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Abstract

Motivation: Reticulate evolutionary histories, such as those arising in the presence of hybridiza-

tion, are best modeled as phylogenetic networks. Recently developed methods allow for statistical

inference of phylogenetic networks while also accounting for other processes, such as incomplete

lineage sorting. However, these methods can only handle a small number of loci from a handful of

genomes.

Results: In this article, we introduce a novel two-step method for scalable inference of phylogenetic

networks from the sequence alignments of multiple, unlinked loci. The method infers networks on

subproblems and then merges them into a network on the full set of taxa. To reduce the number of

trinets to infer, we formulate a Hitting Set version of the problem of finding a small number of sub-

sets, and implement a simple heuristic to solve it. We studied their performance, in terms of both

running time and accuracy, on simulated as well as on biological datasets. The two-step method

accurately infers phylogenetic networks at a scale that is infeasible with existing methods. The

results are a significant and promising step towards accurate, large-scale phylogenetic network

inference.

Availability and implementation: We implemented the algorithms in the publicly available soft-

ware package PhyloNet (https://bioinfocs.rice.edu/PhyloNet).

Contact: nakhleh@rice.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Phylogenetic networks model non-treelike evolutionary histories,

such as those arising when hybridization occurs, and take the shape

of a rooted, directed acyclic graph. Phylogenetic network inference

in the genomic era is most often carried out from data obtained

from multiple unlinked loci across the genomes of species of interest.

To account for the fact that processes such as incomplete lineage

sorting (ILS) could co-occur with hybridization, the multispecies

network coalescent (MSNC) model was introduced (Yu et al., 2012,

2014) to turn phylogenetic networks into a generative model of gene

genealogies, and subsequently, a wide array of methods for statistic-

al inference of phylogenetic networks under MSNC were introduced

(Wen and Nakhleh, 2018; Wen et al., 2016; Yu and Nakhleh, 2015;

Yu et al., 2014; Zhang et al., 2018; Zhu and Nakhleh, 2018; Zhu

et al., 2018).

Initial evaluations of all these methods on simulated and bio-

logical data showed very promising results in terms of the accuracy

of the inferences. However, these methods suffer from several major

performance bottlenecks. Methods that evaluate the full likelihood

[all of the aforementioned methods, except for the pseudo-

likelihood method of Yu and Nakhleh (2015)] suffer from the pro-

hibitive computational requirements of likelihood calculations

(Elworth et al., 2019; Zhu and Nakhleh, 2018). Currently, comput-

ing network likelihood is feasible only for fewer than 10 species and

a very small number of reticulations. Second, all the aforementioned

methods traverse the space of phylogenetic networks that is much

larger than the space of phylogenetic trees, whose size is already ex-

ponential in the number of taxa. While the pseudo-likelihood

method of Yu and Nakhleh (2015) circumvents the likelihood calcu-

lations, albeit in an approximate manner, it does not overcome the
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problem of exploring the space of the phylogenetic networks. Third,

for Bayesian methods, exploring the trans-dimensional space of

phylogenetic networks (the number of reticulations changes during

the exploration) leads to poor mixing.

In this article, we propose a method for large-scale phylogenetic

network inference that ameliorates all three challenges. The method

divides the set of taxa into small, overlapping subsets, builds

accurate subnetworks on the subsets, and finally agglomerates the

subnetworks into a network on the full set of taxa. By focusing on

three-taxon subsets in this article, the likelihood calculations be-

come very fast, exploring the space of all phylogenetic networks on

large numbers of taxa is completely sidestepped. Also, mixing is

improved because more iterations of the RJMCMC sampler can be

run on three-taxon networks, especially since different subsets can

be analyzed independently in parallel. Furthermore, to avoid build-

ing all
n
3

� �
trinets, we provide a Hitting Set formulation of a prob-

lem for reducing the number of trinets based on gene trees, and

demonstrate that the number of trinets can be reduced significantly

without much effect on accuracy.

We implemented our algorithms in PhyloNet (Wen et al., 2018)

and studied their accuracy and efficiency. When making use of

error-free trinets, we show that the algorithm infers the correct net-

work in all cases, whether making use of all trinets or a significantly

reduced subset. When making use of inferred trinets, the algorithm

has very good accuracy, where in many cases the correct network is

inferred and in all others, a network with small error rate is inferred.

This demonstrates the importance of inferring the trinets accurately.

Equally important, the method allows for inferring large-scale net-

works whose inference is infeasible using existing statistical

methods.

The closest works to our proposed method here are those of

Huber et al. (2017) and Hejase et al. (2018). In Huber et al. (2017),

the authors devised an algorithm that is restricted to combining

binet and trinet topologies (no divergence times) into level 1 net-

works (A phylogenetic network is level 1 if no two cycles in its

underlying undirected graphs share a node). The work of Hejase

et al. (2018) proposed another divide-and-conquer method to infer

subnetworks and combine them. However, their method makes use

of the subnetwork topologies and requires specifying the number of

reticulations a priori.

The divide-and-conquer method we present here is not only

designed to be scalable and make possible the inference of large

phylogenetic networks, it also makes use of divergence times so that

the estimated network has a time scale. It, therefore, represents sub-

stantial improvement over the previous likelihood-based methods

limited in scalability and previous heuristic or summary methods

limited in their utility.

