
Data Race Detection for
Event-Driven Parallel Runtime

Systems

Thesis by

Lechen Yu

Thesis for the Degree of Master of Science
Department of Computer Science
Rice University (Houston, Texas) July, 2017

ABSTRACT

Data Race Detection for Event-Driven Parallel Runtime Systems

by

Lechen Yu

Event-Driven Parallel (EDP) runtime systems (or more simply, EDP runtimes) are

growing in popularity in the high-performance computing area because they provide

a promising foundation for new programming systems that can support heteroge-

neous architectures and ever-increasing hardware complexity. EDP runtimes allow

the programmer to focus on program logic, such as control and data dependences,

thereby enabling portability across a wide range of platforms and system configura-

tions. However, the applications written on top of EDP runtimes remain vulnerable

to data races. Existing data race detection tools either do not support the primi-

tives in EDP runtimes, or incur intractable large overheads by failing to utilize the

structural information available in event-driven programs. In this dissertation, we

propose a graph-traversal based data race detection method for EDP runtimes. It

introduces a reachability graph (encodes the dependences in a program), to check

the happens-before relation between memory accesses. In order to reduce the time

complexity for race detection, we propose a few optimizations, such as reachability

cache and reversed reachability graph to avoid unnecessary graph traversals and path

compression to reduce the number of steps performed for graph traversal. Based

on our race detection technique, we have developed a prototype implementation for

the Open Community Runtime (OCR). Our evaluation on a set of open source OCR

benchmarks shows that our tool handles all OCR constructs, and that the time over-

head for race detection is comparable to that of past work on race detection for more

constrained (e.g., fork-join) runimes.

Acknowledgments

I would first like to thank my thesis advisor, Prof. Vivek Sarkar, for providing me

with precious advice on my research. He also spent substantial time revising my poor

writing. Thank you very much for your guidance.

I would also like to thank the rest of my thesis committee: Prof. Keith Cooper and

Prof. Robert Cartwright. Thank you for your comments, feedback and challenging

questions. I also enjoyed their courses: Introduction to Compiler(Comp 412) and

Programming Language(Comp 511), which showed me promising directions in the

programming language area.

I would also like to acknowledge Arghya Chatterjee, for his help on this thesis

and my daily life. He helped me adapt to this country and patiently taught me all

required skills.

My sincere thanks goes to my best friends, Dingming and Betty. Thank you for

being by my side during my highs and lows.

Finally, I would like to express my very profound gratitude to my parents for

providing me with unwavering support and continuous encouragement throughout my

years of education. Thank you for letting me chase my dreams in a foreign country

without reservation. This accomplishment would not have been possible without their

love and affection.

Contents

Abstract

Acknowledgments

List of Illustrations

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Statement . 3

1.3 Contributions . 3

1.4 Organization . 4

2 Background 5

2.1 Task Parallel Runtimes . 5

2.2 Open Community Runtime . 8

2.3 Data Race Detection . 14

2.4 Vector Clocks . 14

3 Graph Traversal based Data Race Detection Algorithm 20

3.1 Reachability Graph . 20

3.2 Race Detection . 22

3.3 Complexity Analysis . 29

4 Prototype Implementation 31

4.1 Prototype Design . 31

4.2 Register Handler for OCR Library Call 33

4.3 Register Handler for Memory Access 34

5 Optimization 36

5.1 Ideas to Optimize Data Race Detection 36

5.2 Reachability Cache . 37

5.3 Reversed Reachability Graph . 38

5.4 Path Compression . 43

6 Evaluation 47

6.1 Environment . 47

6.2 Benchmark . 47

6.3 Result & Analysis . 48

7 Related Work 54

7.1 Vector Clock . 54

7.2 Lockset . 55

7.3 SP-bag / ESP-bag . 55

7.4 Dynamic Task Reachability Graph 57

8 Conclusion & Future Work 59

8.1 Conclusion . 59

8.2 Future Work . 59

Bibliography 61

Illustrations

2.1 Task Parallel Program and Runtime 6

2.2 Dynamic Computation Graph . 13

2.3 Example of Event Ordering . 16

2.4 Vector Clock Transition . 18

3.1 Reachability Graph . 21

3.2 Revised Reachability Graph . 23

4.1 Prototype Architecture . 32

5.1 Reversed Reachability Graph . 40

5.2 Reachability Graph for Task Loop . 44

5.3 Reachability Graph for Two Dimension Task Loop 45

1

Chapter 1

Introduction

1.1 Motivation

With the ever-increasing complexity of modern computing architectures (e.g., hetero-

geneous processing units and hierarchical memories), applications on these machines

must leverage the architectural complexity to perform efficiently. While developing

parallel applications, the program must repeatedly be tuned to obtain the proper

work partition for load balancing, thereby reducing the application execution time

on a given platform. In order to avoid low-level tuning, Task Parallel (TP) runtimes

have been proposed, which contains a group of concise constructs and a well-designed

runtime. Programmers only need to divide the program logic into tasks and specify

the dependences among tasks, and the underlying runtime will be responsible for task

creation, task scheduling, memory allocation and data migration after launching the

program. In general, the runtime has a complete knowledge of the program and ma-

chine so it can schedule task and data dynamically according to the machine status.

Usually, TP runtimes can achieve better performance than manually tuning [1, 2].

Among TP runtimes, Event-Driven Parallel (EDP) runtimes [1] are a new trend.

They support a graph model that allows the expression of dependences more natu-

rally. Compared with other TP runtimes, EDP runtimes are much more general since

they can express computation graphs that are more general than those supported by

fork-join TP runtimes.

2

Although EDP runtimes alleviate the difficulty of writing efficient and portable

parallel programs, event-driven applications are still prone to data races, a notorious

error in parallel programs. A data race occurs when the program issues two unordered

memory accesses to the same location where at least one of the accesses is a write.

Since the order of memory accesses can be reversed in some executions compared

with others, the program behavior is dependent on the thread interleaving. Since a

data race may only occur on some particular interleavings, detecting and reproducing

data races can be hard and time-consuming. It may take multiple weeks or months

to fix a data race in certain cases [3].

There has been a lot of past work on detecting data race automatically at runtime.

Some algorithms are very general [4, 3], but they do not take the feature of EDP run-

times into consideration, which causes additional overhead because each task has to

be treated as a separate thread to apply these approaches on event-driven programs.

Other works are only applicable to a specific type of parallel runtimes. For instance,

SP-bag [5] can only detect data race for spawn-sync parallel runtimes and fully strict

computation graphs, and ESP-bag [6] can only detect data race for async-finish paral-

lel runtimes and terminally strict computation graphs. These algorithms make use of

the structural information to report data race precisely with low overhead, but they

rely on runtime-specific constraints on the computation graph structures, which are

not satisfied in EDP runtimes. Currently, there does not exist any data race detection

algorithm with tractable overhead that can support EDP runtimes.

In this dissertation, we introduce a reachability graph for EDP runtimes, a novel

representation of the happens-before relation in an EDP program∗. The reachability

graph expresses the happens-before relation as directed paths, taking into account

∗A program utilizing EDP runtimes to achieve parallelism

3

the unique dependence properties of EDP runtimes. It enables the use of a graph

traversal based data race detection algorithm. After one execution, the race detection

algorithm can detect data races in all possible thread interleavings for the same input.

1.2 Thesis Statement

The reachability graph can represent the happens-before relation in an EDP program,

and can be used to enable precise dynamic data race detection algorithms that can

detect data races in an EDP program with less overhead than existing techniques.

1.3 Contributions

This thesis makes the following contributions:

• Reachability graph, a graph based representation of the happens-before relation

in an EDP program.

• A graph traversal based data race detection algorithm for EDP runtimes.

• Three optimizations to the race detection algorithm, which reduce the time

overhead without loss in precision.

• A data race detection tool that supports all the constructs in the Open Com-

munity Runtime, an exemplar of EDP runtimes that is the focus of the imple-

mentation work in this dissertation.

• Experimental performance evaluations of the race detection algorithm and the

three optimizations.

4

1.4 Organization

This thesis is organized as follows:

• Chapter 2 contains background on EDP runtime and data race detection. This

chapter introduces a classification on parallel runtimes and gives a compre-

hensive description of the Open Community Runtime as an example of EDP

runtimes. For data race detection, this chapter introduces vector clock [7], a

widely used abstraction of data race detection and illustrates how to apply

vector clocks to an EDP program.

• Chapter 3 discusses our graph traversal based data race detection algorithm.

This chapter focuses on the reachability graph and the race detection algorithm

against the graph.

• Chapter 4 discusses our data race detection tool. This chapter shows how we

implement the proposed race detection algorithm on top of Intel Pin [8] and

how we extract the runtime information through binary instrumentation.

• Chapter 5 discusses the intuitions to optimize the race detection algorithm.

This chapter introduces three different optimizations.

• Chapter 6 evaluates our race detection algorithm on a group of Open Commu-

nity Runtime benchmarks. This chapter compares the performance between

the original race detection algorithm and the three optimizations.

• Chapter 7 discusses related work for data race detection.

• Chapter 8 wraps up by summarizing the thesis and potential areas for future

research.

5

Chapter 2

Background

2.1 Task Parallel Runtimes

A Task Parallel (TP) runtime treats tasks as first-class citizens. When a parallel

program is mapped on to a TP runtime, it is decomposed into a group of tasks that

are independent by default, so that any dependences must be specified explicitly [9].

A task is a dynamic instance of a code segment that executes asynchronously, and

is the basic execution unit of a TP runtime. A single task may have control or data

dependences with other tasks. For instance, one task may send its result to another

task as an input. A task cannot start execution until all tasks that it depends on

have completed. Compared to a system-level execution unit, such as a thread, task

is both more general and high-level constructs. TP runtimes hide low-level details

of execution, such as context switch and processor affinity, from the higher levels of

the application. The dependences in a program can be represented by a computation

graph, in which tasks are represented by nodes and dependences by edges.

