


ABSTRACT

Location Estimation Through Inexact Machine Learning Approach

by

Juan Jose Gonzalez Espana

Location estimation has become a field of increasing interest in recent years. The

main reason is the multiple applications that can be enabled based on this technology.

Fields such as entertainment, health care, tourism and advertisement are some of

the areas where a plethora of applications can be implemented. In outdoors this

problem is solved, for most of the cases, with Global Navigation Systems (GNSS).

However, in indoors is a current topic of interest that has been addressed from different

perspectives with different technologies. Nonetheless, there is no technology that is as

established as GNSS is for outdoors. One promising approach is Inertial Measurement

Units (IMU) which are low cost and widely accessible in multiple SmartDevices such

SmartPhones, SmartWatches, WristBands, among others. Two of the main difficulties

that hinder the wide adoption of this technology are the error accumulation between

estimations and the scarce availability of the Ground Truth data to train and test

the models. In this work both challenges are addressed by two methods, one which

corrects the error by using the structure of the map where the user is located and

the other method improves the Ground Truth data provided by GNSS measurements.

Energy consumption is reduced by a factor 27x when compared with GPS and the

accuracy of the labels is improved by 26% on average.
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Chapter 1

Introduction

Real Time Locating Systems (RTLSs) and Indoor Positioning Systems (IPSs) is ex-

pected to provide market opportunities on the order of 10 billion yearly in 2024. [1].

Many technologies have been proposed to provide solutions in this field. However,

they are partial because they can be implemented under specific conditions or en-

vironments [2, 3]. For example, Global Navigation Systems (GNSS) are successfully

implemented in outdoors [4]. Nonetheless, in indoors they fail because the GNSS

signal is highly attenuated by the walls of the building [3]. Other approaches require

modifying the environment in order to install enabling technologies, which represents

an additional cost and raises privacy concerns because the user location is constantly

known by a third party [3].

Inertial Measurement Units (IMU) provides a solution which is not intrusive and

not require the installation of additional technologies but suffer from high error be-

cause the cumulative error nature of the models. This is not only a problem of IMU,

other technologies that estimates a variable without compensation from the environ-

ment, tends to accumulate error over time, for example every clock suffers an error

accumulation due to the timing jitter, which requires a correction depending on the

accuracy of the process [5]. Similarly, in position estimation depending on the appli-

cation, the accuracy and the periodicity of the error correction is defined.
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In this master thesis the ideas from Inexactness [6–9], Inertial Measurements

Units and Machine learning are combined to predict the position of the user in a

map. The correction of the error accumulation is based on the constraints defined

by the map which is an option that doesn’t require additional technologies to correct

the error avoiding the reliance in exogenous information which translates in a more

private position estimation [3, 10–12].

Also it’s proposed a method which automate the process of obtaining Ground

Truth data without requiring the user walking/running in predefine maps. In this

way is expected that the data collection will be more accessible to a wider populations

based on the few requirements to collect data: using a Smartphone while the person

is walking/running outdoors.

1.1 Contributions

Location estimation based on Inertial Measurement Units (IMU) suffers from two

main drawbacks: 1. Error accumulation between estimations 2. Reliable and widely

accessible method to obtain Ground Truth data to train and test the model. The first

problem is addressed in this work using map information of the environment where

the user is located. For the second case it’s proposed a method which combines GPS

labels based on the similitude of IMU measurements. To the best of our knowledge

is the first time this kind of algorithm is proposed to train models based on IMU

sensors.
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1.2 Organization

The rest of this thesis is organized as follows. Chapter 2 provides Background which

includes some alternatives to solve the current problem. Then, Chapter 3 describes

the proposed method. Afterward, Chapter 4 presents our results. Chapter 5, illus-

trates some possible applications of the research in this thesis. Finally, Chapter 6

presents the Conclusions.
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Chapter 2

Background

2.1 Position Estimation

2.1.1 Global Navigation Satellite Systems

Human navigation encompass traveling from an origin to a destination through the

use of knowledge of the environment under exploration and the ability of the person

to locate themselves in the environment. This knowledge comes from previous ex-

periences of the person or interaction with other persons [13]. In the cases that the

knowledge is absent or incomplete is necessary to use some tools to find the location

of the person in a map and the correspondent progress from the origin to the goal.

Nowadays, one of the more widely used technologies are based on Global Navigation

Satellite Systems (GNSS). The GNSS, initially considered for military uses and made

public since 1983 [13], requires that the user is in Line of Sight of four different satel-

lites and have a GNSS receiver to obtain the longitude, latitude and altitude of their

current location. Howbeit these values by themselves are not enough for a human-

being to locate themselves, it’s also necessary a map in a proper format to match these

coordinates [13]. With the surge of mobile devices the availability of GNSS receivers

and those maps are not constraints, which has enabled its widely used for different

applications. Global Positioning System (GPS) from USA and GLObal NAvigation

Satellite System (GLONASS) from Rusia, are the most common operational GNSS.

Other GNSS alternatives are the European GALILEO system, the Chinese BeiDou
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system, the Indian Regional Navigational Satellite System and in the future Japanese

Quasi-Zenith Satellite System [14]. As it was mentioned GNSS are widely adopted

for position estimation. Though the performance of GNSS is not always reliable and

depending of static and dynamic conditions it can be affected.

Some of the most common problems in GNSS are multipaths and non-line-of-sight

(NLOS) propagation. This is more common in urban canyons where flat surfaces

reflect the GNSS signal creating multipath delays leading to a distance estimation

longer than the real. If the effects of Multipath are combined with NLOS, the distance

estimation from the GNSS becomes more inaccurate, even above 100m [14]. These

problems are even worst for the GNSS sensors embedded in cellphones which are

usually low-cost and single-frequency [15]. Some techniques are used to identify the

NLOS satellites and do the correspondent corrections but this requires more than

four visible satellites which usually is not the case [16]]. This is the reason why it has

been proposed the combination of different GNSS systems which will lead to more

accurate estimation [13, 17]. However, for the time being most of the smartphones

rely only on one of those Satellite Systems and the errors mentioned here are solved

using the information of other sensors available in the Smart device. For example, for

devices that uses GPS it is called Assisted GPS [18]. In this case the celullar network

(Celltower-RSS) is used to acquire additional information to reduce the error in the

position calculations. On good multi-path conditions the accuracy could increase to

be in the range between 3 and 5m. [16]. Besides the accuracy problems the energy

consumption of GNSS is considerably high, which hampers the implementation of

applications with high dependence on it [19]. Because of the high energy consumption,

some approaches combined GPS with other technologies available in Smartphones
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which could maintain similar accuracy with less frequent use of GPS. [15,20,21]

In general, it can be said that most of the time GPS solves the problem of outdoor

navigation [4, 12]. However, for indoor navigation the GPS signals are tremendously

attenuated and therefore is infeasible to use it for location detection and the associated

navigation [4]. Then, while GPS remains king in outdoors, or GPS combined with

other technologies, in indoors is necessary to find other solutions, which are non

intrusive and accurate enough for the intended application [4].

2.1.2 Triangulation

In a similar line of thought than GNSS, the triangulation systems uses the known

position of at least three points to identify the location of the user. For outdoors this

can be achieved by GNSS, Cell-tower positioning [22], WLANS [23] and for indoors

Radio Frequency Identifier Description (RFID) tags [24], ultrasound [25] and Infrared

(IR) systems [26].As with GNSS, also these technologies suffer from inaccuracies due

to the non-line-of-sight or multipaths.

2.1.3 Encoded Sensing

In this case a device broadcast a specific location and the user with a proper reader

locate themselves on a map. Some examples of this technology are provided below. [2]

• Radio Frequency Identifier Description (RFID) passive or active RFID

are installed on the environment and the location can be obtained using a RFID

reader. The former has a larger range at the expense of requiring maintenance,

as replacement of batteries is required. Other difference between the two tech-

nologies is the information they could store: the active until 128kb and the

passive 128b. [2]
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• Barcodes Similar to the previous case, barcodes are located in fixed locations.

