Smalley, Richard E.2009-06-042009-06-041988O'Brien, Sean Christopher. "Photophysics of buckminsterfullerene and friends." (1988) Diss., Rice University. <a href="https://hdl.handle.net/1911/16175">https://hdl.handle.net/1911/16175</a>.https://hdl.handle.net/1911/16175This dissertation describes a series of photophysics experiments on buckminsterfullerene (C$\sb{60}$), other fullerenes (C$\sb{\rm n}$), and the metallofullerenes (C$\sb{\rm n}$M). Photodissociation is performed in a tandem time-of-flight mass spectrometer. Mass isolated cluster ions are irradiated with a high fluence UV laser and the product ions are mass analyzed. All these clusters dissociate identically: the primary fragmentation event is loss of neutral C$\sb2$. All fragmentation is multiphoton at 6.4 eV. Higher order fragmentation is by loss of an even numbered neutral carbon particle. This production of fullerene fragments stops at C$\sb{32}$ for the pure carbon, and at a size which depends on the metal atom for the metal-carbon clusters. The fullerene product ions show stability at 50, 60, and 70, especially when produced in a long timescale metastable decay process. The spheroidal shell theory of carbon can explain all these results. This theory states that large even C$\sb{\rm n}$ clusters have edgeless spheroidal cage structures with 12 pentagons and n/2-10 hexagons. C$\sb2$ loss occurs because the transition state for C$\sb3$ loss is not accessible. Stability at clusters with 28, 32, 50, 60, and 70 is a result of spherically distributed strain of curvature. C$\sb{60}$ can perfectly distribute its strain explaining its dominance. The central cavity of these structures is large enough to complex a metal ion, but only down to a certain size.169 p.application/pdfengCopyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.Physical chemistryPhotophysics of buckminsterfullerene and friendsThesisThesis Chem. 1988 O'Brien