

RICE UNIVERSITY

By

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

APPROVED, THESIS COMMITTEE

HOUSTON, TEXAS

ABSTRACT

Language Support for Real-time Data Processing

by

Lingkun Kong

Recent technological advances are causing an enormous proliferation of streaming

data, i.e., data that is generated in real time. Such data is produced at an overwhelming

rate that cannot be effectively processed using traditional techniques. This thesis

aims to provide programming language support for real-time data processing through

three approaches: (1) creating a language for specifying complex computations over

real-time data streams, (2) employing software-hardware co-design to create an efficient

accelerator for matching regular patterns in a streaming setting, and (3) designing a

programming system for parallel stream processing that guarantees the preservation

of sequential semantics.

The first part of this thesis introduces StreamQL, a high-level language for speci-

fying complex streaming computations through the composition of stream transfor-

mations. StreamQL integrates relational, dataflow, and temporal constructs, offering

an expressive and modular approach for programming streaming computations. Per-

formance comparisons against popular streaming engines show that the StreamQL

library consistently achieves higher throughput, making it a useful tool for prototyping

complex real-world streaming algorithms.

The second part of this thesis focuses on hardware acceleration for regular pattern

matching, specifically targeting the matching of regular expressions with bounded

repetitions. A hardware architecture inspired by nondeterministic counter automata

is presented. This architecture uses counter and bit vector modules to efficiently

handle bounded repetitions. A regex-to-hardware compiler provides static analysis

over regular expressions and uses the results of the analysis to translate them into

memory-efficient hardware-recognizable programs. Experimental results show that

our solution provides significant improvements in energy efficiency and area reduction

compared to existing hardware designs.

Finally, this thesis presents a novel programming system for parallelizing the

processing of streaming data on multicore CPUs while preserving the sequential

semantics. This system addresses challenges in preserving the sequential semantics

when dealing with duplicate timestamps, dynamic item rates, and non-linear task

parallelism. A Rust library called ParaStream is developed to support semantics-

preserving parallelism in stream processing. ParaStream outperforms state-of-the-art

tools in terms of single-threaded throughput and scalability. Real-world benchmarks

show substantial performance gains with increasing degrees of parallelism, highlighting

the practicality and efficiency of ParaStream.

Acknowledgments

My deepest appreciation goes to my advisor, Konstantinos Mamouras, for his excep-

tional patience and insightful guidance during my research journey. Over five years,

he set himself as an example and guided me to be a better researcher with his vast

knowledge and extensive expertise. Through his mentorship, he has helped me to

improve my research taste, enabling me to concentrate on the more critical problems.

During my PhD, I had the privilege of receiving guidance from numerous additional

mentors. I would like to extend my thanks to Corky Cartwright for expanding my

perspective on programming languages and their future design, Kaiyuan Yang for

his expertise in hardware circuit design, John Mellor-Crummey for teaching me the

subtleties of parallel programming system implementation, Tracy Volz for helping me

improve my presentation skills, and Xinbing Wang for his support when I embarked

on research projects.

I am also indebted to Ang Chen, Lin Zhong, Christopher M. Jermaine, Swarat

Chaudhuri, Dan S. Wallach, Moshe Y. Vardi, T. S. Eugene Ng, and Nathan Dautenhahn

for helping me navigate the early stages of my Ph.D. research and broadening my

understanding of computer science.

My gratitude extends to my advisors at Meta, Aihua Liu and CJ Bell, who designed

exciting internship projects that provided me with invaluable insights into the practical

applications of programming language knowledge in the industry. I would also like to

express my appreciation to my peers at Meta, Shuang Song, Donglei Fu, Justin Slepak,

Jack Keller, and Mike Lui, for their guidance on software development, leveraging the

skills I acquired during my PhD studies.

I am incredibly grateful to all my colleagues and friends at Rice. Special thanks

v

to Youyu Lu, Zhiwei Zhang, Yongze Yin, Yilei Fu, Cao Zhen, Weitao Wang, Jiarong

Xin, Zhaozhuo Xu, Lechuan Li, Tiancheng Xu, Xuxin Tang, Kaixiong Zhou, Srdan

Milakovic, Dimitrije Jankov, and Constantinos C. Chamzas for fostering a supportive

and inclusive environment at Rice, where we shared both triumphs and challenges. I

am deeply grateful for the unwavering support and friendship of Dongzhou Huang,

Xinglin Wang, Yankai Wen, Sunny Huang, and Xiaoye Sun, who were instrumental in

helping me overcome moments of doubt and providing clarity during my journey.