A barcode reader is necessary, which can be found in many smartphone devices.

The main difficulty is that constantly reading the codes reduces the fluency of

navigation in the environment.

• Infrared IR transmitters broadcast their ID which is associated to the location

of their placement. As it is common in IR transmitters their transmission angle

is very narrow which makes difficult to the user to locate them.

• Bluetooth Multiple Bluetooth beacons are used and depending on the user’s

device ability to communicate to the beacons the location can be estimated.

This is different with the triangulation case because the position is not estimated

in a discrete location but in a cell based method. [27]

In the technologies mentioned above the main constraint is that the environment

must be modified in order to locate the user. Even more, in some case the user should

wear special devices or act in specific manner which thwart their wide implementation.

Following are presented some alternative which has taken significant interest in the

research community. [2]

2.1.4 Pattern Recognition

In this case a initial stage of training takes place to identify features on the envi-

ronment that will enable a system to locate the user when they are navigating the

environment. As it can be seen, this technique cannot be used for non-previous seen

environments. Some examples are provided in the next lines.

• Computer Vision A camera or the camera of handheld device is used to

capture images from the location of the user. Then, image matching is done
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between a database and the query image. The metadata of the location of

the database matched image will be use to return the position and orientation

of the user. [2] Usually this approach has a high requirements of storage and

computing time. However, approaches such as [28] reduces the computing time

and storage requirement by a clever use of hashes. Still the fluency of the user’s

navigation is reduced because of the constant need of taking pictures to find

their location.

• Signal Distribution In this case is necessary a mapping of the environment

of interest. In this mapping different signals in specific points are recorded

and a matching is done when the user is navigating this same environment.

Depending on the matching the location is identified. An example is the use of

WLANs access points, where the dependence of signal strength and distance is

foster to identify the position of the user. [2]. Other example is found creating

a electromagnetic map of the environment and use a magnetometer to identify

the position based on a previous mapping. [29]

2.1.5 Dead Reckoning

From an initial position provided by the user or recognized with the support of any of

the previous methods, a sequence of estimations of the position are performed. These

estimations are done based on the measurements from accelerometer, gyroscope or

magnetometer. However, these estimates are not perfectly accurate and the error

tends to accumulate over time because of the recursive approach to estimate distance.

In this case also training is performed but it is mainly dependent on the user and not

the specific environment [2, 3].
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Correction in Dead Reckoning

The nature of Dead Reckoning leads to a cumulative error that increases with time.

Which makes necessary to apply correction if the accuracy of the estimations wants

to be maintained within a specific boundary [30]. Some of the common techniques

for this purpose are presented below:

• Map Matching: in indoors the user movement is constrained by the shape and

size of the building. This assumption has been used to correct the distance and

angle estimation based on the Dead Reckoning. This is done by matching the

prediction with the map of the building and choosing the most probable paths

or adjusting the estimation. [10–12].

• Combination with Other Methods: the methods exposed in Sections 2.1.4, 2.1.3

and 2.1.2 don’t accumulate the error between predictions which makes them

useful to correct the error accumulation in Dead Reckoning. In this case Dead

Reckoning will inherit the difficulties associated with those methods used in the

correction process [2].

In this research Dead Reckoning was addressed and in the following section is de-

scribed in detail the technology that is commonly used to implement it.

2.2 Inertial Measurement Unit

The Inertial Measurement Units (IMUs) has taken relevance in recent years mainly

because of their low cost and availability. This low cost feature is a result of the

improvement of the Micro-Machined Electromechanical Systems (MEMS) [31].This

is also the reason that many of the wearable Smart-Devices has one or multiple

IMUs. As a consequence, many applications have emerged to leverage the use of this
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technology. In particular, location estimation covers many of the current efforts. Two

of their main hurdles are the cumulative error, as is the nature of the Dead Reckoning

approach (See Section 2.1.5), and obtaining reliable Ground Truth labels.

Following is explained each of the most common IMU found on SmartDevices.

2.2.1 Gryroscope

A gyroscope is defined as a device able to measure the angular speed of an object.

There are different types of gyroscope, the main types are mechanical, optical and

MEMS. The last one is the cheapest and smallest among the three and it is the one

commonly used in Smart Devices [31]. The four different sources of error which affects

MEMS gyroscopes are:

• Constant bias: it is the offset of the output from the true value. It’s easily

corrected by taking a long term average on the gyro’s measurements when it’s in

steady state. For correction this value is subtracted from the new measurements.

If this noise is not corrected it’s effect increase linearly over time (ε · t)

• White Noise: corresponds to the thermo-mechanical noise. This noise is

pervasive to all the frequency spectrum and it’s difficult to eliminate it’s effects

completely. It can be represented by a sequence of Random Variables with zero

mean and variance σ2. It’s effect over time is defined by a random variable with

zero mean and variance equal to δt ·nσ2, where δt is the time between successive

samples. Specifications about this noise are provided by the manufacturer.

• Temperature effects: which affects the electronics of the device producing a

variation in the bias.

• Bias stability: as a result of the electronic and other components which are
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subject to random flickering. It has a 1/f power spectral density. It’s a low

frequency phenomenon which may change between different periods of time.

2.2.2 Accelerometer

Some of the most popular types of accelerometer are mechanical, solid state and

MEMS. As in Section 2.2.1, the most widely adopted accelerometer is the MEMS.

Additionally, it’s the one in the devices focus of this research. Its mode of operation

encompass two main approaches: mass displacement and resonance frequency vari-

ation. On the first one, the second law of Newton for constant mass (F = m · a)

is applied to obtain the acceleration of a supported mass. On the second case, the

acceleration produces a change on tension of a beam which produces a change in the

resonance frequency of the beam. This swift in frequency is measure to obtain the

acceleration [31].

Many of the noises that affect gyroscopes, mentioned in Section 2.2.1, are similar to

the ones which affect the MEMS acceloremeter. They are explained below:

• Constant Bias: in this case the no correction of this effect produces an error

which increases quadratically with time. The main difficulty for its correction

is the need of a system without acceleration of any kind which is not possible

because of the gravity. One alternative is knowing the exact orientation of the

device to make the correspondent corrections due to gravity.

• White Noise: as mentioned for the case of the gyro this noise is thermo-

mechanical noise. The characteristics are very similar except for the variance

of its random variable which now is 1
3
· δt · t3 · σ2

• Temperature effects: again for this case the effect of temperature in the
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electronics affects the noise associated with the bias.

• Bias stability: the uncertainty in distance in this case is proportionally to

t5/2.

These errors become significant with time for the methods based on the double inte-

gration to obtain displacement [31].

2.2.3 Magnetometer

The magnetometer is a electronic compass where the earth’s magnetic field is mea-

sured in micro Teslas µT . The main drawback of this technology is that is affected

by the ferrous and magnetized materials of the environment of implementation which

are called as the Soft Iron and Hard Iron effects. Additionally, their performance

depends on the actual latitude and longitude where the measurements are taken. On

SmartPhones are available in three orthogonal axes which are used to estimate the

Magnetic North. [32] While they are more inaccurate for angle estimation than the

gyroscopes, their energy consumption is lower [33] which make them an attractive

option to give a coarse estimation of the angle. Also they can be combined with

other sensors to obtain a better estimation. [34]

2.3 Machine Learning

Machine Learning or Statistical Learning considers a machine which learns the under-

lying model of a phenomenon by the viewing of examples or training data. When the

machine receives feedback about how close is to the model, we talked about Super-

vised Learning. If the machine doesn’t receive feedback we talked about Unsupervised

Learning [35]. This work is mainly focused with Supervised Learning and below are
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explained some methods.