Figure 2.1 illustrates how a TP runtime tackles a parallel program. The pro-

gram is represented as a dynamic computation graph. The TP runtime consists of

a task scheduler (which may have a centralized or distributed implementation), and

multiple processing units which can execute one task at a time. In many TP run-

time implementations (including work-stealing runtimes), each processing unit has a

task queue to store runnable tasks. The task scheduler is responsible for managing

6

T1

T2 T3

T4

⋮

⋮

Program TP Runtime

T1T2T3

⋮

Queue 1

Queue 2

Queue 3

Task Scheduler

Figure 2.1 : Task Parallel Program and Runtime

the creation and scheduling of task, including keeping track of the dependences to

determine when tasks become runnable (ready). When a processing unit becomes

available, the decision of which runnable task it should execute next is determined by

the task scheduler’s policy. Thus, the TP runtime provides a high-level abstraction

of the underlying machine and hides low-level features from the application. By only

exposing high-level abstractions, such as tasks, to the application, TP runtimes make

programs more portable to different machines. Furthermore, TP runtimes free pro-

grammers from the low-level burden of performance tuning for load balance; instead,

programmers only need to specify tasks and their dependences, and can leave the

scheduling details to the TP runtime.

To help structure our discussion of background related to EDP runtimes, we sum-

marize a categorization of parallel runtimes in Table 2.1. Two widely used parallel

7

runtimes, MPI and Pthreads, are categorized as System-level Parallel (SP) runtimes

as their constructs only support system-level parallel programming. Programmers

must manually create threads and bind logical tasks to the threads. Further program-

mers are also responsible for inserting necessary synchronization operations, such as

mutexes and barriers, to ensure the correctness of thread execution and shared mem-

ory accesses.

TP runtimes are divided into three subclasses according to how dependences are

specified in each subclass:

• Spawn-Sync Parallel Runtimes. In spawn-sync parallel runtimes, such as

Cilk, a task can only wait for its immediate child tasks. Cilk includes two

constructs, cilk spawn and cilk sync, to write programs that use spawn sync

task parallelism. cilk spawn specifies that a function call is treated as a child

task and executes asynchronously. cilk sync specifies that all spawned child

tasks must complete before the parent task can continue.

• Async-Finish Parallel Runtimes. Async-finish parallel runtimes relax the

”only wait for immediate child” restriction by supporting finish as a more

general task termination construct. In X10 and HJ, async is equivalent to

cilk spawn that specifies an asynchronous child task. finish specifies a scope in

which the invoking task must wait until all directly and transitively spawned

tasks within the scope complete. finish enables a task to depend on a set of

nested parallel tasks. TBB, OpenMP Task and HPX define a similar construct,

task group. A task can synchronize with a task group to wait for the termination

of all tasks that belong to the task group.

• Event-Driven Parallel Runtimes. Unlike spawn-sync and async-finish task

8

SP Runtimes MPI [10], Pthreads [11]

TP Runtimes

spawn-sync Cilk [12],

async-finish X10 [13], HJ [14], TBB [15], OpenMP Task [16], HPX [17]

event-driven CnC [18], OCR [1], Realm [19], StarPU [20], HC [21]

Table 2.1 : Parallel Runtime Categorization

parallel runtimes, in which programmers must wrap tasks into a scope to syn-

chronize with other tasks, Event Driven Parallel (EDP) runtimes allow direct

specification of dependences. EDP runtimes use graph-based models to specify

dependences. For instance, in Realm, spawn accepts a task waiting list when

spawning a new task. Another example is OCR, which provides a function

ocrAddDependence to specify the dependence between any two tasks.

2.2 Open Community Runtime

In this dissertation, we focus on Open Community Runtime (OCR), an open-source

EDP runtime developed by Intel, Rice, and others. The basic four objects in OCR

are event driven tasks (EDTs), data blocks (DBs), events and EDT templates, all of

which are referred to as OCR objects. Each OCR object has a globally unique ID

(GUID) used to identify the object during its life cycle. Further, OCR objects may

have dependences on other objects. The definitions of the four OCR objects are listed

below.

• EDT represents a task. The code snippet associated with an EDT will execute

asynchronously after all its dependences are satisfied. The process of EDT exe-

9

cution is nonblocking, which implies no synchronization operation is permitted

within an EDT. For convenience, there is a special EDT called “finish EDT”

that mimics the semantics of finish from async-finish parallel runtimes. A fin-

ish EDT will terminate after all directly and transitively spawned EDTs in its

scope terminate.

• DB represents a chunk of consecutive memory that an EDT can access. An

EDT can only access DBs that are specified as data dependences or created

during its execution. At the start of execution, each EDT internally records

the start pointers for accessible DBs. The start pointer is only guaranteed to

be valid during the execution of the acquiring EDT because OCR may migrate

DBs to other locations or duplicate a DB to transparently make two copies for

two acquiring EDTs.

• Event represents synchronization among EDTs. The semantics is similar to

that of a semaphore or latch. An event may have multiple directed edges linked

to multiple EDTs. EDTs linking to an event through its outgoing edges must

wait for termination of EDTs linking through incoming edges.

• EDT template represents meta-data from which an EDT is created. It records

the code to execute and the number of dependences. As with objects and classes

in object-oriented programming, multiple EDTs can be created from the same

EDT template.

Control and data dependence are mapped to different kinds of edges in an OCR

program.

• Control Dependence. A directed edge from an event to an EDT that does

not involve a DB.

10

• Data Dependence. A directed edge from a DB to an EDT or event.

As an EDP runtime, OCR provides a graph-based model to spawn OCR objects

and specify dependences. The key data structures and functions are listed below

(Only selected parameters are listed, for more detail, please refer to the OCR speci-

fication [1]):

• ocrGuid t. Type of GUID used to reference all OCR objects.

• ocrEdtDep t. Type of dependence. It has two fields, guid referring to a DB

and ptr pointing to the DB’s start address. These fields are only valid when

the dependence is a data dependence.

• ocrEdtCreate(edt guid, template guid, output guid). Function used to

create an EDT. edt guid is an output parameter for the spawned EDT’s GUID.

template id refers to the associated EDT template. output guid is an output

parameter for the associated output event that indicates its termination.

• ocrDbCreate(db guid, addr, size). Function used to create a DB. The first

two parameters are output parameters, db guid for the spawned DB’s GUID and

addr for the start address. The third parameter, size, is an input parameter

that specifies the size of memory in bytes.

• ocrEventCreate(event guid). Function used to create an event. It only

tasks one output parameter event guid for the spawned event’s GUID.

• ocrEdtTemplateCreate(template guid, func ptr). Function used to cre-

ate an EDT template. The first parameter template guid is an output parameter

for the spawned EDT template’s GUID. The second and third parameter are

11

input parameters, func ptr pointing to the function that EDT will execute and

depc indicating the number of dependences.

• ocrAddDependence(src, dst). Function used to specify a dependence be-

tween two EDTs. It tasks two input parameters, src referring to the source

OCR object and dst referring to the destination OCR object.

• ocrShutdown(): Function used to terminate OCR program execution.

Listing 2.1 shows an OCR implementation of a parallel array sum computation.

Note that this code is very verbose, since the OCR APIs are designed to represent

an intermediate runtime interface, rather than a programming interface. We would

expect a higher-level programming model to automatically generate code such as that

in Listing 2.1. The program first divides the workload evenly into two EDTs which

calculate the partial sum asynchronously. Then the two partial sums are transferred

to the third EDT to calculate the total sum. Lines 1-16 define a function responsible

for calculating a partial sum. It acquires two DBs as data dependences that record the

assigned array and its size. After sequentially adding up the elements in its subarray,

it outputs the DB storing the partial sum. Lines 17-25 define a function responsible

for outputting the array sum. It adds up the two partial sums from the preceding

two EDTs and prints the final result. Lines 26-54 define mainEdt, which is the entry

point of an OCR program. It sets up the parallel array sum through OCR constructs.

Lines 46-52 specify dependences among OCR objects.

The corresponding dynamic computation graph is shown in Figure 2.2 in which an

EDT, DB, or event are denoted by an ellipse, rectangular, or rhombus. We observe

that the function calls in mainEdt specify key dependences for this program.