2 Background

A phylogenetic network W on set X of taxa is a rooted, directed

acyclic graph in which every internal node, except for the root, has

in-degree 1 and out-degree 2 (tree node) or in-degree 2 and

out-degree 1 (reticulation node). The root has in-degree 0 and out-

degree 2, and each leaf has in-degree 1 and out-degree 0. Edges

incident into reticulation nodes are the reticulation edges of the

network, and all other edges are its tree edges. The leaves of the net-

work are bijectively labeled by the elements of X.

For a full probabilistic model, the edges of the network are also

associated with continuous parameters as follows. For a given

phylogenetic network W, we denote by VðWÞ; EðWÞ, and XðWÞ the

network’s nodes, edges and leaf labels, respectively. Each edge b ¼
ðu; vÞ in EðWÞ has a length which is defined by the difference of

heights of u and v, which are denoted by h(u) and h(v). Each pair of

reticulation edges e and e0 incident into the same reticulation node

have inheritance probabilities ce and ce0 associated with them, which

are two non-negative numbers that satisfy ce þ ce0 ¼ 1. Roughly

speaking, ce denotes the proportion of the genome (in the hybrid

population denoted by the relevant reticulation node) that was

inherited along edge e, and ce0 denotes the proportion of the genome

that was inherited along edge e0. The network’s topology, branch

lengths and inheritance probabilities fully define the MSNC and

allows for deriving gene tree probability distributions under ILS and

hybridization (Yu et al., 2012, 2014).

For x 2 X, we denote by AWðxÞ and ARWðxÞ the sets of nodes

and reticulation nodes, respectively, on all paths from the leaf

labeled by x, or node x, to the root of W (ARWðxÞ � AWðxÞ).
Additionally, we denote R(W) to be the set of reticulation nodes in

W, with rðWÞ ¼ jRðWÞj.
Inference under the MSNC model. The data in phylogenomic

inferences involves m independent loci (genomic regions) consisting

of S ¼ fS1; . . . ; Smg, where Si is the sequence data for locus i. Most

commonly, Si could be an alignment of sequences from each of the

species under consideration, or Si is data from a single bi-allelic

marker (a vector of 0’s and 1’s), such as a single-nucleotide

polymorphism.

The model consists of W, the phylogenetic network (topology

and its continuous parameters such as divergence times), and vector

C of the inheritance probabilities. The likelihood of the model is

given by

pðSjW;CÞ ¼
Ym
i¼1

ð
G

pðSijgÞpðgjW;CÞdg;

where the integration is taken over all possible gene trees, pðSijgÞ is

the probability of the sequence alignment Si given a particular gene

tree g (Felsenstein, 1981), and pðgjW;CÞ is the density of the gene

tree (topologies and branch lengths) given the model parameters (Yu

et al., 2014). The posterior pðW;CjSÞ of the model is proportional to

pðSjW;CÞpðWÞpðCÞ ¼ pðWÞpðCÞ
Ym
i¼1

ð
G

pðSijgÞpðgjW;CÞdg;

where p(W) and p(C) are the priors on the phylogenetic network

(and its parameters) and the inheritance probabilities, respectively.

As discussed above, statistical inference methods under this

model suffer from the computational complexity of computing the

likelihood, and the challenges with exploring the astronomical and

jagged space of phylogenetic networks. Next, we describe our

method that ameliorates the problem to infer a large network via a

two-step approach in which subnetworks are first inferred on

smaller datasets of taxa and then the subnetworks are combined to

produce the full network.

3 Materials and Methods

Our divide-and-conquer approach to large-scale phylogenetic net-

work inference on set X of taxa takes the following steps:

1. determine a collection of overlapping subsets X1; . . . ;Xk of taxa;

2. for each set Xi of taxa, infer an accurate phylogenetic network

Wi (topology, divergence times and inheritance probabilities)

from the sequence data of Xi;
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3. Combine the k subnetworks W1; . . . ;Wk into a phylogenetic net-

work on the full set X of taxa.

A key issue here is that the sets Xi are small enough so that ac-

curate inference methods, such as Wen and Nakhleh (2018), can ef-

ficiently and accurately estimate Wi. In this work, we first show the

performance when we consider all
jXj
3

� �
three-taxon subsets, and

then propose a technique for reducing this number.

For Y � X, we denote by WjY the phylogenetic network

restricted to only the leaves labeled by elements of Y. We formulate

Step (3) in our proposed approach as follows:

• Input: Subnetworks W1; . . . ;Wk on overlapping sets X1; . . . ;Xk

of taxa.
• Output: Phylogenetic network W with the fewest nodes and

edges such that WjXi
¼ Wi for i ¼ 1; . . . ;k.

We now describe an iterative algorithm for this problem of com-

bining subnetworks into a full network. The algorithm proceeds in

three steps: (i) reconciling and summarizing the node heights across

the subnetworks; (ii) selecting a starting backbone network (a three-

taxon network in our case) and an order to add taxon-labeled leaves

to it; and (iii) iteratively attaching new leaves (n � 3 of them)

according to the computed order until a network on the full set of

taxa is obtained.