2.3.1 Regression

Consider the data pairs of the form xi, yi which are points in a (p + 1)-dimensional

space and they are related through the model:

yi = f(xi) + ε (2.1)

where usually xi belongs to a p-dimensional space and ε is noise. [35] The process to

find the function f is described as Function Approximation or Regression. In next

lines some methods to achieve this goal are presented.

Nearest Neighbor Regression

If there is little knowledge about the shape of the function in 2.1 Nearest Neighbor

Regression can be used. [36] This method relies on the assumption that points which

are close should have a similar mean value if the mean function is smooth. Based on

this the query data can be approximated by the label of it’s nearest neighbor in a

historical dataset.

This dataset is commonly referred as the training dataset, which is described as

(x1, y1), ..., (xi, yi)...(xN , yN)

where (xi, yi) is a sample, xi is the feature vector i, yi is the label correspondent to

that feature vector and N is the number of samples. Then, the query feature vector

xq is predicted to have the label of the nearest neighbor from the training dataset,

which can be written as:

ŷ = argyiminD(xi, xq)

Where D is a similarity function. This similarity can be a distance metric using a

specific `− norm value depending on the characteristics of the data. [37].
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Linear Regression (Ridge)

Linear Regression assumes that the underlying model in 2.1 is linear. Based on this

a linear model is obtained minimizing the Mean Square error function. [38] Mathe-

matically the model is:

Y = XB + ε (2.2)

where Y , X, B and ε are the labels, the matrix of feature vectors, the parameters

of the model B = β1, β2, β3...βp and the error, respectively.

Model 2.2 will lead to a successful model estimation if X ′X is nearly an unit matrix

otherwise the residual sum of squares will be unsatisfactory with a high probability.

This is the reason why in Ridge Regression [38] to address this B is estimated as:

B = argmin
B=β1,β2,β3...βp

L(B)

Where

L(B) =
∑N

i=1(B
Tx− yi)

2 + µ
∑p

i=1 βi

Which is similar to 2.2 with the difference of the Ridge Regression constraint corre-

spondent to the the second term.

Random Forest Regression

For the cases where 2.1 cannot be explained by a linear model other approaches

such as Regression Tree can be used [39]. Particularly Regression Trees are powerful

because they partition the dataset on subsets based on the features, which create

smaller regions were less complex models can be fitted. These small regions are

called leaf-node. While creating very small subdivisions could lead to overfit the

data, Regression Trees provides other characteristic which make them successful in

prediction: pruning. Pruning in this case is done to minimize the validation variance

on the output variable.
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On the leaf-node the classical approach obtains a model which is a constant estimate

ŷ which is the result of:

ŷ =
∑c

i=1 y
j
i /c

where (xj1, y
j
1), (x

j
2, y

j
2)...(x

j
c, y

j
c) are the samples in node j and c is the number of

samples in that node. For further details in this method please see [39].

2.3.2 Classification

In classification still the problem mentioned in Expression 2.1 is valid. However, in

this case the yi sample is restricted to take a discrete number of values which are not

necessarily quantitative but also qualitative. Random Forest and Near Neighbor also

can be used for classification and the details are not provided because they are very

similar to which was mentioned in Section 2.3.1. One additional powerful method is

Support Vector Machine and it’s presented below.

Support Vector Machine

Support Vector Machines (SVM) relies on the linear separability of training data on

feature space. [40] While many type of data are not linearly separable, SVM uses a

kernel K which maps the data into a higher feature space where the data is linearly

separable. [41]

From the training data the hyperplane that is chosen is the one that maximizes the

margin in the feature space. The model that is obtained is used to classify new data

based on which side of the hyperplane is the sample. Further details can be found

in [40].
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2.4 Inexactness

If different position estimation techniques mentioned in Section 2.1 are correctly com-

bined, the accuracy may increase significantly. Nonetheless, the energy consumption

of the system will increase accordingly. Furthermore, for some cases the frugality of

the navigation will become significantly affected [2]. For example, if GNSS signal

are sampled very often, the energy consumption will increase significantly while the

accuracy won’t see a significant improvement [20, 21]. Then, identifying the sweet

spot where energy and accuracy are in a proper balance for the specific application is

an important task for applications dependent on location. This trade off that can be

seen vastly addressed in [6–9] shows the importance of allocating energy resources

in a smart manner which will lead to a significant reduction in energy consumption

while maintaining the accuracy within useful range.
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Chapter 3

Methodology

As it was mentioned in Section 2.1.5 location estimation in humans based on IMU

sensors requires a model and Ground Truth labels to train and test the model. There

are two general approaches for the location estimation: parametric and biomechanical.

In the biomechanical is commonly assumed that the device is in the Center of Mass

of the user and models the legs as a pendulum. The parametric uses features from

the signal to estimate the parameters of the correspondent model [42]. In the current

work a parametric approach is considered because the flexibility that provides fixing

the device in locations different than the Center of Mass of the user [42]. Additionally,

Machine Learning will be used to obtain and tune the model because its ability to

automate efficiently the process of obtaining and tunning the respective models [43].

In Section 3.1 is described the Ground Truth chosen to tune the parameters of the

model and in Section 3.2 will be explained the Machine Learning model.

3.1 Ground Truth Generation

3.1.1 Types of Ground Truth

The model trained by Machine Learning will be in the best scenario as accurate as

the Ground Truth data [44,45]. For this purpose the scenario where the data is taken

is a controlled environment with the combination of multiple location measuring de-

vices [3, 42, 46, 47] to obtain highly accurate labels to train and test their models. In
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this work this type of Ground Truth data is called Lab Maps because the conditions

to take the data are under the control of the researcher. However, obtaining highly

accurate Ground Truth labels in a massive scale adds significant cost and complexity

to the data recollection process [48]. One alternative for IMU is GNSS which is easily

accessible from many Smart Devices making easy to collect massive amounts of data

without requiring the user to do additional activities besides their daily routines or

having additional devices. This type of Ground Truth data is called in this research

as GNSS map. In this research we chose GPS because it’s the more easily accessible

GNSS in our work environment. However, before using raw GPS data to train a

model, it’s necessary to understand the error behavior of this technology. Particu-

larly, how the error behaves in function of the time between measurements. In [49]

is described the error for GPS measurements taken every 24 hours. Nonetheless, in

this research the sampling frequency of the GPS signals is much higher and therefore

it’s necessary to see how it’s affected the accuracy as the sampling frequency changes.

For this purpose the Relative Standard Deviation (RSD) of the GPS error in dis-

tance estimation could gives insight in how precise and repeatable are GPS distance

measurements . In Figure 3.1 is presented the results for different sampling periods,

where it can be seen that in general shorter periods are associated with less precise

GPS measurements. While it can be said that it’s better to choose a longer sampling

period to improve the accuracy of the GPS measurements is also true that in that case

the inaccuracy will increase also as a consequence of the difference between the actual

walking path of the user and the straight line assumed in GPS calculations [18,50]. To

study in more detail the behavior of GPS error, Section 3.1.2 described the probable

Error Probability Distribution that GPS error follows.
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Figure 3.1 : Relative Standard Deviation in Distance Estimation from GPS when the

measurements of two GPS similar receivers in the same location are compared. The

sampling period changes 5 to 150 seconds
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3.1.2 GPS Error Probability Distribution

In this section is characterized the behavior of GPS error. The procedure of the

experiment performed to characterize the GPS error is described as follows:

1. Fixed two GPS Receivers (in our case two iPhones6S see Table 4.1) on the two

sides of the waist of an user.

2. Let the user walk/run for a time tR.

3. While the user is walking/running, in both Receivers measure and store the

GPS coordinates at a sampling frequency Fs.

