Vavra, EricPuerto, MauraBiswal, Sibani L.Hirasaki, George J.2020-11-022020-11-022020Vavra, Eric, Puerto, Maura, Biswal, Sibani L., et al.. "A systematic approach to alkaline-surfactant-foam flooding of heavy oil: microfluidic assessment with a novel phase-behavior viscosity map." <i>Scientific Reports,</i> 10, (2020) Springer Nature: https://doi.org/10.1038/s41598-020-69511-z.https://hdl.handle.net/1911/109471The apparent viscosity of viscous heavy oil emulsions in water can be less than that of the bulk oil. Microfluidic flooding experiments were conducted to evaluate how alkali-surfactant-foam enhanced oil recovery (ASF EOR) of heavy oil is affected by emulsion formation. A novel phase-behavior viscosity map—a plot of added salinity vs. soap fraction combining phase behavior and bulk apparent viscosity information—is proposed as a rapid and convenient method for identifying suitable injection compositions. The characteristic soap fraction, XSorsoap, is shown to be an effective benchmark for relating information from the phase-viscosity map to expected ASF flood test performance in micromodels. Characteristically more hydrophilic cases were found to be favorable for recovering oil, despite greater interfacial tensions, due to wettability alteration towards water-wet conditions and the formation of low apparent-viscosity oil-in-water (O/W) macroemulsions. Wettability alteration and bubble-oil pinch-off were identified as contributing mechanisms to the formation of these macroemulsions. Conversely, characteristically less hydrophilic cases were accompanied by a large increase in apparent viscosity due to the formation of water-in-oil (W/O) macroemulsions.engThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.A systematic approach to alkaline-surfactant-foam flooding of heavy oil: microfluidic assessment with a novel phase-behavior viscosity mapJournal articlehttps://doi.org/10.1038/s41598-020-69511-z