3.1 Reconciling and summarizing the subnetworks
Although two nodes in different subnetworks can correspond to the

same node in the true network, a degree of uncertainty is associated

with the inferred parameters (mainly their heights) of the two nodes

and so they will not exactly match. Those inexact heights will mis-

lead a naı̈ve algorithm that treats differences in heights as strictly

pertaining to different nodes, therefore, we need to reconcile the

parameter estimates in each subnetwork first.

We construct a set N of disjoint sets of nodes (each node in each

subnetwork has its height). Initially,

N ¼ ffvgjv 2 VðWjÞ; 1 � j � kg;

that is, N is a set of singletons, one for each node in each of the sub-

networks. For every pair (Wi; Wj) of subnetworks, if

jXðWiÞ \XðWjÞj > 1, we obtain W0i and W0j by restricting Wi and Wj

to XðWiÞ \XðWjÞ, respectively. By such a restriction, we have two

injective mappings from the nodes of W0i and W0j to their correspond-

ing nodes in Wi and Wj, respectively: mi : VðW0iÞ ! VðWiÞ and

mj : VðW0jÞ ! VðWjÞ. If W0i and W0j are identical in topology, let m0 :

VðW0iÞ ! VðW0jÞ be a bijection between their node-sets. Then for

every node v0i 2 VðW0iÞ, we find the two disjoint sets in N containing

miðv0iÞ and mjðm0ðv0iÞÞ, and replace these two sets with their union. If

W0i and W0j are not identical, we ignore them. In the end, for every

node in every disjoint set inN , we assign the average height of nodes

in the same set.

To summarize the height of each node in each subnetwork, here

we introduce the ‘extended height matrix’, or EHM. An EHM MW

of a network W with n leaves is an n�n matrix, where element

MWðx; yÞ, for taxa x; y 2 XðWÞ, is a sorted list of heights of tree

nodes, which are common ancestors of x and y in the binet obtained

by restricting W to {x, y}. We combine MW1
; . . . ;MWk

into an EHM

M for the full network as follows. For x; y 2 X, we set Mðx; yÞ to be

the longest list among MW1
ðx; yÞ; . . . ;MWk

ðx; yÞ. If there are

multiple longest lists, the list with smallest lexicographic rank is

chosen. For example, if two longest lists (0.1, 0.2, 0.4, 0.9) and (0.1,

0.2, 0.3, 1.0) exist, the latter is chosen. We also define the ‘pairwise

distance sum’, or PDS, for a subnetwork to be the sum of the height

of the most recent common ancestor of every pair of taxa in the

subnetwork.

3.2 Generating a starting network and an order for leaf

addition
Here, we describe how (i) a starting backbone network is selected,

and (ii) an order for adding all taxa to it is generated. We assume

that a designated taxon z has been identified a priori to be a member

of outgroup with at most two members. As this taxon, by definition,

is farthest from all ingroup taxa, our task boils down to selecting

one of the subnetworks that have z as a taxon (when all
n
3

� �
trinets

are built, there are
n
2

� �
trinets that have z as a leaf label). We now

describe how to choose one of those as the backbone network.

Let Wi be a subnetwork whose leaves are labeled by the outgroup

taxon z, and two other taxa x and y. We define sðWiÞ to be 1 if either

x or y is under a reticulation node in any of the k subnetworks;

otherwise, sðWiÞ ¼ 0. Furthermore, for two subnetworks Wi and Wj,

we define dðWi;WjÞ to be the topological difference (Nakhleh, 2010)

of their corresponding restrictions to the set XðWiÞ \XðWjÞ of leaves

when jXðWiÞ \XðWjÞj > 1, otherwise, dðWi;WjÞ ¼ 0. We then take

as the backbone network the subnetwork

argminWi
¼ sðWiÞ þ

X
1� j�k;i 6¼j

dðWi;WjÞ;

where Wi iterates over all subnetworks that have z as a leaf label,

and k is the number of subnetworks. If there are multiple subnet-

works with the same criterion, the subnetwork with largest PDS is

chosen.

Before we add new taxa into the starting backbone, we need to

generate an order for attaching new taxa according to the topologies

of subnetworks to maximize the correct placement of reticulation

nodes. Given two taxa x; y 2 X and a collection W1; . . . ;Wk of sub-

networks, we say that x precedes y, denoted by xy, if ARWi
ðxÞ 6¼ /

and jARWi
ðxÞj � jARWi

ðyÞj for some Wi. We build a directed graph

whose nodes are the taxa set X, and edge (x, y) is in the graph if and

only if xy. Then we perform a topological sorting on the directed

graph to get an order of attaching missing taxa. Note that there may

be cycles in the directed graph; in such a case, when the topological

sorting cannot proceed due to a cycle, we break the cycle by remov-

ing node x (and its incident edges) that appears under a reticulation

node in the largest number of subnetworks. The final result is an

order of the elements of X (minus the three taxa that label the leaves

of the backbone network). We create a list of distinct nodes (leaves),

each labeled by one taxon, sorted according to the order obtained.

The taxa are added to the initial backbone network one at a time

according to the computed order. We now describe how each single

taxon is added.