4. Define one of the Receivers as the Baseline and the other as the Comparison.

After this procedure the measurements are divided in ki intervals of size ∆ti, where

i = 1 : N . The horizontal (Xi) and vertical (Yi) distances in each interval corresponds

to a sample. Then we have four distances, for the Baseline Receiver (XB
i and Y B

i ) and

two for the Comparison Receiver (XC
i and Y C

i ). Two measures of error are define,

the horizontal (εX = XB
i −XC

i ) and vertical (εY = Y B
i − Y C

i ) errors.

From the literature for some specific conditions it seems that the error follows a

Gaussian Distribution [49]. However, for the specific conditions of this research is

necessary to prove this. To prove that the GPS error, εX and εY , follows a Gaussian

Distribution the two most powerful normality tests are used, i.e. the Shapiro-Wilk

(SW) test and the Anderson-Darling (AD) test [51]. Additionally, also the normal

Quantile-Quantile plot (Q-Q plot) were obtained and the results are presented for

X and Y in Figures 3.2, respectively. For the first case the null and the alternative

hypothesis are:

H0 : The distribution is normal
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(a) (b)

(c) (d)

Figure 3.2 : Normality test: Quantile-Quantile plot for horizontal error in GPS mea-

surements for time intervals of (a) 5 (b) 10 (c) 20 and (d) 30 seconds.

H1 : The distribution is not normal

The results for these two tests are presented in Tables 3.1 and 3.2 for the Horizontal

and Vertical error, respectively.

We can conclude from the tables and the plots that the error follows a Gaussian

Distribution.

There are multiples approaches to improve GPS measurements in the literature

[14–16, 18, 20]. However, in the current application is not intended to improve the
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(a) (b)

(c) (d)

Figure 3.3 : Normality test: Quantile-Quantile plot for vertical error in GPS mea-

surements for time intervals of (a) 5 (b) 10 (c) 20 and (d) 30 seconds

localization based on GPS but the estimated distance or angle between points which

is a simpler task. For this purpose next section presents, to the best of my knowledge,

a novel method for improving the distances and angle estimation from GPS.

3.1.3 Label Improving

In the current application, the distance between two points is below 100m which al-

low us to use the equirectangular approximation without a significant effect on the
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(a) (b)

(c) (d)

Figure 3.4 : Horizontal Error Histogram from GPS measurements for time intervals

of (a) 5 (b) 10 (c) 20 and (d) 30 seconds
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(a) (b)

(c) (d)

Figure 3.5 : Vertical Error Histogram from GPS measurements for time intervals of

(a) 5 (b) 10 (c) 20 and (d) 30 seconds
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Table 3.1 : Normality Tests for horizontal error on GPS measurements for time

intervals of 5, 10, 20 and 30 seconds. The hypothesis are 0 : The distribution is

normal, 1 : The distribution is not normal

∆t(s)
Horizontal GPS error

Shapiro-Wilk Anderson-Darling

5 0 0

10 0 0

20 0 0

30 0 0

error [52], which was also confirmed by experiments. Based on this we define two

points: i and i− 1 with the following definitions:

• Horizontal and vertical distances obtain from GPS defined as Xgps
i and Y gps

i ,

respectively.

• GPS coordinates for points i and i−1: (latgpsi , longpsi , altgpsi ) and (latgpsi−1, lon
gps
i−1, alt

gps
i−1).

• ∆latgpsi = latgpsi − latgpsi−1 and ∆longpsi = longpsi − longpsi−1.

• Ground truth coordinates for points i and i−1: (latRi , lon
R
i , alt

R
i ), (latRi−1, lon

R
i−1, alt

R
i−1)

• Changes in latitude and longitude ∆s: ∆latRi = latRi − latRi−1 and ∆lonRi =

lonRi − lonRi−1.

Additionally, we define the error in longitude and latitude for GPS estimation as:

εloni = longpsi − lonRi (3.1)
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Table 3.2 : Normality Tests for vertical error on GPS measurements for time intervals

of 5, 10, 20 and 30 seconds. The hypothesis are 0 : The distribution is normal, 1 :

The distribution is not normal

∆t(s)
Vertical GPS error

Shapiro-Wilk Anderson-Darling

5 0 0

10 0 0

20 0 0

30 0 0

εlati = latgpsi − latRi (3.2)

And the change in this error for multiple samples as:

∆εlati = (εlati − εlati−1) (3.3)

∆εloni = (εloni − εloni−1) (3.4)

Based on these definitions and using the equirectangular approximation [52] we have:

Xgps
i = C1cos(lat

gps
i )∆longpsi (3.5)

Y gps
i = C1∆lat

gps
i (3.6)

dgpsi = ((Xgps
i )2 + (Y gps

i )2)
1
2 (3.7)

Where C1 is the radius of the Earth. Similarly for the real coordinates we have:

XR
i = C1cos(lat

R
i )∆lonRi (3.8)

Y R
i = C1∆lat

R
i (3.9)



27

dRi = ((XR
i )2 + (Y R

i )2)
1
2 (3.10)

Using 3.1 and 3.4 we can rewrite 3.5 as:

Xgps
i = C1cos(lat

gps
i )(longpsi − longpsi−1) = C1cos(lat

gps
i )(lonRi + εloni − lonRi−1 − εloni−1)

= C1cos(lat
gps
i )(∆lonRi + ∆εloni ) = C2(∆lon

R
i + ∆εloni )

(3.11)

where

C2 = C1cos(lat
gps
i ) (3.12)

C2 is not constant in general but for regions where the samples were taken it remains

constant with a maximum relative difference of less than 0.012%.

Similarly, for Y gps
i we have:

Y gps
i = C1(lat

gps
i − latgpsi−1) = C1(lat

R
i +εlati − latRi−1−εlati−1) = C1(∆lat

R
i +∆εlati ) (3.13)

Replacing 3.11 and 3.13 into 3.7 we obtain:

(dgpsi )2 = ((Xgps
i )2 + (Y gps

i )2) = C2
2(∆lonRi + ∆εloni )2 + C2

1(∆latRi + ∆εlati )2

= (dRi )2 + δi

(3.14)

where δi is defined as:

δi = C2
2(∆lonRi )2 − C2

1cos
2(latRi )(∆lonRi )2 + C2

2(∆εloni )2 + C2
1(∆εlati )2

+2C2
1∆εlati ∆latRi + 2C2

2∆εloni ∆lonRi

(3.15)

If we consider N+1 samples of the same XR
i , Y R

i distances, then we have N equations

as 3.15. It is important to highlight that (∆lonRi ) and (∆latRi ) are the same for all

N based on their definition. The expected value of δ is:

E(δ) = E((C2
2 − C2

1cos
2(latRi ))(∆lonRi )2) + E(C2

2(∆εloni )2)

+E(C2
1(∆εlati )2) + E(2C2

1∆εlati ∆latRi ) + E(2C2
2∆εloni ∆lonRi )

= C3E((∆lonRi )2) + C2
2E((∆εloni )2) + C2

1E((∆εlati )2)

+2C2
1E(∆εlati ∆latRi ) + 2C2

2E(∆εloni ∆lonRi )

(3.16)
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Where C3 = (C2
2 − C2

1cos
2(latRi )) is assumed to be constant for the same reason C2

was explained to be constant. From experiments mentioned in Section 3.1.2 it was

recognized that the horizontal and vertical GPS error follows a Gaussian distribution.

