He, XiaoweiGao, WeiluXie, LijuanLi, BoZhang, QiLei, SidongRobinson, John M.Hároz, Erik H.Doorn, Stephen K.Wang, WeipengVajtai, RobertAjayan, Pulickel M.Adams, W. WadeHauge, Robert H.Kono, Junichiro2016-07-272016-07-272016He, Xiaowei, Gao, Weilu, Xie, Lijuan, et al.. "Wafer-scale monodomain films of spontaneously aligned single-walled carbon nanotubes." <i>Nature Nanotechnology,</i> 11, (2016) Springer Nature: 633-638. http://dx.doi.org/10.1038/nnano.2016.44.https://hdl.handle.net/1911/90964The one-dimensional character of electrons, phonons and excitons in individual single-walled carbon nanotubes leads to extremely anisotropic electronic, thermal and optical properties. However, despite significant efforts to develop ways to produce large-scale architectures of aligned nanotubes, macroscopic manifestations of such properties remain limited. Here, we show that large (>cm2) monodomain films of aligned single-walled carbon nanotubes can be prepared using slow vacuum filtration. The produced films are globally aligned within ±1.5° (a nematic order parameter of ∼1) and are highly packed, containing 1 × 106 nanotubes in a cross-sectional area of 1 μm2. The method works for nanotubes synthesized by various methods, and film thickness is controllable from a few nanometres to ∼100 nm. We use the approach to create ideal polarizers in the terahertz frequency range and, by combining the method with recently developed sorting techniques, highly aligned and chirality-enriched nanotube thin-film devices. Semiconductor-enriched devices exhibit polarized light emission and polarization-dependent photocurrent, as well as anisotropic conductivities and transistor action with high on/off ratios.engThis is an author's peer-reviewed final manuscript, as accepted by the publisher. The published article is copyrighted by Springer Nature.Wafer-scale monodomain films of spontaneously aligned single-walled carbon nanotubesJournal articlehttp://dx.doi.org/10.1038/nnano.2016.44