3.3 Iterative attachment of new taxa
Given the backbone network and the remaining set of taxon-labeled

leaves (with their order), we describe how to attach a new taxon to

the iteratively growing backbone network. We define the attach-

ment of taxon x that labels a leaf in subnetwork Wi, denoted by

atWi
ðxÞ, as the set itWi

ðxÞ [ rtWi
ðxÞ, where
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itWi
ðxÞ ¼ ðAWi

ðxÞ n [yð6¼xÞ2XðWiÞAWi
ðyÞÞ [ fxg;

and rtWi
ðxÞ are parent nodes not in itWi

ðxÞ of all nodes in itWi
ðxÞ.

The edges of the attachment, denoted by EðatWi
ðxÞÞ, is the set of all

edges of Wi that connect two nodes in the attachment.

We add (leaf labeled by) taxon x to the current backbone WB as

follows. We first compute atWi
ðxÞ for all k subnetworks Wi.

Assuming there are ‘ subnetworks that have x as a leaf label, we

cluster the ‘ attachments by their sizes (all attachments with the

same number of nodes in rt belong to one cluster), and then choose

the single attachment per cluster in which the parent node of the leaf

labeled by x has the smallest height of all attachments in that cluster.

In our implementation, we considered only attachments that have

up to five nodes in rt. Let H(x) be the set of all resulting attachments

(in our implementation, H(x) contains at most six attachments). For

each attachment atðxÞ ¼ ðitðxÞ [ rtðxÞÞ 2 HðxÞ, we create a set of

new backbone networks as follows:

1. For each leaf x0 2 XðWBÞ, we generate height-taxon pairs, or HT

pairs, according to the overall EHM M. The height of the pair is

an element of Mðx; x0Þ, and the taxon of the pair is x0.

2. Resolve HT pairs by finding the set P of positions on the path

from x0 (taxon in the pairs) to the root of WB where the height of

each element in P is the height in the pairs. Map the elements of

rt(x) to the positions in P in multiple ways. Remove from all the

resulting backbone networks any nodes of in-degree 0 except for

the original root of the WB. (Pseudo-code of this step is given in

the Supplementary Material.)

3. Remove networks with same topology.

The outcome of this procedure, when applied to all attachments

in H(x), is a set of candidate backbone networks B(x). We then

choose from set B(x) the network W0 whose score is minimum. The

score of W0 is defined as follows with respect to each subnetwork

W1; . . . ;Wk:

DðW0;WiÞ ¼
dðW0;WiÞ if rðW0Þ � rðWiÞ
minW00dðW0;W00Þ otherwise

;

�

where d is the topological distance of Nakhleh (2010) applied to

two networks restricted to their shared leaf-set, and W00 is taken over

all subnetworks of W0jXðWiÞ\XðW0 Þ that have rðWiÞ reticulation nodes.

We choose W�B from set B(x) as the new backbone network on set

XðWBÞ [ fxg of leaves the network W0 that minimizes

ðrðW0ÞÞ2 þ
X

1� i� k

DðW0;WiÞ:

Finally, we reconcile the heights of nodes in W�B according to sub-

networks, by generating a mapping from nodes in W�B to a set of

nodes in the subnetworks, then assign the average of height in each

set to the nodes. For inheritance probabilities, we do the same thing

for edges in W�B.

3.4 Asymptotic time complexity
Here, we provide a loose analysis of asymptotic time complexity of

our merger algorithm if all input subnetworks are trinets. Let the

total number of taxa be n, and let the total number of reticulations

in the true network be r. Then it takes at most Oððnþ rÞ2Þ to com-

pute the topological difference (Nakhleh, 2010) for two networks

which are subnetworks of the true network. Suppose the number of

input trinets is k. The major time consumption is from the enumer-

ation and evaluation of candidates while attaching new taxa to the

growing backbone network.

Suppose we have jrtðxÞj � m for all attachment in H(x). For one

attachment, there will be at most Oðm!� 3mðnþ rÞmÞ new back-

bone networks. In our implementation, we set m to 5, which makes

the number of candidates Oððnþ rÞ5Þ. Note that there are far fewer

candidates, as demonstrated by our simulation study. A loose upper

bound on the time complexity for computing the score for a candi-

date is Oð3rkðnþ rÞ2Þ.
The total asymptotic time complexity of our merger algorithm is

Oððnþ rÞ5Þ �Oð3rkðnþ rÞ2Þ �OðkÞ ¼ Oð3rk2ðnþ rÞ7Þ.

3.5 Reducing the number of subproblems
The first step of our method requires inferring a phylogenetic net-

work for every combination of three taxa, and this causes the com-

putational complexity of subnetwork inference to be Oðn3Þ given n

total taxa. If there are 100 taxa, the number of subnetworks to infer

will be
100
3

� �
¼ 161;700, which is an overwhelmingly large num-

ber for researchers who do not have access to the largest supercom-

puters. Therefore, it is important to reduce the number of

subnetworks by precomputing which subnetworks are actually

needed.

Let g be a rooted, binary phylogenetic tree leaf-labeled by set X

of taxa. For a node u in g, we denote by L(u) the set X0 � X that

labels the leaves of g that are under node u. Consider an internal

edge e ¼ ðu; vÞ in g (that is, an edge that is not incident with a leaf).

Let v1 and v2 be the two children of v, and let u1 be the child of u

that is not v. We say that edge e is defined by the set

fLðv1Þ;Lðv2Þ;Lðu1Þg (i.e. it is a set of three sets of leaf labels).