Therefore, we can obtain the following result in the second term of 3.16:

E((∆εi
lon)2)

∣∣∣∣
i=1:N

= E((εloni − εloni−1)
2)

∣∣∣∣
i=1:N

= [E((εloni )2) + E((εloni−1)
2)

−2E(εloni ∗ εloni−1)]
∣∣∣∣
i=1:N

≈ [2E((εloni )2) − 2E(εloni ∗ εloni )]

∣∣∣∣
i=1:N

≈ 0

(3.17)

Additionally, if we consider the definition that the N samples have the same XR
i , Y R

i

distances, we can say that ∆lonRi is the same for all samples. Therefore, we obtain

from the fifth term in 3.16 the following:

E(∆εloni ∆lonRi ))

∣∣∣∣
i=1:N

= ∆lonRi E(∆εloni ))

∣∣∣∣
i=1:N

≈ 0 (3.18)

A similar procedure with the correspondent terms of the latitude (terms 3 and 4) will

lead to also a value of approximately 0. Therefore, we can rewrite 3.16 as:

E(δ) = C3E((∆lonRi )2) (3.19)

Obtaining finally:

E((dgpsi )2) = E((dRi )2) + C3E((∆lonRi )2) = (dRi )2 + C3(∆lon
R
i )2 (3.20)

Where it was used the definition that the N samples have the same XR
i , Y R

i distances.

This lead us to the following conclusion:

• With the previous procedure, the expected value for GPS distance is only differ-

ent from the real by a constant value C3(∆lon
R
i )2 = (C2

2−C2
1cos

2(latRi ))(∆lonRi )2

• For the conditions assumed here the GPS overestimates the actual distance

which is consistent with results in Chapter 4.
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From previous analysis we can conclude that if samples with GPS labels correspon-

dent to the same real distance are combined, then the expected value will be closer

to the real value than each sample individually. Therefore, it’s necessary to identify

which GPS samples correspond to the same real distance. To identify those samples

we can measure the speed or acceleration directly or have a variable which is di-

rectly proportional to them, then we grouped together samples of similar acceleration

(speed) and combine them as described previously. In next Section is explained the

procedure to achieve this.

3.2 Machine Learning Model

To obtain the position of a person is necessary to know their distance and angle trav-

eled from an origin of coordinates. As it was mentioned in section 2.2 accelerometer

and gyroscope are widely used for this purpose. In this case they are going to be used

separately for angle and distance because if they are combined the number of features

considered for each class is higher, which increases the amount of data required to

train the model [45] making more difficult a wide adoption by the final user.

In the next lines the Machine Learning Model is going to be explained with the two

goals in mind: Improve the GPS labels and Train the model.

3.2.1 Unsupervised Learning

As it was mentioned in Section 3.1.2 the labels correspondent to GPS position estima-

tion has a high RSD for small time intervals which provides not reliable information

for the training process [48]. Therefore, in this stage it is supposed that the labels are

not available for the samples and the samples are grouped based on their similarity.

Considering [37] results, which recommends to be 0 < ` < 1, the similarity metric
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is chosen as the ` − norm between the samples with ` − norm being the one that

produces best results in the range 0 < ` < 10. Once the groups are formed the labels

are combined according to Section 3.1.3. In the Algorithm 1 is described in detail the

process of this stage.

Algorithm 1 Grouping of Training Samples

1: Input: Training samples Xtr0 and their labels Y tr0

2: Output: Samples with more accurate labels

3: . Initialization Step

4: Take k samples at random from Xtr0 and define them as subtrt

5: Define the remaining n− k samples in Xtr0 as Xtr

6: . Near Neighbor

7: Define the `− norm metric for Near Neighbor

8: for i in 1 to (n− k) do

9: Find the Near Neighborg of Xtr(i) in subtrt

10: for i in 1 to k do

11: Define A =

 subtrt(i)

neighborsi

 where neighborsi are the neighbors of subtrt(i) in

Xtr.

12: subtrt(i) = mean(A)

While it’s known that Near Neighbor fails for high dimensions, the data in this

research doesn’t consider high dimensions which is going to be explained in detail in

Sections 3.2.2 and 4.2. Additionally, the `−norm was chosen using the results in [37]

combined with Cross-Validation.
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3.2.2 Feature Extraction

If the samples are used in raw the number of predictors will be higher than if the

samples are mapped into a proper space. Additionally, the time the model takes to

detect obvious trends will be higher and more important trends may be not discovered.

Furthermore, the model is more probable to fit noise instead of useful patterns. [43,

53, 54] Based on this some features in the time domain and frequency domain where

explored and chosen based on Cross-Validation. The characteristics of the dataset

and the details of the procedure are given in Section 4.2.

3.2.3 Number of Samples

An heuristic to choose the number of training samples is to have at least 10p samples

per class, where p is the number of features [45,55,56]. If angle and distance are not

estimated by separate models the number of samples would increment significantly.

For example for a model with four features in the accelerometer and two from the

gyroscope the number of samples needed is 60 samples per class. Which is not signif-

icant if only two possible locations are consider. Though, this is not usually the case.

If not enough samples are considered the risk is that the model will tend to overfit

the data making it not useful for prediction [56].

3.2.4 Supervised Learning

In the supervised learning the Machine Learning (ML) approach is classification for

the angle estimation and classification and regression for the distance estimation. The

methods used are divided in two:

• ML model for the angle estimation: Support Vector Machine, Nearest Neighbor,

Random Forest.
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• ML model for the distance estimation: Random Forest Regression, Nearest

Neighbors Regression, Ridge Regression and numerical integration.

These methods were described in Section 2.3.

3.2.5 Time Interval

The size of the time interval is recognized to affect the performance of the Models

using IMU sensors for position estimation [31]. Therefore, Cross-Validation was used

to estimate the best size of the time window for distance and angle model.
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Chapter 4

Results

In this Chapter is presented the data collected and the results of the Methods proposed

in Chapter 3.

4.1 Data Collection

As it was mentioned in Chapter 3 Machine Learning requires Ground Truth data to

train and test the model. In this Section is described the data obtained from the two

possible approaches mentioned in Section 3.1.1, i.e. Lab Maps and GNSS maps.

4.1.1 GNSS Labeled Data

The GNSS receivers used were Smartphones. Two types of smartphones were used,

the iPhone 6S from Apple and the BLU Advance 5.0 from BLU with the Technical

Specifications detailed in Table 4.1. These devices were fixed in four different loca-

tions over the user: wrist, waist, pocket and arm. These locations were chosen based

on usual locations where users have their Smartdevice [42] and to identify the depen-

dence of the model with the location of the Smartphone. From each measurement ten

variables were recorded: 3-axis accelerometer, 3-axis gyroscope, 3-GPS coordinates

and the timestamp.

Two main approaches were considered in this case:
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Single device per experiment

For each of the Smartphones and for each of the different locations on the body of

the user, multiple experiments were performed. It was identified in these experiments

that the GPS labels obtained when the user has the device on the waist are more

accurate. This is because in other parts of the body the GPS receiver is more occluded

by the body which is consistent with what is found in the literature [18,50] Therefore,

new experiments were performed as it is described below.

Two devices or more per experiment

Taking into account that the more accurate results were obtained with a Smartphone

fixed at the waist new experiments were performed with two devices, one fixed at the

waist and the other fixed at one of the other three possible body locations. With

these experiments it was recognized that the GPS labels obtained from the receiver

on the waist can be used to train the model for the wrist, arm or pocket cases. These

models will be more accurate for training and testing the model than if the GPS labels

obtained from those body locations are used. Then, for the focus of this research the

GPS labels obtained from the waist will be used in the cases where GPS labels are

mentioned.

4.1.2 Lab Maps

As it was described in Section 3.1.1 Lab maps can be used to have a highly accurate

Ground Truth data. Two different fields were chosen: the Academic Quad and the

Twilight Epiphany Skyspace Square from Rice University as is shown in Figures 4.2a

and 4.2b, respectively. For each of them a Random Walk was defined [31] and the data

was taken with iPhone6s on four different users. The dataset collected has thirteen
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Figure 4.1 : Outer Loop of Rice University Campus where GNSS Labeled Data was

taken

components, 3-axis gyroscope, 3-axis magnetometer, 3-axis accelerometer, location

based on GPS coordinates (latitude, longitude and altitude) and the timestamps.

