Fang, QiyiYi, KongyangZhai, TianshuLuo, ShisongLin, Chen-yangAi, QingZhu, YifanZhang, BoyuAlvarez, Gustavo A.Shao, YanjieZhou, HaoleiGao, GuanhuiLiu, YifengXu, RuiZhang, XiangWang, YuzheTian, XiaoyinZhang, HonghuHan, YimoZhu, HanyuZhao, YujiTian, ZhitingZhong, YuLiu, ZhengLou, Jun2025-01-092025-01-092024Fang, Q., Yi, K., Zhai, T., Luo, S., Lin, C., Ai, Q., Zhu, Y., Zhang, B., Alvarez, G. A., Shao, Y., Zhou, H., Gao, G., Liu, Y., Xu, R., Zhang, X., Wang, Y., Tian, X., Zhang, H., Han, Y., … Lou, J. (2024). High-performance 2D electronic devices enabled by strong and tough two-dimensional polymer with ultra-low dielectric constant. Nature Communications, 15(1), 10780. https://doi.org/10.1038/s41467-024-53935-6https://hdl.handle.net/1911/118142As the feature size of microelectronic circuits is scaling down to nanometer order, the increasing interconnect crosstalk, resistance-capacitance (RC) delay and power consumption can limit the chip performance and reliability. To address these challenges, new low-k dielectric (k < 2) materials need to be developed to replace current silicon dioxide (k = 3.9) or SiCOH, etc. However, existing low-k dielectric materials, such as organosilicate glass or polymeric dielectrics, suffer from poor thermal and mechanical properties. Two-dimensional polymers (2DPs) are considered promising low-k dielectric materials because of their good thermal and mechanical properties, high porosity and designability. Here, we report a chemical-vapor-deposition (CVD) method for growing fluoride rich 2DP-F films on arbitrary substrates. We show that the grown 2DP-F thin films exhibit ultra-low dielectric constant (in plane k = 1.85 and out-of-plane k = 1.82) and remarkable mechanical properties (Young’s modulus > 15 GPa). We also demonstrated the improved performance of monolayer MoS2 field-effect-transistors when utilizing 2DP-F thin films as dielectric substrates.engExcept where otherwise noted, this work is licensed under a Creative Commons Attribution (CC BY) license. Permission to reuse, publish, or reproduce the work beyond the terms of the license or beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.High-performance 2D electronic devices enabled by strong and tough two-dimensional polymer with ultra-low dielectric constantJournal articles41467-024-53935-6https://doi.org/10.1038/s41467-024-53935-6