Ye, Y.Tapia, R.A.Zhang, Y.2018-06-182018-06-181991-07Ye, Y., Tapia, R.A. and Zhang, Y.. "A Superlinearly Convergent O(sqrt{n}L)-Iteration Algorithm for Linear Programming." (1991) <a href="https://hdl.handle.net/1911/101723">https://hdl.handle.net/1911/101723</a>.https://hdl.handle.net/1911/101723In this note we consider a large step modification of the Mizuno-Todd-Ye O (sqrt{n}L) predictor-corrector interior-point algorithm for linear programming. We demonstrate that the modified algorithm maintains its O (sqrt{n}L)-iteration complexity, while exhibiting superlinear convergence for general problems and quadratic convergence for nondegenerate problems. To our knowledge, this is the first construction of a superlinearly convergent algorithm with O (sqrt{n}L)-iteration complexity.12 ppengA Superlinearly Convergent O(sqrt{n}L)-Iteration Algorithm for Linear ProgrammingTechnical reportTR91-22