Finally, we say that a triplet of leaf labels fx1; x2; x3g � Xcovers

edge e if

ðx1 2 Lðv1Þ ^ x2 2 Lðv2Þ ^ x3 2 Lðu1ÞÞ:

The algorithm we propose for reducing the number of subpro-

blems to solve on a dataset of m loci is as follows:

1. Let G be a set of m estimated gene trees, and denote by EðGÞ the

set of all internal edges in the gene trees in G.

2. Compute a smallest set D ¼ ffx1; x2;x3g : fx1; x2;x3g � Xg
such that each edge e 2 EðGÞ is covered by at least one element

of D.

3. Infer jDj trinets, one for each element of D.

We show how computing set D can be posed as an instance of

the Hitting Set Problem, which allows one to make use of many

existing algorithmic developments for this problem. The Hitting Set

Problem is defined as follows:

• Input: A collection C of subsets of S.
• Output: Smallest subset S0 � S that intersects every set in C.

To pose our problem of finding a smallest set of three-taxon sub-

problems as an instance of the Hitting Set Problem, we define:

• S is the set of all
jXj
3

� �
three-taxon subsets of X.

• Let edge e 2 EðGÞ be defined by the set {A, B, C} of three sets of

taxa, as described in the main text. We create set

Ce ¼ ffa; b; cg : a 2 A;b 2 B; c 2 Cg. Then,

C ¼ [e2EðGÞfCeg:

Finding a smallest subset S0 � S amounts to finding the smallest

set of three-taxon sets on which to infer trinets.
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For certain networks (that are automatically identified by the al-

gorithm), the smallest set D of trinets needs to be enriched with add-

itional trinets that are identified in multiple rounds, a step that we

discuss and describe in the Supplementary Material, along with the

heuristic we implemented for solving the aforementioned problem.

4 Results and discussion

The way we ran our method is as follows: For each subproblem,

MCMC_SEQ (Wen and Nakhleh, 2018) was run and a sample of

subnetworks was collected from the posterior. We then selected one

subnetwork randomly from the samples of each subset, and applied

our merger algorithm. This step was repeated 100 times, and

resulted in 100 candidate networks on the full set of taxa. We

selected the final network as follows: if a network topology

appeared in two-thirds or more of the 100 networks, it was selected

as the final result; otherwise, we identify the most common topology

for each of the subnetwork distributions from MCMC_SEQ. Then,

we select the network which maximizes the number of subnetworks,

contained in that network, which match those topologies. The

parameters of the final network are averaged from the networks

with same topology.

Since our algorithm for combining subnetworks into a network

on the full set of taxa is a heuristic with no established theoretical

guarantees, we first set out to study its accuracy on a large number

of networks. We then studied the performance of our full approach

on simulated multilocus datasets, and finally analyzed a biological

dataset.

4.1 Accuracy of the merger algorithm
We generated 10 000 16-taxon networks using a birth-hybridization

model, and for each network, an outgroup was added to create a

17-taxon network. We restricted each of the 10 000 17-taxa net-

works to every combination of three taxa to produce
17
3

� �
¼ 680

trinets that were used as input to our merger algorithm that com-

bines the trinets into a network on the full set of taxa. We then

inspected the accuracy of the resulting networks. Figure 1 shows the

number of datasets on which the merger algorithm inferred the cor-

rect network with 10 000 17-taxon networks. As Figure 1 shows, in

total, 9838 out of 10 000 inferred networks are identical to their

corresponding true networks. When the true network had 0 or 1

reticulations, the algorithm always returned the correct network.

Furthermore, the few cases where an incorrect network was

returned mostly correspond to large numbers of reticulations (even

in those cases, the computed network was very similar to the true

one).

To examine the performance of the merger algorithm with and

without reduced number of subproblems for large networks, we

generated 100 41-taxon networks and 81-taxon networks using a

birth-hybridization model (each network had a designated outgroup

that did not involve hybridization with any other taxa). We simu-

lated 1000 gene trees within the branches of each network, using the

program ms (Hudson, 2002), and generated the full set of all true

trinets as well as subset obtained by our algorithm for reducing the

number of trinets. We used each set of trinets as input to our merger

algorithm. We inspected the accuracy in terms of whether the

inferred network is identical to the true network. The results, as well

as other characteristics of the data, are shown in Table 1. When the

full set of trinets was used as input, all trinets were inferred in paral-

lel in a single batch. When the reduced set of trinets was used as in-

put, the first batch always consists of the set of reduced trinets being

inferred in parallel. However, as we discussed above, in some cases,

multiple rounds of enrichment of the reduced set of trinets are per-

formed. Each such round corresponds to an addition batch where all

new trinets in that round are inferred in parallel.

The table shows several important points. The algorithm

achieves almost perfect accuracy on the 41-taxon networks, and per-

fect accuracy on the 81-taxon networks, when the full set of trinets

is used. Our heuristic for reducing the number of trinets achieves

two orders of magnitude reduction in the number of trinets, result-

ing in one or two orders of magnitude reduction in the running time.

The accuracy decreases when the reduced set of trinets is used, since

some information on the full network is lost by this reduction. We

identify the problem of obtaining a better reduced set of trinets as a

direction for future research.

