ”n/o‘z/)dr-/ot«/)drﬂs
b7 [l = Pl + ([ war 11 ['par) o]
1R v [ vl

) T T
[ ([ wde—1 [ pae) -l/nz‘rdT}.

Theorem 5.1 bounds the size of || D(s) — D(sp)||o by (5.43). It also allows us to derive
a bound on ||s — sp||-1.

,r

Theorem 5.2 Assume that (5.42)-(5.45) and (H3) hold. For the semi-
discrete mixed finite element approximation (5.49)-(5.51) of problem

(5.39)-(5.41), there exists a positive constant C such that, for every
t €[0,1,

/0’(3 — 51, D(s) — D(s1)) dr + | /O'(z/) — ) dr’
50{/0‘ 16 = sli3ar + |1t ["par~ ["par|:
+h! fot Iy = Pyl pdr + “(/O'z/)dr - H/Otz/)dr) v
LT [ v

+ [ g ([ s =m [T wa) o o)

Proof Tor any ¢ € H}(f2), we have

2
o,r

(s—smp)=(s—smp—9@)+(s—snY) = (s =380 —¢)+ (s — s1, ).

By (5.59) we have that

n

(s—sn@)==)_ (V' (Hfotwdr_/otd)hdr),@)ﬂ_*_ (/()t((iw(s)—ﬁw(s;,))dr,cﬁ).

1=1
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For the first term on the right we write
n

—g(v'(nfotd"‘“/ot“”‘”)’ ) | Z( (n/otv)dr—/()’zbllfzf),w) .

2":( /‘/’dT—/ ",[’th,V(p) | Z::( wd'r—/dde ‘v, <p>

]

> (n /wdr—/wm,w) ) ~>((u

=1 =1

_Z</ ¢ wh VdT,‘P Py >I"

i=1 '

I

1/)(17'—/1,0(17' 7 go>

using (5.60) for the last equality. Therefore

I(S _SIH‘P)I

SC{ [wdr= [wndrlo |1 [[war~ ["par) o],
+ [ =wyar],+ [ =10 D(Sh»dr}nsolh,

using (5.55) for the first term on the right, Lemma 3.4 and (5.56) for the fourth term,
and (5.43) for the last term. An application of Theorem 5.1 completes the proof. [

We end the section with some remarks on the approximation of the advective
term in the saturation equation. The issues here are time step limitations because of
stability problems and numerical diffusion that smears the sharp fronts. The method
that is commonly used by the petroleum engineers is upstream-weighting [73]. It can
be shown to be unconditionally stable when used in implicit schemes. However, it
introduces an excessive amount of artificial diffusion. Explicit Godunov schemes [14]
have time step stability limitations. The modified method of characteristics-Galerkin
[35, 42, 31] does not conserve mass locally. A characteristics-mixed method for linear
transport problems developed by Arbogast and Wheeler (7] is locally mass conser-
vative and allows larger time steps. The trace-back integrals needed in the method
can be difficult to evaluate. This method, in conjunction with the expanded mixed
method, has been successfully used for advection dominated transport problems [§].

The schemes described earlier in the chapter do not treat the advective term in
any special way. They can be improved by incorporating some of the above mentioned
transport methods to allow for larger time steps without adding too much numerical

diffusion.
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