Tumkur, Thejaswi U.Yang, XiaoCerjan, BenjaminHalas, Naomi J.Nordlander, PeterThomann, Isabell2016-11-222016-11-222016Tumkur, Thejaswi U., Yang, Xiao, Cerjan, Benjamin, et al.. "Photoinduced force mapping of plasmonic nanostructures." <i>Nano Letters,</i> (2016) American Chemical Society: http://dx.doi.org/10.1021/acs.nanolett.6b04245.https://hdl.handle.net/1911/92710NEWS COVERAGE: A news release based on this journal publication is available online: http://news.rice.edu/2016/12/14/light-provides-pull-for-future-nanocatalyst-measurement/The ability to image the optical near-fields of nanoscale structures, map their morphology and concurrently obtain spectroscopic information, all with high spatiotemporal resolution, is a highly sought-after technique in nanophotonics. As a step towards this goal, we demonstrate the mapping of electromagnetic forces between a nanoscale tip and an optically excited sample consisting of plasmonic nanostructures, with an imaging platform based on atomic force microscopy. We present the first detailed joint experimental-theoretical study of this type of photo-induced force microscopy. We show that the enhancement of near-field optical forces in gold disk dimers and nanorods follows the expected plasmonic field enhancements, with strong polarization sensitivity. We then introduce a new way to evaluate optically-induced tip-sample forces by simulating realistic geometries of the tip and sample. We decompose the calculated forces into in-plane and out-of-plane components and compare the calculated and measured force enhancements in the fabricated plasmonic structures. Finally, we show the usefulness of photo-induced force mapping for characterizing the heterogeneity of near-field enhancements in precisely e-beam fabricated nominally alike nanostructures - a capability of widespread interest for precise nanomanufacturing, SERS and photocatalysis applications.engThis is an author's peer-reviewed final manuscript, as accepted by the publisher. The published article is copyrighted by the American Chemical Society.Photoinduced force mapping of plasmonic nanostructuresJournal articleplasmonicsnear-field scanning optical microscopygradient forcephotocatalysisnanocharacterizationhttp://dx.doi.org/10.1021/acs.nanolett.6b04245