One reason the algorithm performs better on the larger networks

(81-taxon networks) is that for a fixed number of reticulations,

those reticulations would be sparser on a network with 81 taxa than

on a network with 41 taxa, making the inference of the former less

challenging. Figure 2 breaks the accuracy results of our algorithm

on the 41- and 81-taxon networks by the number of reticulations in

these networks.

Fig. 1. Correctness of inferred networks from correct trinets, categorized by

the number of reticulations in the true networks. The numbers of datasets on

which the inferred network is identical to or different from the true one are

shown in blue and orange, respectively

Table 1. Results of merger algorithm for large networks

N Quantity Full Reduced

41 Number of trinets 10 660 151 � 386

Number of batches 1 1 � 6

Candidates enumerated 39 � 225 39 � 228

Accuracy 98% 83%

Average running time (s) 50.93 3.57

81 Number of trinets 85 320 347 � 772

Number of batches 1 2 � 9

Candidates enumerated 80 � 155 80 � 150

Accuracy 100% 88%

Average running time (s) 1077.16 10.90

Note: Full and reduced correspond to the full set of trinets and the reduced

set of trinets, and n is the number of leaves in the network. Each batch con-

sists of multiple trinet inferences that are all run in parallel. ‘Candidates

enumerated’ is the number of new backbone networks that are proposed and

examined by the algorithm during the full network construction. Accuracy is

measured as the percentage of datasets in which the constructed network is

identical to the true network. The average running time in seconds is the time

it took to construct the full network from the set of trinets.
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4.2 Accuracy on simulated multilocus datasets
We now set out to study the performance of our approach on simu-

lated multilocus sequence data, where the method is applied to the

sequence data directly. Given that computational complexity of

Bayesian inference of trinets (Wen and Nakhleh, 2018), we focus

our attention here on a subset of 24 phylogenetic networks that we

sampled to reflect varying complexity levels. As discussed in

(Elworth et al., 2019; Zhu et al., 2016), the complexity of phylogen-

etic networks arises not only from the number of leaves or number

of reticulation nodes, but also in how the reticulation nodes are

structured in the network. To allow for a careful assessment of the

accuracy of our approach, we define a simple complexity measure of

networks as follows. We define the complexity of W asP
r2RðWÞ jLðrÞj þ jLðp1ðrÞÞj þ jLðp2ðrÞÞj þ jXj � jARWðrÞj, where L(u)

is the set of leaves under node u, p1ðuÞ and p2ðuÞ are the two parents

of reticulation node u.

We selected the 24 networks from the 10 000 as follows. All

simulated networks with 0 to 5 reticulation nodes were sorted by

their complexities. For each of the six numbers of reticulation nodes,

we selected four networks: the one with the minimum complexity,

the one with the maximum complexity, and the two networks at ter-

tiles. The 24 networks were divided into three groups of 8 ‘easy’ net-

works (E), 8 ‘medium-difficulty’ networks (M), and 8 ‘hard’

networks (H), and are shown in the Supplementary Material. We

used these 24 networks as the ground truth and simulated multilo-

cus sequence from these 24 networks.

For each of the 24 networks, we generated the full set of all true

trinets as well as subset obtained by our algorithm for reducing the

number of trinets. Then, for each set of trinets (full or reduced), we

perturbed the heights of the nodes in each trinet randomly by 0.1%

and repeated this 100 times to obtain 100 ‘ideal’ MCMC-like sam-

ples of trinets. We then used the trinet sets as inputs to our merger

algorithm and inspected the resulting networks. The algorithm

obtained the correct networks in all 24 cases regardless of whether

the full or reduced set of trinet ‘samples’ were used. While this result

is perfect, Bayesian MCMC in practice is not guaranteed to yield as

accurate a sample as the one we used here. Therefore, we next set

out to study the performance of the method when we use sequence

data of the multiple loci.

For each of the 24 networks, we simulated 100 gene trees, with

two individuals per species, for 100 loci using the program ms

(Hudson, 2002), and generated sequence alignments of length 1000

for each locus using Seq-gen (Rambaut and Grassly, 1997) under

GTR model. In other words, each locus consists of 34 aligned

sequences. For each dataset, we inferred subnetworks using

MCMC-SEQ (Wen and Nakhleh, 2018) as implemented in

PhyloNet (Wen et al., 2018) with 2� 106 iterations, 1� 106 burn-

in iterations, and one sample collected per 5� 103 iterations. To

obtain the first state for the method, we inferred gene trees for the

individual loci using IQ-TREE (Nguyen et al., 2015), optimized

their branch lengths using local search, and the resulting gene trees

were used as the starting gene trees in the MCMC chain.

For each dataset, the running time to infer all trinets is shown in

Figure 3(a). This analysis was performed on NOTS (Night Owls

Time-Sharing Service), which is a batch scheduled High-Throughput

Computing (HTC) cluster. The average cost to infer all trinets for a

dataset was 1636.82 CPU-hours, which means it takes about an

hour to infer a trinet with a dual-core machine. Since the inferences

of trinet are independent of each other, this task is embarrassingly

parallel. Figure 3(b) shows the accuracy of the inferred trinets. The

figure shows that the more complex the true network, the harder it

is to infer their subnetworks.