12

1 ocrGuid t partial_sum (u32 paramc , u64∗ paramv , u32 depc , ocrEdtDep t depv []) {

2 // get array s i z e

3 u32 len = ∗ (i n t ∗) depv [0] . ptr ;

4 // get array

5 i n t ∗ array = (in t ∗) depv [1] . ptr ;

6 // a l l o c a t e va r i ab l e f o r p a r t i a l sum

7 i n t ∗ k

8 ocrGuid t db_guid ;

9 ocrDbCreate(&db_guid , (void ∗∗) &k , sizeof (i n t)) ;

10 k [0] = 0 ;

11 f o r (u32 i = 0 ; i < len ; i++) {

12 k [0] += array [i] ;

13 }

14 // re turn p a r t i a l sum

15 r e turn db_guid ;

16 }

17 ocrGuid t output (u32 paramc , u64∗ paramv , u32 depc , ocrEdtDep t depv []) {

18 // get p a r t i a l sum

19 i n t ∗ data1 = (in t ∗) depv [0] . ptr ;

20 i n t ∗ data2 = (in t ∗) depv [1] . ptr ;

21 // output array sum

22 printf (”Array sum i s %d\n” , ∗ data1 + ∗ data2) ;

23 ocrShutdown () ; // shutdown the program

24 r e turn NULL_GUID ;

25 }

26 ocrGuid t mainEdt (u32 paramc , u64∗ paramv , u32 depc , ocrEdtDep t depv []) {

27 u32 len = paramv [0] ;

28 i n t ∗ array = malloc (sizeof (i n t) ∗ len) ;

29 // d e f i n e GUID

30 ocrGuid t partial_sum_template , output_template ;

31 ocrGuid t edt1 , edt2 , edt3 , sync_event , db1 , db2 , db3 ;

32 // d e f i n e EDT template

33 ocrEdtTemplateCreate(&partial_sum_template , partial_sum , 1) ;

34 ocrEdtTemplateCreate(&output_template , output , 2) ;

35 // d e f i n e EDT

36 ocrEdtCreate(&edt1 , partial_sum_template , NULL) ;

37 ocrEdtCreate(&edt2 , partial_sum_template , NULL) ;

38 ocrEdtCreate(&edt3 , output_template , NULL) ;

13

39 // d e f i n e event

40 ocrEventCreate(&sync_event) ;

41 // d e f i n e DB

42 ocrDbCreate(&db1 , (void ∗∗) array , sizeof (i n t) ∗ len / 2) ;

43 ocrDbCreate(&db2 , (void ∗∗) array + len / 2 , sizeof (i n t) ∗ len / 2) ;

44 ocrDbCreate(&db3 , (void ∗∗) len , sizeof (u32)) ;

45 // s p e c i f y dependence

46 ocrAddDependence (db1 , edt1) ;

47 ocrAddDependence (db3 , edt1) ;

48 ocrAddDependence (db2 , edt2) ;

49 ocrAddDependence (db3 , edt2) ;

50 ocrAddDependence (edt1 , sync_event) ;

51 ocrAddDependence (edt2 , sync_event) ;

52 ocrAddDependence (sync_event , edt3) ;

53 r e turn NULL_GUID ;

54 }

Listing 2.1: OCR Implementation of Array Sum

 array
[0 : len/2 - 1] array[len/2 : len]

synchronization

partial sum partial sum

output

 array
[len/2 : len - 1]len/2

partial
output

partial
output

Figure 2.2 : Dynamic Computation Graph

14

2.3 Data Race Detection

A data race occurs when two memory operations access the same memory location

without any ordering constraints and at least one of them is a write operation. Be-

cause the two operations are not ordered, the final value in the accessed memory

location is nondeterministic. Data race causes the program to generate nondeter-

ministic results, thereby making data races hard to detect, reproduce and fix. To

alleviate the difficulty of detecting data races, a wide range of approaches for au-

tomatic detection of data races have been proposed in past work. Some methods

utilize static analysis to detect suspicious memory accesses [22]. While many static

approaches can guarantee soundness, they are usually prone to large numbers of false

positives. In contrast, dynamic approaches to data race detection instrument the

program to record all memory accesses to shared variables at runtime, and check the

happens-before relations among these operations dynamically [4, 23]. Compared with

static data race detection, dynamic data race detection is more precise, but its scope

is limited to a single input. Further, it also incurs higher overhead due to memory

instrumentation and other runtime book-keeping. In this thesis, we focus on dynamic

data race detection.

2.4 Vector Clocks

Vector clocks were proposed by Leslie Lamport and Friedemann Mattern to solve

event ordering problem in distributed system [24, 7]. It models each process in the

system as an event sequence which communicates with other processes through mes-

saging passing. The happens-before relation → between two events is defined by the

following three conditions.

15

• If events a and b are in the same process and a occurs before b, then a→ b.

• If event a represents sending a message and event b is the associated receipt of

the same message, then a→ b.

• If a→ b and b→ c, then a→ c.

With the abovementioned three rules, if there is an event sequence ti from event

a to event b and any two adjacent events ti, ti+1 have ti → ti+1, then we can conclude

that a→ b, otherwise a and b may happen in parallel. Figure 2.3 shows an example

of happens-before relation. e2 happens before e8 as there exists an event sequence

{e2, e4, e5, e8}.

A vector clock V C : ProcessID → Nat records a clock for each process in the

system. Suppose there are n processes in the system, each process will acquire a

n-length vector vc in which the i− th element represents the latest preceding epoch

of process i. There are several operators defined on vector clocks.

vc1 ≤ vc2 = if ∀i. vc1[i] ≤ vc2[i] then true else false.

vc1
⋃
vc2 = ∀i.max(vc1[i], vc2[i]).

incj(vc) = ∀i. if i == j then vc[i] = vc[i] + 1.

⊥ (vc) = ∀i. vc[i] = 0.

Each vector clock updates locally according to local events and received messages,

without acquiring a consistent view of global state among all processes. The rules of

updating a vector clock are listed below.

• Initialize process i. vc =⊥ (vc), then inci(vc).

16

e1 e2 e3

e4 e5 e6

e7 e8 e9

p1

p2

p3

Figure 2.3 : Example of Event Ordering

• Send a message to process i. Send out vc through a message, then inci(vc).

• Receive a message from process i. Extract vc′ from the received message,

then vc = vc
⋃
vc′.

When an event occurs, its clock is set to the vector clock of the affiliated process.

By comparing assigned clock of two events locally, we can tell whether one happens

before the other or they run in parallel. For any two events a and b, a happens before

b iff vca ≤ vcb.

Vector clocks provide an approach to encoding happens-before relations in a point-

wise manner. It can detect casual violations in any system whose order relation is

isomorphic to the happens-before relation. For an OCR program, if all operations

in an EDT are mapped to a “process” and inter-EDT operations, such as spawning

EDTs and dependences, are mapped to “message passing”, then vector clocks can be

applied to verify whether all accesses to shared memory are ordered correctly.

First, we give formal definitions of possible operations in an OCR program.

• read(x): read a value from variable x.

• write(x): write a value to variable x.

17

• spawn(t, u): EDT t spawns EDT u.

• add dependence(t, u): EDT u depends on EDT t.

The transformed rules of updating vector clocks for operations are listed below.

vc finalt denotes the final vector clock after EDT t terminating.

• spawn(t, u): vcu = vct, vct = inct(vct).

• add dependence(t, u): vcu = vcu
⋃
vc finalt.

Listing 2.2 shows an OCR program containing a data race, and Figure 2.4 describes

the transition of vector clocks during the execution of that program. mainEdt spawns

edt1 at 〈1, 0, 0〉 and edt2 at 〈2, 0, 0〉. All of three EDTs write to the same variable x.

The write in mainEdt happens before the write in child EDTs as 〈1, 0, 0〉 ≤ 〈1, 1, 0〉

and 〈1, 0, 0〉 ≤ 〈2, 0, 1〉. However, 〈1, 1, 0〉 � 〈2, 0, 1〉, so there exists a data race

between the write by edt1 and edt2. The execution order of EDTs has no effect

on race detection as vector clocks can detect potential data races in all possible

interleavings for a given input. Even if in one execution the three EDTs execute

sequentially (on a single processor, say), and the actual data race does not occur,

the vector clock approach can still report data races after comparing the clocks of

different operations.

1 ocrGuid t child (u32 paramc , u64∗ paramv , u32 depc , ocrEdtDep t depv []) {

2 i n t ∗ data = (in t ∗) depv [0] . ptr ;

3 ∗data = 1 ;

4 r e turn NULL_GUID ;

5 }

6 ocrGuid t mainEdt (u32 paramc , u64∗ paramv , u32 depc , ocrEdtDep t depv []) {

7 i n t ∗ data ;

8 ocrGuid t edt1 , edt2 , db , template ;

9 ocrEdtTemplateCreate(&template , child , 1) ;

18

10 ocrDbCreate(&db , (void ∗∗) data , sizeof (i n t)) ;

11 ∗data = 0 ;

12 ocrEdtCreate(&edt1 , template , NULL) ;

13 ocrEdtCreate(&edt2 , template , NULL) ;

14 ocrAddDependence (db , edt1) ;

15 ocrAddDependence (db , edt2) ;

16 r e turn NULL_GUID ;

17 }

Listing 2.2: OCR Program with Data Race

edt1 mainEdt

<1,0,0>

edt2

<1,0,0>

<2,0,0>

<3,0,0>

<1,1,0>

<2,0,1>

write(x)

spawn(edt1)

spawn(edt2)

<2,0,1><1,1,0>

write(x) write(x)

Figure 2.4 : Vector Clock Transition

The main disadvantage of the vector clock approach lies in its time and space

overhead. For an OCR program containing n simultaneously live EDTs, it requires

O(n2) space as each EDT acquires an n-length vector clock. The time complexity of

comparing two operations is O(n) as it loops through every element of the vector clock

to check the happens-before relation. Considering that in some real-world applications

there exists thousands of simultaneously live EDTs, vector clocks can easily exhaust

19

available memory. Although there are some revised implementations of vector clocks

that reduce the time complexity to O(1) [4, 25], the memory overhead of storing a

vector clock in each thread still restricts its usage.

20

Chapter 3

Graph Traversal based Data Race Detection

Algorithm

3.1 Reachability Graph

A Reachability Graph (also called a computation graph) [26, 5, 27, 6, 28] is a directed

acyclic graph which encodes the happens-before relation between operations. A node

denotes operation (including spawning an EDT, reading / writing a memory location,

synchronization by an event and returning an DB), and an edge denotes an ordering

constraint. There are three different kinds of edges in a reachability graph.

• Continue Edge represents the sequential execution order within an EDT. All

operations belonging to the same EDT are connected by continue edges.

• Spawn Edge represents the parent-child relationship. The first operation in

child EDT executes after the spawn operation in parent EDT, so the corre-

sponding two nodes are linked by a spawn edge. All spawn edges constitute the

spawn tree which encodes ancestor-descendant relationship among all EDTs.