Additionally, every time a intersection is encountered the time is recorded. The

sampling frequency is approximately 51Hz. Data was collected by four users who

walked for more than two hours. The types of turns included left, right, U and no-

turns. For this case, we do not rely on GPS-based location labels. The ground truth

was the ”actual” distance of the grid provided by matching the actual map with the

timestamps of the check points. The dataset contains 100 turns over 45 minutes for

first, second and third day.

4.2 Feature Extraction

The data from the lab maps (See Section 4.1.2) was used to tune some parameters

of the model such as the features which provides a better estimation. The algorithm

to perform this parameter selection was based on Cross-Validation an it’s explained

in Algorithm 2 where f1, ...fp are different features and their correspondent combina-
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Table 4.1 : Technical Specifications of the devices used in this research

Feature
Device

iPhone6S BLU Advance 5.0

Memory 32 GB — 2 GB RAM 4GB — 768MB RAM

Processor
Apple A9 Dual-core

1.84 GHz Twister
1.3 GHz Quadcore

Operating System iOS 9 Android 5.1 Lollipop

Battery Li-Ion 1715 mAh Li-Ion 1800 mAh

Sensors

Accelerometer, gyro,

proximity, compass,

barometer

Accelerometer, gyro,

proximity, compass

tions.

For the accelerometer and gyroscope measurements this procedure was followed

and the features which provides the best result were chosen. The features that were

explored on frequency domain were Spectral Centroid, Spectral Spread, Spectral

Skewness, Spectral Kurtosis, Spectral Slope, Spectral Band Ratio and in time do-

main were Mean, Standard Deviation, Maximum, Minimum and Zero Crossing Rate

(ZCR). Among these the Spectral Energy Distribution, proposed in this work, gave

good prediction results for distance estimation based on accelerometer and it’s ex-

plained in Section 4.2.1. It’s important to highlight that the models were designed in

a way that the number of features is increased only if adding more features improves

the accuracy prediction in at least 1%. This is because, as it was explained in Sec-

tion 3.2.3, increasing the number of features not only increases the complexity of the

model but also the size of the training data in order to have reliable results.
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Algorithm 2 Feature selection

1: Input: Training samples (Xtr0, Y tr0)

2: Output: Best features for training the model

3: . Initialization Step

4: Divide the samples in Xtr0 into k − folds

5: for fj in f1 to fp do

6: Map samples to feature space fj

7: for i in 1 to k do

8: Define fold i as testing and the other k − 1 folds as training

9: Train the model

10: Find the validation error and store it in errorv0(i, j)

11: Find the average error as errorv(j) = mean(errorv0(:, j))

12: Choose from f1, ...fp the fb which provides the lowest error.
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(a) Rice’s Academic Quad

(b) Rice’s Twilight Epiphany Skyspace

Square

Figure 4.2 : Fields were the data was taken considering random walks of 100 turns.

Besides obtaining the type of features to extract from each sample also some

parameters of the model are tuned in this stage, such as the size of the time window

and the number of bands to divide the frequency spectrum.

4.2.1 Features from Accelerometer

To obtain the Spectral Energy Distribution the algorithm is described in Algorithm

3. In this Algorithm is mentioned a bandpass filter with cutoff frequencies 0.1Hz and

15Hz which is used based on the results of [57] where it’s mentioned that 99% of the

frequency components of gait are below 15Hz. Therefore, filtering frequencies above
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that value will reduce the noise. Additionally, the DC components are also filter out

with the cutoff frequency of 0.1Hz.

Algorithm 3 Spectral Energy Distribution Transformation

1: Input: Samples X

2: Output: The samples mapped to feature space

3: . Initialization Step

4: Take the Fast Fourier Transform of X and define it as Xf

5: Applied to Xf a bandpass filter with cut-off frequencies as fl and fu.

6: Define m bands of frequencies between fl and fu.

7: Find the energy in each band

8: Normalize the energy in each band with respect to the maximum energy

The best results were obtained with the features of Spectral Energy Distribution

combined with Mean and the Standard Deviation in the time domain. In Table 4.2

the results are provided for four different users in the range of ages [22, 32] for time

windows of size 15s, heights in the range [1.55m, 1.85m].

4.2.2 Features from Gyroscope

For the case of the gyroscope the features which gave the best results were the Zero

Crossing Rate combined with the Energy in each time interval. In Table 4.3 the

results for different features can be seen.

4.3 Localization with Lab Maps

In order to estimate the position from IMU measurements the problem was divided

in two steps: 1. estimate the distance travel by the user and 2. estimate the turn
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Table 4.2 : Feature Selection Results for Accelerometer. Error is given in meters

for each Feature-User combination. *Spectral represents the best result among Spec-

tral Centroid, Spectral Spread, Spectral Skewness, Spectral Kurtosis, Spectral Slope.

**Best combination refers to the best result obtained from combining different fea-

tures

Feature
User

1 2 3 4

Energy 6.234m 8.862m 8.879m 6.843m

Mean 6.316m 8.909m 8.192m 6.800m

σ 6.082m 8.921m 6.354m 8.906m

Min/Max 6.163m 7.469m 6.512m 6.216m

ZCR 6.087m 6.723m 6.035m 5.987m

Spectral* 5.691m 5.848m 6.257m 5.862m

Spectral Energy Distribution 5.117m 5.605m 5.323m 5.190m

Best Combination** 5.118m 5.624m 5.125m 5.123m

given by the user in every intersection. In next paragraphs is explained the model

obtained for these cases.

4.3.1 Distance Estimation

As it was shown previously the frequency domain provides the best results for distance

estimation. To confirm the usefulness of frequency domain for distance estimation,

different Machine Learning Methods were tried and the results are presented in Table

4.4. Also in this table can be seen the results obtained with Numerical Integration.

These results corresponds to training the distance on the GPS data and testing on
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Table 4.3 : Feature Selection Results for Gyroscope. Error is given in percentage of

correct turn estimation for each Feature-User combination. *Spectral represents the

best result among Spectral Centroid, Spectral Spread, Spectral Skewness, Spectral

Kurtosis, Spectral Slope. **Best combination refers to the best result obtained from

combining the two best features results

Feature
User

1 2 3 4

Energy 98.0% 92.6% 90.6% 89.7 %

Mean 98.0% 91.6% 89.6% 88.2%

σ 70.2% 68.2% 69.2% 68.7%

Min/Max 77.1% 69.2% 66.1% 68.2%

ZCR 75.1% 69.7% 66.7% 68.2%

Spectral* 71.7% 70.7% 72.7% 68.2%

Spectral Energy Distribution 61.2% 58.2% 59.2% 58.2%

Best Combination** 98.2% 93.7% 91.6% 91.2%

Lab Maps data.

4.3.2 Turn Estimation

As it was mentioned, from Table 4.3 it can be seen that time domain provides the

best results for turn estimation. To confirm this the accuracy of the models in angle

estimation is compare in Table 4.5 with the step of feature extraction.

It can be seen that for Gyroscope the features based on the time domain provide

a better prediction than the frequency domain. The possible explanation for this

result is that the short duration of turns doesn’t provide significant patterns in the
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Table 4.4 : Distance Estimation results for Lab Maps labels training on GPS labels.

Method
Percentage Error Rate (Error in Meters)

Frequency Domain Time Domain

Nearest Neighbors 26.34% (8.18m) 67.68%(20.77m)

Ridge Regression 27.08% (8.39m) 71.23%(22.01m)

Random Forest Regression 23.5% (7.2m) 66.32%(20.46m)

Numerical Integration NA 70% (22m)

Table 4.5 : The results for Turning detection and Turning classification using Lab

Maps labels

Method
Turn Detection Accuracy Turn Classification Accuracy

Frequency Time Frequency Time

NN 52% 54% 33% 31%

RF 67% 83% 65% 81%

SVM 72% 95% 69% 90%
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frequency spectrum while in time domain their differences are more significant.

