Kumar, AnjliVillarreal, EduardoZhang, XiangRinge, Emilie2018-11-012018-11-012018Kumar, Anjli, Villarreal, Eduardo, Zhang, Xiang, et al.. "Micro-Extinction Spectroscopy (MExS): a versatile optical characterization technique." <i>Advanced Structural and Chemical Imaging,</i> 4, (2018) Springer: https://doi.org/10.1186/s40679-018-0057-6.https://hdl.handle.net/1911/103263Micro-Extinction Spectroscopy (MExS), a flexible, optical, and spatial-scanning hyperspectral technique, has been developed and is described with examples. Software and hardware capabilities are described in detail, including transmission, reflectance, and scattering measurements. Each capability is demonstrated through a case study of nanomaterial characterization, i.e., transmission of transition metal dichalcogenides revealing transition energy and efficiency, reflectance of transition metal dichalcogenides grown on nontransparent substrates identifying the presence of monolayer following electrochemical ablation, and scattering to study single plasmonic nanoparticles and obtain values for the refractive index sensitivity and sensing figure of merit of over a hundred single particles with various shapes and sizes. With the growing integration of nanotechnology in many areas, MExS can be a powerful tool to both characterize and test nanomaterials.engThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.Micro-Extinction Spectroscopy (MExS): a versatile optical characterization techniqueJournal articleKumar2018https://doi.org/10.1186/s40679-018-0057-6