• Join Edge represents dependences between EDTs. Since the first operation

of an EDT executes after the last operation of all dependent EDTs, join edges

link the EDT to all dependent EDTs.

For the array sum program in Listing 2.1, the associated reachability graph is

displayed in Figure 3.1. All operations inside an EDT are linked by continue edges.

21

main edt spawns three child EDTs iteratively, so there are spawn edges linking spawn

operation to the beginning of child EDTs. edt3 depends on the partial sum from

preceding EDTs, so there are join edges linking sync event to edt3 (An event is also

considered to be an operation).

spawn edt1 spawn edt2 spawn edt3...

read depv[0]

...

return db_guid... read depv[0] return db_guid...

read depv[0] output array_sum...
Continue

Spawn

Join

main_edt

edt1 edt2

edt3

sync_event

Figure 3.1 : Reachability Graph

The happens-before relation between two operations can be defined using the

reachability graph. For two operations a, b and their corresponding nodes na, nb, if

there exists a directed path from na to nb such that any two contiguous nodes on the

path are connected by an edge, then a happens before b. If there is no such ordering

from a to b or b to a, they may happen in parallel.

22

3.2 Race Detection

Based on the reachability graph, we propose an on-the-fly data race detection algo-

rithm for OCR programs. It defines two fundamental data structures: reachability

graph and shadow memory. The reachability graph is dynamically constructed along

with the execution of OCR programs, and the race detection algorithm leverages the

reachability graph to check whether memory accesses are ordered correctly. In the

original reachability graph shown in Figure 3.1 every single operation has a unique

node, which incurs high memory overhead. To reduce memory usage, the race de-

tection algorithm makes use of a revised reachability graph. As on the example

displayed in Figure 3.2, each node represents a straight-line operation sequence end-

ing with spawn or return operation (epoch node). The operation sequence is defined

as an epoch (The definition of epoch is different from that in vector clocks [4]) and

continue edges inside an epoch node are omitted. Each epoch node is identified by

a unique epoch ID. In contrast with the original graph, the memory space occupied

by revised reachability graph is within the same order of magnitude as the number

of EDTs.

The shadow memory (SM) is responsible for recording previous memory accesses.

Every byte of shared memory used by the program is associated with an SM instance

which stores meta data for race detection [29]. According to [30], all concurrent reads

and the latest write to a memory byte should be stored in its SM instance, in order

not to miss any data race. Considering that in OCR, the only approach to sharing

data among EDTs is through DBs and DBs can be moved between the execution of

EDTs, we use the GUID of a DB and the offset from the starting address to uniquely

locate an SM instance regardless of whether the start address is changed.

The pseudocode of the race detection algorithm is shown in Algorithm 3.1-Algorithm 3.5.

23

spawn edt1 spawn edt2 spawn edt3...

read depv[0]

...

return db_guid... read depv[0] return db_guid...

read depv[0] output array_sum...
Continue

Spawn

Join

main_edt#1

edt1 edt2

edt3

sync_event

main_edt#2 main_edt#3

Figure 3.2 : Revised Reachability Graph

There are two global data structure, reachability graph and db map. reachability graph

is an adjacency list representation of reachability graph. db map is an index for SM

instances which binds a DB’s GUID to its SM instance array. The input parameter

op represents the monitored operation from which the algorithm extracts runtime

information for analysis. The race detection algorithm consists of four modules:

• race detector is the central module of the whole algorithm, which is shown

in Algorithm 3.1. It monitors program execution and selects a proper auxiliary

module to tackle encountered operation. All OCR library calls and DB accesses

have a corresponding handler. For instance, race detector will redirect to ini-

tialize shadow memory for calls to ocrDbCreate, to initialize SM instances for

24

the created DB.

Algorithm 3.1 Race Detector

1: procedure race detector

2: while program issues an operation op do

3: if is ocr library call(op) then

4: if is db create(op) then

5: initialize shadow memory(op)

6: else

7: update graph(op)

8: end if

9: else if is db access(op) then

10: check data race(op)

11: end if

12: end while

13: end procedure

• initialize shadow memory is responsible for initializing an SM instance for

each byte of shared memory. As shown in Algorithm 3.2, this procedure is

called upon DB creation, which creates SM instances according to DB size.

These instances are stored in db map and DB’s GUID is used to retrieve them.

• update graph keeps the reachability graph up-to-date. As shown in Algo-

rithm 3.3, it performs a different action for each kind of OCR library call. If

the library call is to spawn an EDT, a corresponding node is inserted into reach-

25

Algorithm 3.2 Initialize Shadow Memory

1: procedure initialize shadow memory(op)

2: id = op.db id, size = op.db size

3: sm = new SM [size]

4: db map[id] = sm

5: end procedure

ability graph and the node for parent EDT links to it through a spawn edge. As

spawning EDT means the end of parent EDT’s current epoch, a node for next

epoch is also inserted and parent EDT links to it through an continue edge.

If the library call is to spawn an event, only a corresponding node is inserted.

If the library call is to specify dependence, a join edge is inserted between the

two involved nodes. Currently we does not remove terminated epochs or events

from the graph.

• check data race carries out reachability check to detect data race. It is shown

is Algorithm 3.4. When the program issues a shared memory access, it first calls

findSM to retrieve the associated SM instance from db map. For a read to DB,

check data race calls check reachability once to see whether the read and latest

write are ordered. check reachability is a breadth-first search on the reacha-

bility graph. It returns true if the corresponding nodes of the two operations

are reachable. The detail of check reachability is shown in Algorithm 3.5. If

check reachability returns true, check data race adds the read into the associ-

ated SM instance for future data race detection, otherwise reports write-read

race. For a write to DB, check data race compares it with all recorded reads and

write to detect read-write race and write-write race. If the write is reachable

26

from all recorded memory accesses, check data race clears out the SM instance

and sets the write as latest write since it happens after all previous memory

accesses to the same memory location.

Algorithm 3.3 Update Reachability Graph

1: procedure update graph(op)

2: if is edt create(op) then

3: id = op.epoch id

4: n = new EpochNode(id)

5: reachability graph[id] = n

6: parent = reachability graph[op.parent id]

7: parent.add spawn edge(n)

8: new epoch = new EpochNode(parent) . create a node for next epoch

9: parent.add continue edge(new epoch)

10: else if is event create(op) then

11: id = op.event id

12: reachability graph[id] = new EventNode(id)

13: else if is add dependence(op) then

14: src = reachability graph[op.src id]

15: dst = reachability graph[op.dst id]

16: src.add join edge(dst)

17: end if

18: end procedure

27

Algorithm 3.4 Check Data Race

1: procedure check data race(op)

2: sm = findSM(op.db id, op.addr)

3: if is read(op) then

4: is ordered = check reachability(sm.write, op.epoch id)

5: if !is ordered then

6: report write-read race

7: end if

8: sm.read.add(op.epoch id)

9: else if is write(op) then

10: is ordered = check reachability(sm.write, op.epoch id)

11: if !is ordered then

12: report write-write race

13: end if

14: for all r in sm.read do

15: is ordered = check reachability(r, op.epoch id)

16: if !is ordered then

17: report write-write race

18: end if

19: end for

20: sm.write = op.epoch id

21: sm.read = ∅

22: end if

23: end procedure

28

Algorithm 3.5 Check Reachability

1: procedure check reachability(src id, dst id)

2: src = reachability graph[src id]

3: dst = reachability graph[dst id]

4: reached nodes = ∅

5: queue = src

6: while queue 6= ∅ do

7: next = queue.pop

8: if reached nodes.contain(next) then

9: continue

10: else

11: reached nodes.add(next)

12: end if

13: if next == dst then

14: return true

15: end if

16: queue.add all(next.edges)

17: end while

18: return false

19: end procedure

29

3.3 Complexity Analysis

Let us assume an OCR program allocates α EDTs, β DBs and γ events during

the execution, and it calls ocrAddDependence δ times. The space complexity of the

reachability graph is:

• Epoch Node. Every time the program spawns an EDT, the race detection

algorithm allocates an epoch node for the EDT, and another node for its parent,

so in total there are 2α epoch nodes.

• Event Node. Every time the program spawns an event, the race detection

algorithm allocates an event node for it, so in total there are γ event nodes.

• Continue Edge. Every time the program spawns an EDT, the race detection

algorithm inserts a continue edge between the node for parent’s current epoch

and the node for the next epoch, so in total there are α continue edges.

• Spawn Edge. Every time the program spawns an EDT, the race detection

algorithm inserts a spawn edge between the parent and child, so in total there

are α spawn edges.

• Join Edge. Every time the program calls ocrAddDependence, the race detec-

tion algorithm inserts a join edge between the source and destination, so in total

there are δ join edges.

The size of reachability graph is O(4α + γ + δ).

The SM index is a map binding each DB to its SM instance array, so the size of

SM index is O(β). For each byte in DB, the SM instance requires O(α + 1) space in

the worst case when all EDTs read it concurrently.

30

The time complexity of checking data race after a read operation is different from

that after a write operation in term of the number of reachability check.

• Read. For a read operation to a DB, the race detection algorithm carries

out reachability check once between the read and the latest write to the same

location. We use a breadth-first search on the reachability graph to check

whether the operation is ordered correctly. In the worst case the checking

process iterates over all nodes and edges, so the time complexity of reachability

check is O(4α+ γ+ δ). The time complexity of data race detection after a read

is equal to the complexity of reachability check.

• Write. For a write operation to a DB, the race detection algorithm checks

reachability with the latest write and all previous concurrent reads. In the

worst case all EDTs reads the memory location, there is α concurrent reads, so

the time complexity of data race detection after a write is O((α+1)(4α+γ+δ)).