4.3.3 Position Estimation

The error in distance described in Table 4.4 is on average and if the error cumulative

properties of Dead Reckoning are considered, then the error is going to increase signif-

icantly until the prediction becomes useless. If no-correction is performed the average

error in location estimation is 28.72m with a maximum error of 99m. Therefore, it’s

necessary to apply a correction to the prediction as it was described in Section 2.1.5.

In this case was chosen the map information because it doesn’t depend on other de-

vices and it’s easily integrated in the model [10–12].

The map correction was integrated in the model as it’s described in Algorithm 4.

This algorithm was tested on 200 paths in Figure 4.2a and 200 paths in Figure

4.2b. The paths range from 16 to 78 meters.

Result. For the random paths, all the final edges were identified successfully. The

high accuracy obtained in this is considered to be based on the almost perfect turn

estimation obtained in 4.5. For the location estimation the average error is 4.3meters

with the best error being 0.05meter and the worst case error being 11.5meters.

4.3.4 Energy Consumption and Accuracy of GPS

As it was described in Section 2.1.5 error correction can be performed with other

technologies, such as GPS. Being GPS widely used technology and the standard for

outdoors, the current results it’s compared with it in terms of energy consumption

and error. If 15 seconds time windows are considered our algorithm consumes only

0.44J while GPS requires 11.85J . Therefore, the energy consumption is reduced by

a factor of 27x. The energy consumed by the sensors is 0.271311J and the rest is
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Algorithm 4 Map integration in the location estimation

1: Input: Trained Model, testing samples Xts, map information

2: Output: Location of the user

3:

4: Set the initial position of the person. This can be provided by the user or obtained

from other source such as GPS.

5: Keep a running overlapping window of ∆t time. Use the trained turn estimation

model (See Table 4.5) and identify the turns in Xts.

6: Estimate the distance between turns using Random Forest (See Table 4.4). Ac-

cumulate the distance in 15seconds non-overlapping windows.

7: Use the map information to correct the turns estimation. Based on the distance

estimated, determine if there is a turn in a range defined by the expected distance

error. If there is no intersection in the vicinity, then that turn is skipped (turn

estimate correction). If a turn is found, then the distance is corrected in a way

that matches the distances of the map (distance estimate correction)
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correspondent to the proposed method. In terms of accuracy the GPS error for time

intervals of 15seconds is 8.7m while for our method is 4.3m, as it was mentioned

before. [58]

4.4 Localization with GNSS

While 4.3 meters could be good enough for outdoors, in indoors one room from an-

other can have a difference smaller than this value which makes it not useful in some

scenarios. Additionally, the requirement of knowing the map of the location before-

hand which is not always true for indoor navigation. In this section this problematic

is addressed.

If we consider the position estimation from GNSS perspective we can see that one of

its more significant advantages is that its estimation does not depend on the error of

previous estimations. Contrary, Dead Reckoning methods suffer from this drawback.

If GNSS is considered from the Dead Reckoning perspective is similar to having a

method which takes its previous estimation and predicts a new estimation which is

corrected by a specific factor and guarantees that the error is always below µerror with

high probability. This behavior is desired to be obtained in Dead Reckoning where

the error increases with time without a bound [3]. In this section is not searched to

obtain this bound but to decrease the rate at which the error is accumulated.

4.4.1 Distance Estimation

In Section 3.1.2 was described the error behavior on distance estimation based on GPS

measurements. In Section 3.1.3 is proposed a method to improve the GPS labels. In

this Section is explored how that method improves the performance of the estimation

of the IMU method for distance estimation using GPS labels and testing on Lab Map
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labels.

The algorithm to define the groups and the `− norm which produces best results is

defined in Algorithm 5. With this process was identified to be ` = 0.4 which produces

the best grouping. One the trained model is obtained is tested on the labels obtained

from the Lab Maps. This model was trained and tested on user 1, but for comparison

purposes was also tested on the Lab Maps data obtained from users 2, 3 and 4. In

Table 4.6 it can be seen the results for training in user 1 the model and testing in any

of the four different users.

Algorithm 5 Algorithm for implementing GPS distance labels improvement

1: Input: Samples correspondent to Accelerometer measurements (Xtr0) and GPS

Labels correspondent to angle and distance)(Ytr0)

2: Output: Model with more accurate GPS distance labels

3: . Initialization Step

4: Define `− norm and #groups as the parameters to tune in the model.

5: Define the range for `− norm and for #groups to iterate.

6: . Tunning Parameters of the Model

7: Define the error between the position estimated from GPS and the one estimated

from the model as the metric to choose the best values for the parameters.

8: Apply Cross-Validation to choose the best values for `− norm and for #groups

according to the defined metric in the previous step.

9: Find the label in each group as it was defined in Expression 3.20

10: Return the model

This result was not expected because in the literature is commonly found that the

models are trained in a user and test in the same user [3,42,46,47]. However, in this
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Table 4.6 : Distance Estimation results training on GPS data of User 1 and testing

on the other 3 users. The error is given in percentage and meters. It’s compared the

performance of the method proposed in Section 3.1.3 to improve the accuracy of GPS

labels. The method is referred here as LC which stands for Label Correction

Method
Percentage Error (Error in Meters)

Without LC With LC

User 1 26.974% (8.362m) 19.731%(6.117m)

User 2 30.045% (9.314m) 17.965%(5.569m)

User 3 22.231% (6.892m) 17.437%(5.406m)

User 4 25.577% (7.929m) 21.311% (6.607m)

case training in a different user and testing in another still provides decent results for

distance estimation. It means that the data from different users can be combined in

a clever way to obtain a general model and reduce the training size require from each

new user. It’s suspected that this result is because the frequency spectrum is sparse

and the model is based in walking patterns that are common to different users.

4.4.2 Angle Estimation from GPS

The angle can be obtained from GPS measurements based on the equirectangular

approximation mentioned in Section 3.1.3. If a model based on Gyroscope measure-

ments is trained on this GPS labels the main difficulty is the simultaneity of the

events. While Gyroscope will reflect the turn event almost immediately, the GPS

receiver will reflect the turn with a delay which depends on many factors of the en-

vironment or the GPS receiver. This delay can be understood based on Figure 3.1

where the GPS labels are more accurate if they are sampled with low sampling fre-
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quencies. Which means that GPS provides an accurate location in the long term

but inaccurate over short terms. However, the turn events are of a short duration

and when the GPS does the correspondent correction the angle will be associated

probably to a no-turn event which makes difficult to combine the labels in a correct

way.

An approach similar to the one in Expression 3.20 was followed but the results were

worst for combining the labels that without combining them. It’s considered that

an additional preprocessing can be done to improve GPS labels for angle estimation.

One option is defining a group of Gyroscope samples which are associated to a GPS

turn and then give a higher probability based on specific features. This will be ex-

plored in detail in future work.

The accuracy of angle estimation described in Section 4.3.2 is no longer valid for an-

gles obtained from GPS measurements because in this case there is a wide spectrum

of values which is the result of inaccuracies in estimation from GPS measurements.

Then, it’s necessary to define another metric of comparison. For this purpose the an-

gle estimated by the model is compared to the one obtained from GPS measurements

in every time interval. For this case on average the error is around 1.29◦. However,

this value should be considered with caution because is the result of intervals of over-

estimation and others of under-estimation, which means that there is compensation

between time intervals. Then, this value is only meaningful in the position estimation

based on combining the angle and distance models.

4.4.3 Location Estimation from GPS

The Location Estimation model is obtained by combining the distance estimation

model with the angle estimation model. The location in this case is defined as the
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Table 4.7 : Average Location Estimation error in distance and angle without correc-

tion using GPS for training the distance and angle models.

