Degroote, MatthiasHenderson, Thomas M.Zhao, JinmoDukelsky, JorgeScuseria, Gustavo E.2017-05-042017-05-042016Degroote, Matthias, Henderson, Thomas M., Zhao, Jinmo, et al.. "Polynomial similarity transformation theory: A smooth interpolation between coupled cluster doubles and projected BCS applied to the reduced BCS Hamiltonian." <i>Physical Review B,</i> 93, no. 12 (2016) American Physical Society: https://doi.org/10.1103/PhysRevB.93.125124.https://hdl.handle.net/1911/94180We present a similarity transformation theory based on a polynomial form of a particle-hole pair excitation operator. In the weakly correlated limit, this polynomial becomes an exponential, leading to coupled cluster doubles. In the opposite strongly correlated limit, the polynomial becomes an extended Bessel expansion and yields the projected BCS wave function. In between, we interpolate using a single parameter. The effective Hamiltonian is non-Hermitian and this polynomial similarity transformation theory follows the philosophy of traditional coupled cluster, left projecting the transformed Hamiltonian onto subspaces of the Hilbert space in which the wave function variance is forced to be zero. Similarly, the interpolation parameter is obtained through minimizing the next residual in the projective hierarchy. We rationalize and demonstrate how and why coupled cluster doubles is ill suited to the strongly correlated limit, whereas the Bessel expansion remains well behaved. The model provides accurate wave functions with energy errors that in its best variant are smaller than 1% across all interaction strengths. The numerical cost is polynomial in system size and the theory can be straightforwardly applied to any realistic Hamiltonian.engArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.Polynomial similarity transformation theory: A smooth interpolation between coupled cluster doubles and projected BCS applied to the reduced BCS HamiltonianJournal articlehttps://doi.org/10.1103/PhysRevB.93.125124