We then used the inferred trinets as input to our merger algo-

rithm. The merger algorithm ran on a Macbook Pro with 2.9 GHz

Intel Core i5. We used both the full and reduced sets of inferred tri-

nets. The reduced sets contains between 61 and 132 trinets, which is

a major reduction (especially when considering the running time, as

shown in Figure 3(a)) over the full set, which contains 680 subnet-

works. Most datasets only need one batch of inference, three data-

sets need two batches, and one dataset needs three batches. The time

that our algorithm took to merge the trinets into a full network

(repeated 100 times) ranged between 148 and 1538 s when the full

set of trinets was used, and between 44 and 141 s when the reduced

set of trinets was used. This shows the additional efficiency gained

by reducing the number of trinets.

Finally, we fed the full and reduced sets of trinets to our merger

algorithm and compared the inferred networks to the true ones. In

measuring the difference between a true network Wt and an inferred

network Wi, we quantified false positive and false negative rates as

follows. We find the backbone W0i of Wi and backbone W0t of Wt

whose topological differences (Nakhleh, 2010) are smallest and

(a)

(b)

Fig. 2. Correctness of inferred networks from correct trinets, categorized by

the number of reticulations in the true networks. (a) Results from 100 41-

taxon networks. (b) Results from 100 81-taxon networks. Blue: the number of

cases where the inferred network is identical to the true one when using ei-

ther the full or reduced set of trinets. Orange: the number of cases where the

inferred network is identical to the true one only when the full, but not

reduced, set of trinets is used. Grey: the number of cases where the inferred

network is different from the true one, regardless of whether the full or

reduced set of trinets was used
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have the largest number of reticulation nodes among all such pairs

of backbones. If the topological difference is 0, the inferred network

has a backbone inside the true network. We compute the true posi-

tives as the number of nodes remaining in W0t, minus the topological

difference of W0i and W0t. We compute the false positives as the num-

ber of nodes deleted from Wi to W0i, plus the topological difference of

W0i and W0t. The false negative rate is computed by normalizing the

true positives by the number of nodes in Wt and subtracting it from

1, and the false positive rate is computed by normalizing the false

positives by the number of nodes in Wi.

The inferred network was identical to the true network in 12

out of 24 datasets when full set of trinets were used. When the

reduced set of trinets was used, nine inferred networks were iden-

tical to their corresponding true networks. We plot the false posi-

tives and false negatives for the datasets where the inferred

network is not identical to the true one in Figure 4(a). As the

results show, not much accuracy is lost when using the reduced

set of trinets. In particular, for four datasets, the false negative

rate when using the full set of trinets is higher than its counterpart

when using the reduced set. On the other hand, more networks

inferred from the reduced set have slightly higher false positive

rates. It is important to note here that these results combined with

the fact that all 24 inferred networks are completely accurate

when using error-free trinets shows that the error in the final net-

works is mainly due to inaccuracy of the trinets, rather than the

merger algorithm.

Finally, we compare the accuracy of the method to the only other

statistical inference method that can scale to these datasets, namely

maximum pseudo-likelihood (Yu and Nakhleh, 2015). As the

method of Yu and Nakhleh (2015) requires gene trees as input, we

ran it on the gene trees inferred by IQ-TREE, with the maximum

number of reticulations set to 5 and the number of runs set to 20.

Figure 4(b) shows the results of this comparison. These results clear-

ly show that our approach here outperforms maximum pseudo-

likelihood, and there could be several explanations for this. First,

maximum pseudo-likelihood is not good at estimating the correct

number of reticulations, so it could be that the networks obtained

by the method have unnecessary reticulation nodes. Second, max-

imum pseudo-likelihood searches the network space and could get

(a)

(b)

Fig. 4. Accuracy of the inferred networks, and comparison to maximum

pseudo-likelihood. (a) The false positives and false negatives for the datasets

where the inferred network is not identical to the true network. Squares cor-

respond to hard networks, crosses correspond to medium-difficulty networks

and triangles correspond to easy networks. Blue, red and green correspond

to results based on the full and reduced sets of trinets, and maximum

pseudo-likelihood, respectively. (b) The accuracy of our method on the full

set of trinets (left set of bars) and on the reduced set of trinets (middle set of

bars), and the accuracy of maximum pseudo-likelihood (right set of bars).

Blue corresponds to the datasets where the inferred network is identical to

the true network; orange corresponds to the datasets where the inferred net-

work contains a backbone network that is present in the true network; grey

corresponds to all other cases

(a)

(b)

Fig. 3. Running times and accuracy for the inferred trinets. (a) The total run-

ning time in CPU-hours to infer all trinets for each dataset. (b) Accuracy of the

inferred trinets. The number of datasets where the inferred trinet is correct

(blue), the inferred trinet is inside the true network (orange) and all other

cases (grey), are shown
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stuck in local maxima, whereas our proposed approach here avoids

such a search. It is important to also comment on the decreased ac-

curacy of our approach when using a reduced set of trinets. As the

set of trinets is much smaller than the full set, the method becomes

more sensitive to inaccuracy in the inferred trinets, since when using

the full set of trinets, signal from multiple trinets could mask the es-

timation error. All these results combined show that our proposed

approach can produce very accurate results, especially when the in-

dividual trinets are accurately estimated.