Compared with the complexity analysis for vector clock in Section 2.4, the space

complexity of our algorithm is in the same order of magnitude as vector clock. The

time complexity is larger than vector clock. However, in common case, our algorithm

only incurs a comparable time overhead to vector clock. We explain this conclusion

in Chapter 6. Furthermore, we propose several optimizations to mitigate the time

overhead without increasing the space complexity. We introduce the detail of these

optimizations in Chapter 5.

31

Chapter 4

Prototype Implementation

4.1 Prototype Design

We introduced a prototype race detection tool based on the race detection algorithm

in Chapter 3. Figure 4.1 shows the architecture of our prototype. The prototype

leverages Intel’s Pin [8] to instrument and analyze the OCR program. Pin is a binary

instrumentation framework for executables on the IA-32, Intel(R) 64 and Intel(R)

Many Integrated Core architectures. It works like a virtual machine that interpreting

the executable. The just-in-time(JIT) compiler generates new codes for the program

until a branch statement is reached. Pin transfers control to the dispatcher to execute

the generated sequence. Upon exiting the branch statement the JIT compiler regains

control of the program and generates more codes for the branch target. In order to

reuse the generated code efficiently, Pin stores them into a code cache.

To facilitate the development of program analysis tool, Pin provides instrumen-

tation APIs to give access to the runtime information of the generated codes. In

addition, Pin also allows attaching a user-defined handler with the generated code

through instrumentation APIs. The program analysis tool executing on top of Pin

is referred as PinTool [31]. It leverages instrumentation APIs to register handlers for

the interested code.

The prototype is implemented as a Pintool. It registers handlers for OCR library

calls and memory accesses to fulfill data race detection.

32

JIT Compiler Dispatacher Code Cache

Application

Instrumentation APIs

Race Detector

Operating System

Pin

OCR Debug

 Runtime

Figure 4.1 : Prototype Architecture

• Library Call. The corresponding handler takes cases of updating reachability

graph and allocating shadow memory. Because Pin does not support registering

a handler for a specific function call, The prototype does the registration in an

indirect way with the help of an OCR debug runtime. The detail is introduced

in Section 4.2.

• Memory Access. The corresponding handler takes care of detecting data race

and recording the access in shadow memory. Since the OCR program executes

in the same address space with Pin, the handler is registered directly by memory

access instrumentation.

33

4.2 Register Handler for OCR Library Call

Because Pin does not support registering a handler for a specific function call, the

prototype has to resort to the OCR debug runtime to implement the registration

indirectly. For each OCR function, the OCR debug runtime have a corresponding

“placeholder” function which executes upon the OCR function. The “placeholder”

function takes same input parameters as the OCR function and its function body is

blank. In instrumentation APIs, RTN ReplaceSignature allows Pintools to replace

the body of a specific function with another implementation before program execu-

tion. The prototype makes use of RTN ReplaceSignature to replace the “placeholder”

function with the handler.

Listing 4.1 shows the code snippet of registering a handler for ocrDbCreate. noti-

fyDbCreate is the “placeholder” function corresponding to ocrDbCreate, and afterD-

bCreate is the handler. RTN ReplaceSignature takes the “placeholder” function, the

function signature and the handler as input. The prototype calls RTN FindByName

to locate notifyDbCreate in the executable, and PTOTO Allocate to define the func-

tion signature. All parameters in the function signature are described by Pin’s PARG

macros [31]. After acquiring the “placeholder” function and its signature, the proto-

type replaces notifyDbCreate with afterDbCreate. In the later execution, afterDbCre-

ate will be called automatically after ocrDbCreate to initialize shadow memory.

1 // l o c a t e func t i on by name

2 RTN rtn = RTN_FindByName (img , ” not i fyDbCreate ”) ;

3 i f (RTN_Valid (rtn)) {

4 // d e f i n e func t i on s i gna tu r e

5 PROTO proto_notifyDbCreate = PROTO_Allocate (

6 PIN_PARG (void) , CALLINGSTD_DEFAULT , ” not i fyDbCreate ” ,

7 PIN_PARG_AGGREGATE (ocrGuid t) , PIN_PARG (void ∗) , PIN_PARG (u64) ,

8 PIN_PARG (u16) , PIN_PARG_ENUM (ocrInDbAllocator_t) ,

9 PIN_PARG_END ()) ;

34

10 // r ep l a c e p l a c eho ld e r func t i on with handler

11 RTN_ReplaceSignature (

12 rtn , AFUNPTR (afterDbCreate) , IARG_PROTOTYPE ,

13 proto_notifyDbCreate , IARG_FUNCARG_ENTRYPOINT_VALUE , 0 ,

14 IARG_FUNCARG_ENTRYPOINT_VALUE , 1 , IARG_FUNCARG_ENTRYPOINT_VALUE ,

15 2 , IARG_FUNCARG_ENTRYPOINT_VALUE , 3 , IARG_FUNCARG_ENTRYPOINT_VALUE , 4 , ←↩

IARG_END) ;

16 PROTO_Free (proto_notifyDbCreate) ;

17 }

Listing 4.1: Register Library Call Handler

4.3 Register Handler for Memory Access

The prototype leverages the memory access instrumentation features in Pin to regis-

ter handlers for memory access. Listing 4.2 shows the code snippet for registration.

tackleMemRead and tackleMemWrite are two handlers for memory accesses. Insert-

PredicatedCall is the instrumentation API that attaches a handler to an instruction.

Because our algorithm only concentrates on memory accesses when detecting race,

all unrelated instructions are filtered out. The prototype registers handlers for all in-

structions if their operands are related to memory access. The handler will be called

automatically upon completion of these instructions.

1 // f i l t e r i n g out unre la t ed i n s t r u c t i o n s

2 i f (isIgnorableIns (ins)) r e turn ;

3 i f (INS_IsAtomicUpdate (ins)) r e turn ;

4 u in t 32 t memOperands = INS_MemoryOperandCount (ins) ;

5 // i t e r a t e over each memory operand o f the i n s t r u c t i o n .

6 f o r (u i n t 32 t memOp = 0 ; memOp < memOperands ; memOp++) {

7 i f (INS_MemoryOperandIsRead (ins , memOp)) {

8 INS_InsertPredicatedCall (ins , IPOINT_BEFORE , (AFUNPTR)tackleMemRead ,

9 IARG_MEMORYOP_EA , memOp , IARG_MEMORYREAD_SIZE , IARG_REG_VALUE ,

10 REG_STACK_PTR , IARG_INST_PTR , IARG_END) ;

11 }

12 i f (INS_MemoryOperandIsWritten (ins , memOp)) {

35

13 INS_InsertPredicatedCall (ins , IPOINT_BEFORE , (AFUNPTR)tackleMemWrite ,

14 IARG_MEMORYOP_EA , memOp , IARG_MEMORYWRITE_SIZE , IARG_REG_VALUE ,

15 REG_STACK_PTR , IARG_INST_PTR , IARG_END) ;

16 }

17 }

Listing 4.2: Register Memory Access Handler

36

Chapter 5

Optimization

5.1 Ideas to Optimize Data Race Detection

According to the complexity analysis in Section 3.3, the time complexity of our al-

gorithm is not competitive with vector clock. In order to optimize the original race

detection algorithm, we first analyze the OCR benchmarks with respect to a) read

/ write operations, b) number of EDTs, events, and edges. Table 5.1 shows the

analysis of the OCR benchmarks (see Section 6.2 for the description of OCR bench-

marks). Most of the benchmarks issue more read operations than write operations,

but we observe that the number of read operations and write operations are in the

same order of magnitude. Smith-Waterman and XSBench are two extreme cases in

which read operations are dominant. Since the race detection after a write operation

is much more expensive, the overall time overhead can be reduced if we apply certain

optimization for the write. Also, we observe that the number of nodes and edges in

the reachability graph are close, which means the graph is sparse. We should insert

some shortcuts in the reachability graph to reduce the execution time of breadth-first

search.

Apart from the optimization on the algorithm, we can also use cache to avoid

unnecessary reachability check. Because EDTs acquiring the same DB usually access

the DB repeatedly, and the accessed regions usually overlap, it is highly possible that

the reachability between the same pair of EDTs is rechecked. We can implement

37

a cache to reuse the reachability check result. Table 5.2 shows the statistics on

reachability check. In most cases more than 99% of reachability checks are redundant,

so the cache is indispensable to reduce the time overhead.

Benchmark
Memory Access Reachability Graph

Read Write Epoch Event Edge

Cholesky 3098400 2666400 222 605 1101

FFT 106496 172036 5 4 11

Fibonacci 1768 704 267 177 620

Quicksort 99160 71544 399 795 1986

Smith-Waterman 128908 100 26 108 196

Task-Priorities 0 0 13 5 38

NQueens 0 0 2285652 2285651 6856952

UTS 18377244 5744938 302014 111116 826233

RSBench 108521980 597928 30033 50 60136

XSBench 26063580 72 36835 52 73742

Table 5.1 : OCR Benchmark Statistics

5.2 Reachability Cache

We add a reachability cache to reuse the result of previous reachability checks when

implementing the prototype. It is a global map that the record of reachability can be

retrieved by the IDs of two nodes. Since the number of unique checks in OCR bench-

38

Benchmark Unique Check Redundant Check

Cholesky 550 5764250

FFT 3 278529

Fibonacci 465 2359

Quicksort 1767 231313

Smith-Waterman 81 128927

Task-Priorities 0 0

NQueens 0 0

UTS 549178 24014844

RSBench 30029 109089879

XSBench 73632 25990020

Table 5.2 : Reachability Check Statistics

marks are not large, currently we just store all known reachability. In future works,

we may fix the cache size and manage the cache through certain cache replacement

policies [32].