User
Location Error

Average Distance error (m) Average Angle error (◦)

User 1 7.763m 2.137◦

User 2 9.326m 1.042◦

User 3 8.234m 1.273◦

User 4 9.976m 2.609◦

position of the user in a X−Y plane. The error is defined as the average error between

the estimated and the real location of the user from the perspective of the final point

of the user. In Table 4.7 the results for the different users is provided. The error is not

good enough for indoor applications. However, it’s necessary to consider than in this

case was not applied any kind in correction. Additionally, the error can be reduced

if the angle labels are improved in the training process but as it was mentioned this

is part of future work.
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Chapter 5

Industrial Applications

Location Based Services (LBS) have multiple applications in fields such as Marketing,

Health Care, Pet Care, Tourism, Education, among others [59–61]. The current

research is important for those areas because the energy consumption, as it was

shown in Section 4.3.4, is much lower than GPS and also because is not prohibitive for

indoors. Particularly, the low energy consumption enable not only the implementation

in common Smart Devices (Smartphones, Smartwatches, WristBands, among others)

but also to design low-cost, low-size devices to identify the position of the user [31].

Below it’s explained how some of these fields could be impacted by the research of

this thesis.

Marketing

Knowing the location of an user in indoors and their correspondent interests, ads can

be provided of nearby stores which matches user interests [59, 60]. In this case the

location privacy can be maintained because the location estimation is done in the

Smart Device instead of sending the information to the cloud. [28]

Health care

In this field some patients need a special care. They need to avoid outdoors or some

indoors locations in a hospital. Making important that a care specialist receives

alarms if a patient is in a unsafe location or is lost. In this way emergency services
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can be provided in a timely manner. [62]

Entertainment

Recommendation systems based on the location of the user and their interests can be

used to make the experience of a tourist more enjoyable. [63] For example, the visits

to museums can be tailored to the user interests or providing additional information

based on their location creating a more interactive experience. [64]
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Chapter 6

Conclusions

Location Estimation based on IMU sensors is a popular approach which faces two

main difficulties in the literature: 1. Error accumulation with each estimation 2.

Accurate Ground Truth Labels to train and test the model.

The error accumulation was corrected using information from the map and results

for time intervals of 15s show that error is on average around 4.3m with an energy

consumption of 0.44J while GPS error is 8.7m and energy consumption is 11.85J .

For the Ground Truth labels it was identified that GPS can be used to train the

model if a correspondent correction method is applied on the labels. A method

is proposed for this purpose which is based on the error profile of GPS receivers

available in iPhone 6S. An error reduction from 9.314m to 5.569m was achieved for

distance estimation when GPS labels are used as the Ground Truth for training.

However, for angle estimation it’s necessary to combine the proposed method with

other approach because the turn event is not simultaneously reflected on GPS and

Gyroscope measurements.

Also experiments were performed to identify the best features for distance and angle

estimation from IMU. It was recognized that the frequency domain it’s more useful

for the distance estimation whereas the time domain provides better results for angle

estimation. On the experiments the age range of the participants was [22− 32] years.

Other experiments are important to verify that the features that were here identified

to work best for a specific population are valid for other age ranges. However, in case
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that the specific features are not valid, the training process for those cases will find

the correspondent features that provide the best results for the user.
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technologies,” IEEE Transactions on Vehicular Technology, vol. 64, pp. 1263–

1278, April 2015.

[5] J. Skaf and S. Boyd, “Analysis and synthesis of state-feedback controllers with

timing jitter,” IEEE Transactions on Automatic Control, vol. 54, pp. 652–657,

March 2009.

[6] K. Palem and A. Lingamneni, “Ten years of building broken chips: The physics

and engineering of inexact computing,” ACM Trans. Embed. Comput. Syst.,

vol. 12, pp. 87:1–87:23, May 2013.

[7] K. V. Palem, “Inexactness and a future of computing,” Philosophical Transac-



55

tions of the Royal Society of London A: Mathematical, Physical and Engineering

Sciences, vol. 372, no. 2018, 2014.

[8] K. V. Palem, Computational Proof as Experiment: Probabilistic Algorithms from

a Thermodynamic Perspective, pp. 524–547. Springer Berlin Heidelberg, 2003.

[9] K. V. Palem, “Energy aware computing through probabilistic switching: A study

of limits,” IEEE Transactions on Computers, vol. 54, pp. 1123–1137, 2005.

[10] K. Abdulrahim, C. Hide, T. Moore, and C. Hill, “Using constraints for shoe

mounted indoor pedestrian navigation,” Journal of Navigation, vol. 65, no. 1,

p. 15–28, 2012.

[11] K. Nakamura, Y. Aono, and Y. Tadokoro, “A walking navigation system for the

blind,” Systems and Computers in Japan, vol. 28, no. 13, pp. 36–45.

[12] S. Koide and M. Kato, “3-d human navigation system considering various transi-

tion preferences,” in 2005 IEEE International Conference on Systems, Man and

Cybernetics, vol. 1, pp. 859–864 Vol. 1, Oct 2005.

[13] J. L. Awange and J. B. Kyalo Kiema, Modernization of GNSS, pp. 47–54. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2013.

[14] S. Miura, L. T. Hsu, F. Chen, and S. Kamijo, “Gps error correction with pseu-

dorange evaluation using three-dimensional maps,” IEEE Transactions on Intel-

ligent Transportation Systems, vol. 16, pp. 3104–3115, Dec 2015.

[15] S. Hwang and D. Yu, “Gps localization improvement of smartphones using built-

in sensors,” 2012.



56

[16] D. Yoon, C. Kee, J. Seo, and B. Park, “Position accuracy improvement by imple-

menting the dgnss-cp algorithm in smartphones,” Sensors, vol. 16, no. 6, 2016.

[17] L. Zhao, S. Ye, and J. Song, “Handling the satellite inter-frequency biases

in triple-frequency observations,” Advances in Space Research, vol. 59, no. 8,

pp. 2048 – 2057, 2017.

[18] M. Bierlaire, J. Chen, and J. Newman, “A probabilistic map matching method for

smartphone gps data,” Transportation Research Part C: Emerging Technologies,

vol. 26, pp. 78 – 98, 2013.

[19] R. K. Balan, Y. Lee, T. K. Wee, and A. Misra, “The challenge of continuous mo-

bile context sensing,” in 2014 Sixth International Conference on Communication

Systems and Networks (COMSNETS), pp. 1–8, Jan 2014.

[20] J. Paek, J. Kim, and R. Govindan, “Energy-efficient rate-adaptive gps-based

positioning for smartphones,” in Proceedings of the 8th International Conference

on Mobile Systems, Applications, and Services, MobiSys ’10, (New York, NY,

USA), pp. 299–314, ACM, 2010.

[21] F. Ben Abdesslem, A. Phillips, and T. Henderson, Less is more: energy-efficient

mobile sensing with SenseLess, pp. 61–62. United States: ACM, 8 2009. Work-

shop held as part of ACM SIGCOMM 2009.

[22] M. Arikawa, S. Konomi, and K. Ohnishi, “Navitime: Supporting pedestrian

navigation in the real world,” IEEE Pervasive Computing, vol. 6, pp. 21–29,

July 2007.

[23] M. T. Günther Retscher, “Navio-a navigation and guidance service for pedestri-

ans,” J. GPS, vol. 3, no. 1, pp. 208–217, 2004.



57

[24] T. Amemiya, J. Yamashita, K. Hirota, and M. Hirose, “Virtual leading blocks for

the deaf-blind: a real-time way-finder by verbal-nonverbal hybrid interface and

high-density rfid tag space,” in IEEE Virtual Reality 2004, pp. 165–287, March

2004.

[25] N. B. Priyantha, A. Chakraborty, and H. Balakrishnan, “The Cricket Location-

Support System,” in 6th ACM MOBICOM, (Boston, MA), August 2000.
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