4.3 Inference on an empirical dataset
We analyzed a dataset of multilocus sequence alignments of multiple

Australian rainbow skinks (Bragg et al., 2018), where 11 taxa with

22 individuals were selected from the full dataset. At first we com-

puted the maximum pairwise distance of each locus using IQ-TREE

(Nguyen et al., 2015), and we excluded the loci with maximum pair-

wise distance larger than 0.2, as that would imply impossible deep

coalescence times. We then randomly selected 100 loci and used

their sequence alignments as the input.

The first step of our method is inferring subnetworks. So we

restricted the dataset with 11 taxa to every combination of three

taxa, then we added Lampropholis guichenoti into every subpro-

blem to root the subnetworks. Therefore, for every subproblem,

four-taxon networks were inferred and the number of subproblems

remains
11
3

� �
¼ 120. We ran MCMC-SEQ (Wen and Nakhleh,

2018) for 6 000 000 iterations with 3 000 000 burn-in steps, collect-

ing a sample for every 5000 iterations. We inferred gene trees using

IQ-TREE (Nguyen et al., 2015), and their branch lengths were opti-

mized individually using local search. The resulting gene trees were

used as the starting point of MCMC chain, and all gene tree topolo-

gies were fixed during Bayesian sampling. This analysis was per-

formed on NOTS (Night Owls Time-Sharing Service). We used two

CPU cores running at 2.6 GHz, and 8G RAM for each subproblem.

It took 3670 CPU-hours to infer all subnetworks. Then we used the

inferred subnetworks as the input to our merger algorithm to merge

them on a Macbook Pro with 2.9 GHz Intel Core i5. It took 53.1 s

to merge the subnetworks and generate the final result. The inferred

network is shown in Figure 5. The ingroup result agrees with the

known analysis of this dataset. The topological relationships of the

Carlia clade and the Lygisaurus clade are identical to Figure 2 in

Bragg et al. (2018).

For comparison, we also ran the maximum pseudo-likelihood

method of Yu and Nakhleh (2015) on this dataset, using the inferred

gene trees as the input. The number of runs was set to 10. The num-

ber of reticulations allowed was set to 0, 1 and 2. The inferred net-

works are shown in Figure 6. The inferred species tree was identical

to the backbone tree in the inferred network using our merger algo-

rithm. However, that is no longer the case when reticulations are

added by the method.

5 Conclusions and future work

In this article, we proposed a divide-and-conquer approach for

large-scale phylogenetic network inference. The approach makes use

of inferred subnetworks—topologies and divergence times—on

overlapping subsets of the taxa to obtain a phylogenetic network on

the full dataset. We demonstrated the accuracy and efficiency of our

approach on simulated and biological datasets.

While we illustrated the performance of the algorithm on sub-

problems of size 3 (three taxa), the merger algorithm we introduced

works on subnetworks with any number of taxa. There is a tradeoff
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Lygisaurus_macfarlani

Lygisaurus_foliorum

Liburnascincus_mundivensis

Carlia_rhomboidalis

Carlia_longipes

Carlia_vivax

Carlia_amax

Pygmaeascincus_timlowi

Lampropholis_coggeri

Lampropholis_guichenoti
96.2%

3.8%

Fig. 5. The inferred network for the empirical dataset. The reticulation, with in-

heritance probabilities (blue), is shown by the dashed line
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Fig. 6. The inferred networks for the empirical dataset using maximum

pseudo-likelihood. Top: the inferred network when no reticulation was

allowed. Middle: the inferred network when one reticulation was allowed.

Bottom: the inferred network when two reticulations were allowed. The retic-

ulations, with inheritance probabilities (blue), are shown by the dashed lines
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between the size of the subproblems, the running time, and the ac-

curacy. If the number of taxa in the full dataset is n, then the full set

of subnetworks on k leaves consists of
n
k

� �
¼ OðnkÞ. For example,

for n¼100 and k¼5, the algorithm would have to infer on the

order of 1010 five-subnetworks. Not only is this number large by it-

self, but the inference of each five-subnetwork is much more

demanding computationally than that of trinets.

Two bottlenecks of the method are the number of subproblems

to analyze, and the time it takes to infer a subnetwork on each sub-

problem using compute-heavy approaches such as Bayesian infer-

ence. To address the former, we introduced a formulation for

reducing the number of subproblems to solve and demonstrated its

effect on the efficiency and accuracy of the obtained results.

However, our solution is a heuristic, and via our reduction of the

problem to the Hitting Set Problem, one future direction is to ex-

plore the efficiency and accuracy of Hitting Set algorithms. For the

latter bottleneck, and while subnetworks can be inferred in parallel

on the subproblems, it is important to develop new techniques for

accurate estimation of small networks—topologies and divergence

times, as these are both used in our approach. Last but not least,

while the efficiency of the merger algorithm could be improved, our

analyses above show that the two aforementioned bottlenecks are

the more important targets for further improvement.

Finally, it is worth mentioning that our merger algorithm makes

no assumption on what evolutionary processes were accounted for

in the subnetwork inference. In this sense, our merger algorithm can

be applied to merge subnetworks inferred under a variety of models

(e.g. ILS, gene duplication and loss, and hybridization), as long as

the subnetworks’ topologies and divergence times are accurately

estimated.
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