5.3 Reversed Reachability Graph

In order to reduce the times of reachability check after a write operation, we make use

of reversed reachability graph which is the equivalent representation of the original

graph. Reversed reachability graph reverses the direction of edges in the correspond-

ing reachability graph.

• Reversed Continue Edge. A directed edge from an epoch node to the pre-

ceding epoch.

39

• Reversed Spawn Edge. A directed edge from the child EDT to the parent

EDT.

• Reversed Join Edge. A directed edge from the destination EDT to the source

EDT.

Figure 5.1 shows an example transformed from Figure 3.2. The definition of happens-

before relation is the same as the original reachability graph. Based on the reversed

reachability graph, we change the strategy of data race detection that the breadth-

first search starts at the unchecked write operation and try to reach all previous

accesses. The algorithm outputs all unreachable accesses after the search.

The pseudocode of the updated data race detection algorithm is listed in Algo-

rithm 5.1 and Algorithm 5.2. For both read and write operation check data race only

calls check reachability once. check reachability checks the reachability between dst

and src set. It returns unreachable accesses, namely data races, after the breadth-first

search.

40

spawn edt1 spawn edt2 spawn edt3...

read depv[0]

...

return db_guid... read depv[0] return db_guid...

read depv[0] output array_sum...
Continue

Spawn

Join

main_edt#1

edt1 edt2

edt3

sync_event

main_edt#2 main_edt#3

Figure 5.1 : Reversed Reachability Graph

41

Algorithm 5.1 Check Data Race

1: procedure check data race(op)

2: sm = findSM(op.db id, op.addr)

3: if is read(op) then

4: unreached nodes = check reachability(sm.write, op.epoch id)

5: if !unreached nodes.empty() then

6: report write-read race

7: end if

8: sm.read.add(op.epoch id)

9: else if is write(op) then

10: preceding =

11: preceding.add all(sm.read)

12: preceding.add(sm.write

13: unreached nodes = check reachability(preceding, op.epoch id)

14: for all uinunreached nodes do

15: if is read(u) then

16: report read-write race

17: else

18: report write-write race

19: end if

20: end for

21: sm.write = op.epoch id

22: sm.read = ∅

23: end if

24: end procedure

42

Algorithm 5.2 Check Reachability on Reversed Reachability Graph

1: procedure check reachability(src id list, dst id)

2: src set = ∅

3: for all id in src id list do

4: src set.add(reachability graph[id])

5: end for

6: dst = reachability graph[dst id]

7: reached nodes = ∅

8: queue = dst

9: while queue 6= ∅ do

10: next = queue.pop

11: if reached nodes.contain(next) then

12: continue

13: else

14: reached nodes.add(next)

15: end if

16: if src set.contain(next) then

17: src set.remove(next)

18: end if

19: queue.add all(next.edges)

20: end while

21: return src set

22: end procedure

43

5.4 Path Compression

The time overhead in the reachability check is related to the depth of breadth-first

search. Since the search does not move to next level unless it has iterated over all

nodes in the current level, reachability checks on a large graph are always slow.

In some cases, the reachability cache can help reduce the depth of breadth-first

search. For instance, Figure 5.2 shows an implementation of task-loop in OCR.

edt init sets up the configuration in db config and all consequent EDTs in the task

loop read the configuration. For each reachability check from edt init to edt i, the

bread-first search only takes one step in depth since the reachability cache already

records that edt init is reachable from edt i-1.

However, in mosts cases that the program contains events, the reachability cache

is not helpful for mitigating the depth. Figure 5.3 shows an implementation of two-

dimensional task loop. Similar to Figure 5.2, db config stores the global configura-

tion. EDTs in the same inner loop run in parallel and a synchronization is placed

between two continuous iterations of the outer loop. For any reachability check be-

tween edt init and edt ij, the reachability cache keeps missing until the search reaches

a task spawned in the previous iteration of the outer loop.

To reduce the depth of search in Figure 5.3, we can add additional edges to the

event nodes to compress the frequently accessed paths between edt init and event

nodes. After the reachability check from edt init to edt 10, we already know that

sync 1 is reachable from edt init. We can link an edge from edt init to sync 1. Later

when we check the reachability between edt init to any edt 1i, the bread-first search

will jump to sync 1 instantly without reaching any edt 0i.

Inspired by the observation in Figure 5.3, we propose a path compression algo-

rithm. The pseudocode is listed in Algorithm 5.3. The algorithm analyzes the found

44

write db_config

read db_config

edt_init

edt_1

return db_config

calculate spawn edt_2

read db_config

edt_2

calculate spawn edt_3

read db_config

edt_3

calculate spawn edt_4

read db_config

edt_n

calculate

read db_config

edt_n-1

calculate spawn edt_n

Figure 5.2 : Reachability Graph for Task Loop

45

write db_config

read db_config ...

edt_init

edt_01

sync_1

return db_config

calculate return read db_config

edt_0n

calculate return

read db_config ...
edt_11

calculate return read db_config

edt_1n

calculate return

sync_2

read db_config ...
edt_21

calculate return read db_config

edt_2n

calculate return

Figure 5.3 : Reachability Graph for Two Dimension Task Loop

path after a breadth-first search. If the path length is larger than a threshold, the

algorithm will iterate over all nodes on the path to find out the node with largest

in-degree which is referred as key node in the pseudocode. The algorithm compresses

the two subpaths ∗ a) from the source to key node b) from the key node to the

destination by adding additional edges between these nodes.

Since a node with large in-degree is the intersection of multiple paths, it is more

likely to appear on the final path. Compressing the path starting and ending at the

node is helpful for reducing the depth of future breadth-first searches.

∗A subpath is a section of a larger path

46

Algorithm 5.3 Path Compression

1: procedure path compression(path)

2: key node = ∅, in degree = 0

3: if path.length > threshold then

4: for node in path do

5: if node.in degree >= in degree then

6: key node = node, in degree = node.in degree

7: end if

8: end for

9: add an edge from path.src to key node

10: add an edge from key node tp path.des

11: end if

12: end procedure

47

Chapter 6

Evaluation

6.1 Environment

To evaluate the performance of the graph traversal based data race detection algo-

rithm, we carry out several experiments using the OCR benchmarks. All experiments

are conducted on an Intel workstation. The hardware configuration is listed below.

• CPU: 24-core Intel(R) Xeon(R) CPU E5-2667, 2.90GHz

• Memory: 125 GB

• OS: Ubuntu 15.04

All selected OCR benchmarks execute on top of a customized OCR v1.1 runtime. The

race detection tool executes on top of Pin 3.2. OCR benchmarks, the OCR runtime

and the race detection tool are all compiled by GCC 4.9.2 with -O3 optimization.

Because of the limitation in our race detection tool, all OCR benchmarks execute

sequentially.

6.2 Benchmark

We select 10 OCR benchmarks from the ocr app repository [33] to evaluate the race

detection algorithm. These benchmarks are either scientific computing program or

mini app from real world applications.

48

• Cholesky: A tiled cholesky decomposition.

• FFT: A fast fourier transform implementation.

• Fibonacci: A Fibonacci number calculation program for the given index.

• Quicksort: A quick sort implementation for a randomly generated integer

sequence.

• Smith-Waterman: A Smith-Waterman algorithm implementation.

• Task-Priorities: A test for EDT priority.

• NQueens: A bitwise recursive algorithm that computes the number of solutions

to the N-queens problem.

• UTS: An exhaustive search on an unbalanced tree.

• RSBench: A mini-app to represent the multipole resonance representation

look up cross section algorithm.

• XSBench: A mini-app to represent a key computational kernel of the Monte

Carlo neutronics application OpenMC.

According to the statistics in Table 5.1 and Table 5.2, we observe that Cholesky,

FFT, Fibonacci , Quicksort, Smith-Waterman, Task-Priorities are small-scale bench-

marks and NQueens, UTS, RSBench, XSBench are large-scale benchmarks. Besides,

Task-Priorities and NQueens do not have any access to DB during the execution.

6.3 Result & Analysis

We execute benchmarks in different execution modes to evaluate the time overhead

incurred by different modules of our race detection tool. Table 6.1 shows the execution

49

time of the benchmarks. The first column lists the benchmark name. The second -

fifth columns list the execution time in a corresponding mode.

• Binary. Execute a benchmark on the underlying operating system.

• Pin. Execute a benchmark on top of Pin.

• Instrumentation. Execute a benchmark on top of Pin and instrument all

memory accesses.

• Graph Traversal. Execute a benchmark on top of Pin and detect data race

with the original graph traversal based data race detection algorithm.

We can make a number of observations from the data in Table 6.1.

• The slowdown incurred by Pin varies significantly on different benchmarks

(5.576x-177.333x), and it decreases with the increase of execution time. The

difference of slowdown is due to code cache in Pin. Code cache can avoid redun-

dant code generation for the statements executed repeatedly. In OCR programs

EDT templates store the common code of spawned EDTs, which can be stored

in code cache to accelerate the code generation of all spawned EDTs. Since

NQueens, UTS, RSBench, and XSBench create much more EDTs than other

benchmarks, they benefit more on performance from the code cache.

• The time overhead of instrumentation depends on the number of shared mem-

ory accesses. Since large-scale benchmarks issue more memory accesses, the

instrumentation incurs larger slowdown. In all benchmarks except RSBench,

the slowdown to Pin mode is less than 5.3X.

• The unoptimized race detection algorithm is time-consuming. The time over-

head of race detection is related to the number of reachability checks. Since

50

Benchmark Binary Pin Instrumentation Graph Traversal

Cholesky 0.018 1.300 1.952 10.280

FFT 0.008 1.086 1.156 1.300

Fibonacci 0.007 1.088 1.058 1.070

Quicksort 0.012 1.046 1.210 2.170

Smith-Waterman 0.006 1.064 1.116 1.170

Task-Priorities 0.006 1.034 1.032 1.040

NQueens 3.525 31.434 32.220 31.970

UTS 1.088 7.380 13.900 >1 hour

RSBench 0.717 3.998 60.514 >1 hour

XSBench 0.664 3.768 20.014 >1 hour

Table 6.1 : Execution Time of Race Detection in Second

the time of reachability check is proportional to the number of nodes and edges

in the reachability graph, the race detection algorithm incurs huge overhead to

large-scale benchmarks. For the three large benchmarks UTS, RSBench, and

XSBench, it cannot finish the race detection in one hour. The thousands of

times of slowdown is unacceptable.

We also carry out experiments to evaluate the three optimization strategies. The

result is shown in Table 6.2. The first column lists the benchmark name, and the

following three columns list the execution time under different combinations of opti-

mizations. According to the data in Table 6.2 we can draw several conclusions.

• Reachability cache is indispensable for data race detection. From Table 5.2 we

know more than 99% of reachability checks are unnecessary. With reachability

51

cache, our race detection tool can accomplish race detection on all benchmarks

in one hour. For all small-scale benchmarks except Cholesky, the execution

time is close to the time in Pin mode. For UTS, RSBench, and XSBench,

the slowdown to Pin mode is 40.122X-536.687X. Since the slowdown becomes

significant when executing large-scale benchmarks, the race detection algorithm

should apply other optimizations to tackle real world applications.

• Reversed reachability graph does not has a significant effect on the selected

OCR benchmarks. The execution time is similar to the time of only applying

reachability cache. Since the race detection algorithm executes few reachability

checks for small-scale benchmarks, the reduction of execution time is not obvi-

ous. For UTS, RSBench, and XSBench, most of the calculation is looking up

the data in a DB after the DB is initialized. They issue few write operations

after concurrent read operations, so the reversed reachability graph does not

have a significant effect.

• Path compression significantly reduces the time overhead of race detection on

large-scale benchmarks. The slowdown to Pin mode is 5.283X-89.891X, which

is around one-eighth of the slowdown without path compression. Since path

compression can reduce the depth of bread-first search during a reachability

check, it is quite effective for large-scale benchmarks. For small-scale bench-

marks, path compression does not have a significant effect since most of the

found paths are shorter than the threshold. Table 6.3 shows the statistics on

edges, the number of additional edges is less than one-third of the number of

original edges, which means path compression incurs acceptable space overhead

and the space complexity is similar to the original algorithm.

52

Benchmark Cache
Cache + Reversed

Reachability Graph

Cache + Reversed

Reachability Graph +

Path Compression

Cholesky 4.354 4.182 4.199

FFT 1.252 1.242 1.242

Fibonacci 1.060 1.032 1.060

Quicksort 1.368 1.344 1.337

Smith-Waterman 1.156 1.150 1.155

Task-Priorities 1.030 1.032 1.033

NQueens 32.178 32.524 32.066

UTS 296.104 293.812 38.995

RSBench 1138.532 1140.332 145.951

XSBench 2022.240 2034.518 338.713

Table 6.2 : Execution Time of Optimized Race Detection in Second

53

Benchmark Original Edge Additional Edge

Cholesky 1101 0

FFT 11 0

Fibonacci 620 0

Quicksort 1986 244

Smith-Waterman 196 0

Task-Priorities 38 0

NQueens 6856952 0

UTS 826233 236674

RSBench 60136 20019

XSBench 73742 29912

Table 6.3 : Statistics on Edge

54

Chapter 7

Related Work

7.1 Vector Clock

As described in Section 2.4, vector clock based data race detection algorithms [4,

25] check happens-before relations in the program by comparing the vector clocks

of two memory accesses. Each thread / task holds a vector to record the latest

preceding timestamps of other units. For an n-threaded program, vector clock requires

O(n) space for each thread and each memory location, and takes O(n) time for each

comparison between memory accesses. There are some other works that reduce the

space overhead for a memory location, and time overhead for the comparison. For

example, Flanagan proposed FastTrack [4] that replaces the heavyweight vector clock

with an adaptive lightweight representation epoch when the operation is ordered.

FastTrack improves the time complexity with no loss in precision, but it does not

change the memory usage of vector clocks inside each thread.

According to the complexity analysis in Section 2.4, vector clock is not applicable

to large-scale OCR programs since the size of vector clock is proportional to the

maximum number of simultaneously live tasks, which may deplete available memory

space.

55

7.2 Lockset

Lockset is a lightweight data race detection algorithm for lock-based multithreaded

programs. It was first exemplified by Eraser [3]. Unlike vector clock that is based on

happens-before relation, lockset detects data race according to a consistent locking

discipline that every variable shared between threads should be protected by a lock

during its life cycle. Lockset maintains a set for each shared variable which records

the common locks protecting the variable. Every time the program issues a memory

access, lockset intersects the set with holding locks of the access. If the set becomes

empty, lockset reports a data race. Since the intersection is the only workload for

detecting data race, lockset only takes O(1) time for each memory access. To avoid

unnecessary checkings on local and read-only variables, lockset utilizes a state machine

to keep track of the variable state. It carries out data race detection only after the

variable transits to shared-write state.

Since lock is not the only way to synchronize the program, lockset reports false

positives for the memory locations which are protected by other synchronization meth-

ods such as barrier. Because OCR uses dependence to synchronize EDTs, we cannot

apply lockset to OCR programs.

7.3 SP-bag / ESP-bag

SP-bag [5] is an efficient determinacy race detection algorithm for Cilk. It makes use

of the structural information in a Cilk program to report exact race with low time

and space overhead. In Cilk a task can only synchronize with sibling tasks spawned

by the parent. Two tasks logically run in parallel unless they have common ancestors

and a sync statement executes between them. SP-bag detects race based on this

56

observation.

SP-bag is a serial algorithm. It executes the program in a depth-first fashion.

During the program execution, it maintains a S-bag and a P-bag for every task. The

S-bag records preceding tasks and the P-bag records concurrent tasks. S-bag and

P-bag are updated by the following rules.

• Spawn task A. SA = A,PA = ∅

• Task A returns to task B. PB = PB

⋃
SA

⋃
PA, SA = ∅, PA = ∅

• Task A issues a synchronization. SA = SA

⋃
PA, PA = ∅

SP-bag reports race according to the affiliation of the previous read / write oper-

ation.

• Read Operation. If the previous write to the same location belongs to a

P-bag, then report race.

• Write Operation. If the previous read or write to the same location belongs

to a P-bag, then report race.

For each memory location, SP-bag only records the latest read and write, incurring

constant space overhead. Since SP-bag only performs lookups on the S-bag and P-bag

for race detection, the time overhead is also low.

Derived from SP-bag, ESP-bag [6] extends the algorithm to tackle constructs in

HJ [14]. Apart from tasks, ESP-bag also maintains a P-bag for finish scope. It adds

two additional rules to support the semantics of finish scope.

• Start a finish scope F . PF = ∅

• End a finish scope F in task A. SA = SA

⋃
PF , PF = ∅

57

SP-bag and ESP-bag fully utilize the structural feature in spawn-sync and async-

finish parallel runtimes to reduce time and space overhead. However, in most cases an

OCR program cannot execute in a depth-first fashion, so both SP-bag and ESP-bag

cannot be applied to OCR programs.

7.4 Dynamic Task Reachability Graph

Dynamic Task Reachability Graph(DTRG) [26] is a more compact representation

than the computation graph that encodes the dependence in a parallel program. It

records the reachability information in task level. Each task is denoted by a single

node and dependence between tasks is denoted by an directed edge. If there exists a

path between two tasks, the two tasks can only execute sequentially. Otherwise, they

can run in parallel. DTRG classifies all edges into three categories: a) continue

edge, b) spawn edge, c) join edge, according to the type of dependences. DTRG is

constructed on the fly, keeping the recorded reachability information up-to-date.

Based on DTRG [26], the author also proposes a serial determinacy race detection

algorithm for task parallelism with futures. The race detection algorithm detects

races against DTRG and spawning tree. It executes the program in a depth-first

fashion and builds a corresponding DTRG. By eliminating non-tree joining edges it

recovers the spawning tree from the graph. The race detection process contains two

independent reachability checks. The algorithm reports data race if the both checks

fail.

• Reachability check on the spawn tree. The algorithm checks the parent-

child relation. By the labeling scheme in [34], each node in the spawn tree

holds a label. Through a comparison between labels, the reachability can be

determined in constant time.

58

• Reachability check on the DTRG. If the memory access fails to pass the

reachability check on the spawn tree, the algorithm carries out a graph traversal

to detect the reachability on the DTRG.

Since the reachability check on the spawn tree is efficient and in most cases the

expensive graph traversal is unnecessary, the DTRG based algorithm can report exact

race with low time overhead.

DTRG is pretty similar to our reachability graph. Both of them represents reach-

ability on task-level and treats edges differently according to the type of dependences.

In addition, both the DTRG based race detection algorithm and our algorithm utilize

graph traversal to check the reachability between tasks. However, the DTRG based

race detection algorithm targets for Habanero-Java. It requires that the program can

execute in a depth-first fashion to calculate the label in the spawning tree. Since there

is no guarantee that OCR program can execute in a depth-first fashion, we cannot

apply the spawning tree based reachability check to optimize our algorithm.

59

Chapter 8

Conclusion & Future Work

8.1 Conclusion

In this dissertation, we introduce a reachability graph for EDP runtimes, a novel

representation of the happens-before relation in an EDP program. The reachability

graph expresses the happens-before relation as directed paths, taking into account

the unique dependence properties of EDP runtimes. It enables the use of a graph

traversal based data race detection algorithm. After one execution, the race detection

algorithm can detect data races in all possible thread interleavings for the same input.

In order to reduce the time complexity for race detection, we propose a few optimiza-

tions, such as reachability cache and reversed reachability graph to avoid unnecessary

graph traversals and path compression to reduce the number of steps performed for

graph traversal. Based on our race detection technique, we have developed a proto-

type implementation for the Open Community Runtime (OCR). Our evaluation on a

set of open source OCR benchmarks shows that our tool handles all OCR constructs

and incurs acceptable time and space overhead to the program execution.

8.2 Future Work

For future directions on our data race detection algorithm, we plan to add a static

analysis pass before the dynamic data race detection to avoid unnecessary reachability

check. We plan to learn the structural features in the program to eliminate terminated

60

nodes from the reachability graph.

For our race detection tool, We plan to reduce the size of injected code to improve

efficiency. We plan to utilize other binary instrumentation frameworks to reduce the

time overhead of instrumentation.

61

Bibliography

[1] T. Mattson, R. Cledat, Z. Budimlic, V. Cave, S. Chatterjee, B. Seshasayee,

R. van der Wijngaart, and V. Sarkar, “Ocr the open community runtime inter-

face, version 1.0. 0,” 2015.

[2] J. Dokulil and S. Benkner, “Retargeting of the open community runtime to intel

xeon phi,” Procedia Computer Science, vol. 51, pp. 1453–1462, 2015.

[3] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson, “Eraser: A

dynamic data race detector for multithreaded programs,” ACM Transactions on

Computer Systems (TOCS), vol. 15, no. 4, pp. 391–411, 1997.

[4] C. Flanagan and S. N. Freund, “Fasttrack: efficient and precise dynamic race

detection,” in ACM Sigplan Notices, vol. 44, no. 6. ACM, 2009, pp. 121–133.

[5] M. Feng and C. E. Leiserson, “Efficient detection of determinacy races in cilk

programs,” Theory of Computing Systems, vol. 32, no. 3, pp. 301–326, 1999.

[6] R. Raman, J. Zhao, V. Sarkar, M. Vechev, and E. Yahav, “Scalable and precise

dynamic datarace detection for structured parallelism,” ACM SIGPLAN Notices,

vol. 47, no. 6, pp. 531–542, 2012.

[7] F. Mattern et al., “Virtual time and global states of distributed systems,” Parallel

and Distributed Algorithms, vol. 1, no. 23, pp. 215–226, 1989.

62

[8] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.

Reddi, and K. Hazelwood, “Pin: building customized program analysis tools with

dynamic instrumentation,” in Acm sigplan notices, vol. 40, no. 6. ACM, 2005,

pp. 190–200.

[9] Wikipedia, The Free Encyclopedia, “Task parallelism,” 2017. [Online]. Available:

https://en.wikipedia.org/wiki/Task parallelism

[10] B. Barney, “Message passing interface,” 2017. [Online]. Available: https:

//computing.llnl.gov/tutorials/mpi

[11] ——, “Posix threads programming,” 2017. [Online]. Available: https:

//computing.llnl.gov/tutorials/pthreads

[12] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and

Y. Zhou, “Cilk: An efficient multithreaded runtime system,” Journal of parallel

and distributed computing, vol. 37, no. 1, pp. 55–69, 1996.

[13] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu,

C. Von Praun, and V. Sarkar, “X10: an object-oriented approach to non-uniform

cluster computing,” in Acm Sigplan Notices, vol. 40, no. 10. ACM, 2005, pp.

519–538.

[14] S. Imam and V. Sarkar, “Habanero-java library: a java 8 framework for multicore

programming,” in Proceedings of the 2014 International Conference on Princi-

ples and Practices of Programming on the Java platform: Virtual machines,

Languages, and Tools. ACM, 2014, pp. 75–86.

[15] “Intel threading building blocks developer reference,” 2017. [Online]. Available:

https://www.threadingbuildingblocks.org/docs/help/index.htm

https://en.wikipedia.org/wiki/Task_parallelism
https://computing.llnl.gov/tutorials/mpi
https://computing.llnl.gov/tutorials/mpi
https://computing.llnl.gov/tutorials/pthreads
https://computing.llnl.gov/tutorials/pthreads
https://www.threadingbuildingblocks.org/docs/help/index.htm

63

[16] “Openmp application programming interface,” 2015. [Online]. Available:

http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf

[17] H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio, and D. Fey, “Hpx: A

task based programming model in a global address space,” in Proceedings of the

8th International Conference on Partitioned Global Address Space Programming

Models. ACM, 2014, p. 6.

[18] Z. Budimlić, M. Burke, V. Cavé, K. Knobe, G. Lowney, R. Newton, J. Palsberg,

D. Peixotto, V. Sarkar, F. Schlimbach et al., “Concurrent collections,” Scientific

Programming, vol. 18, no. 3-4, pp. 203–217, 2010.

[19] S. Treichler, M. Bauer, and A. Aiken, “Realm: An event-based low-level runtime

for distributed memory architectures,” in Proceedings of the 23rd international

conference on Parallel architectures and compilation. ACM, 2014, pp. 263–276.

[20] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “Starpu: a unified

platform for task scheduling on heterogeneous multicore architectures,” Concur-

rency and Computation: Practice and Experience, vol. 23, no. 2, pp. 187–198,

2011.

[21] S. Chatterjee, S. Tasirlar, Z. Budimlic, V. Cave, M. Chabbi, M. Grossman,

V. Sarkar, and Y. Yan, “Integrating asynchronous task parallelism with mpi,”

in Parallel & Distributed Processing (IPDPS), 2013 IEEE 27th International

Symposium on. IEEE, 2013, pp. 712–725.

[22] D. Engler and K. Ashcraft, “Racerx: effective, static detection of race conditions

and deadlocks,” in ACM SIGOPS Operating Systems Review, vol. 37, no. 5.

ACM, 2003, pp. 237–252.

http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf

64

[23] K. Serebryany and T. Iskhodzhanov, “Threadsanitizer: data race detection in

practice,” in Proceedings of the Workshop on Binary Instrumentation and Ap-

plications. ACM, 2009, pp. 62–71.

[24] L. Lamport, “Time, clocks, and the ordering of events in a distributed system,”

Communications of the ACM, vol. 21, no. 7, pp. 558–565, 1978.

[25] E. Pozniansky and A. Schuster, “Multirace: efficient on-the-fly data race detec-

tion in multithreaded c++ programs,” Concurrency and Computation: Practice

and Experience, vol. 19, no. 3, pp. 327–340, 2007.

[26] R. Surendran and V. Sarkar, “Dynamic determinacy race detection for task par-

allelism with futures.” in RV, 2016, pp. 368–385.

[27] R. Raman, J. Zhao, V. Sarkar, M. Vechev, and E. Yahav, “Efficient data race de-

tection for async-finish parallelism,” Formal Methods in System Design, vol. 41,

no. 3, pp. 321–347, 2012.

[28] M. A. Bender, J. T. Fineman, S. Gilbert, and C. E. Leiserson, “On-the-fly main-

tenance of series-parallel relationships in fork-join multithreaded programs,” in

Proceedings of the sixteenth annual ACM symposium on Parallelism in algorithms

and architectures. ACM, 2004, pp. 133–144.

[29] N. Nethercote and J. Seward, “How to shadow every byte of memory used by a

program,” in Proceedings of the 3rd international conference on Virtual execution

environments. ACM, 2007, pp. 65–74.

[30] U. Banerjee, B. Bliss, Z. Ma, and P. Petersen, “A theory of data race detection,”

in Proceedings of the 2006 workshop on Parallel and distributed systems: testing

and debugging. ACM, 2006, pp. 69–78.

65

[31] “Pin 3.2 user guide,” 2017. [Online]. Available: https://software.intel.com/

sites/landingpage/pintool/docs/81205/Pin/html

[32] Wikipedia, The Free Encyclopedia, “Cache Replacement Policies,” 2017.

[Online]. Available: https://en.wikipedia.org/wiki/Cache replacement policies

[33] “OCR benchmark repository,” 2017. [Online]. Available: https://xstack.

exascale-tech.com/git/public/apps.git

[34] P. Dietz and D. Sleator, “Two algorithms for maintaining order in a list,” in

Proceedings of the nineteenth annual ACM symposium on Theory of computing.

ACM, 1987, pp. 365–372.

https://software.intel.com/sites/landingpage/pintool/docs/81205/Pin/html
https://software.intel.com/sites/landingpage/pintool/docs/81205/Pin/html
https://en.wikipedia.org/wiki/Cache_replacement_policies
https://xstack.exascale-tech.com/git/public/apps.git
https://xstack.exascale-tech.com/git/public/apps.git

	Abstract
	Acknowledgments
	List of Illustrations
	Introduction
	Motivation
	Thesis Statement
	Contributions
	Organization

	Background
	Task Parallel Runtimes
	Open Community Runtime
	Data Race Detection
	Vector Clocks

	Graph Traversal based Data Race Detection Algorithm
	Reachability Graph
	Race Detection
	Complexity Analysis

	Prototype Implementation
	Prototype Design
	Register Handler for OCR Library Call
	Register Handler for Memory Access

	Optimization
	Ideas to Optimize Data Race Detection
	Reachability Cache
	Reversed Reachability Graph
	Path Compression

	Evaluation
	Environment
	Benchmark
	Result & Analysis

	Related Work
	Vector Clock
	Lockset
	SP-bag / ESP-bag
	Dynamic Task Reachability Graph

	Conclusion & Future Work
	Conclusion
	Future Work

	Bibliography