I extend my thanks to Alexis Le Glaunec, Zhifu Wang, Agnishom Chattopadhyay,

Maki Yu, and Ziyuan Wen for their collaborative efforts as a team, enabling us to

achieve significant research milestones. I would also like to express my gratitude to

Ke Wu, Hongfei Ye, Zhitong Yan, Yujie Jiang, Peng Yang, Haixiao Wang, and Bochen

Zhang for their companionship and friendship.

To my dear friends Yaowei Huang, Sheng Guan, Pinchen Xie, Yahao Dai, Yixuan Li,

Jialu Zhuang, Wei Sun, and Xiaohan Chi, I am forever grateful for the enjoyable and

relaxing conversations we shared. Furthermore, I would like to extend my appreciation

to the friends I made through playing table tennis. Thank you, Zhiyong, Jiasui, Jeff,

Huijun, Ziyi, Yingru, Jonathan, and Saadi, for the pleasure of being teammates and

participating in regional and national games together.

Lastly, my sincere gratitude goes to my parents, Bo and Xianqing, for their

encouragement that enabled me to undertake this academic journey that began in the

small city of Wenzhou, continued in Shanghai, and eventually brought me to Houston.

I also thank my extended family, Wanchuan, Lan, and Xiaoping, for their support.

Contents

Abstract ii

Acknowledgments iv

List of Illustrations x

List of Tables xiv

1 Introduction 1

1.1 Demand for High-level Specifications 3

1.2 Demand for Efficient Matching of Regular Patterns 4

1.3 Demand for Parallel Stream Processing with the Preservation of

Sequential Semantics . 6

1.4 Contributions . 8

1.5 Thesis Overview . 11

2 Background and Related Works 12

2.1 Languages and Tools for Stream Processing 12

2.1.1 Streaming Database Systems 12

2.1.2 Distributed Stream Processing Systems 12

2.1.3 Complex Event Processing . 13

2.1.4 Lightweight Streaming Engines 13

2.1.5 Reactive Programming . 14

2.1.6 Signal Processing on Streams 15

2.2 Matching of Regular Expressions . 15

2.2.1 Regular Expression with Bounded Repetition 15

2.2.2 Regular Expression Matching on Software 17

vii

2.2.3 Regular Expression Matching on Hardware 18

2.2.4 Automata With Counters . 18

2.3 Semantics-preserving Parallel Stream Processing 19

2.3.1 Classical Parallel Programming Models 19

2.3.2 Kahn Process Networks . 20

2.3.3 Synchronous Dataflow Programming Models 20

2.3.4 Actors and Active Objects . 21

2.3.5 Algorithmic Skeletons . 21

2.3.6 Lightweight Libraries for Parallel Stream Processing 22

2.3.7 Correctness of Parallel Stream Processing 22

3 Language Design for Stream Processing 23

3.1 Motivation . 23

3.2 Contributions . 25

3.3 Overview of StreamQL . 28

3.4 Discussion of the Expressiveness of StreamQL 41

3.5 Denotational Semantics of StreamQL 46

3.5.1 Formalization of Data Stream and Stream Transformation . . 46

3.6 Implementation of StreamQL . 51

3.7 Experimental Evaluation . 55

3.7.1 Overhead of the Construction of Nested Streams 56

3.7.2 Efficient Sliding Window Aggregation 60

3.7.3 Micro Benchmark . 61

3.7.4 Stock Benchmark . 63

3.7.5 NEXMark . 63

3.7.6 TAQ Benchmark . 64

3.8 Case Study: Arterial Blood Pressure Monitoring 65

3.9 Chapter Summary . 67

viii

4 Recognition of Regular Patterns 68

4.1 Motivation . 68

4.2 Contributions . 70

4.3 Nondeterministic Counter Automata 73

4.4 Static Analysis over Regular Expressions 78

4.4.1 Deciding Counter-Ambiguity 79

4.4.2 Over-Approximate Analysis 83

4.5 Experimental Evaluation of Static Analysis 88

4.5.1 Performance: Running Time 90

4.5.2 Performance: Memory Footprint 91

4.6 Hardware Design for Efficiently Executing NCAs 92

4.7 Compilation from Regular Expressions to MNRL Files 96

4.8 Evaluation of Hardware Performance 99

4.8.1 Micro-benchmarks . 99

4.8.2 Real-world Benchmarks . 100

4.9 Chapter Summary . 102

5 Semantics-preserving Parallel Stream Processing 103

5.1 Motivation . 103

5.2 Contributions . 105

5.3 Challenges in Preserving Sequential Semantics 107

5.3.1 Parallel Transformations and Corresponding Challenges 108

5.3.2 Limitations in Prior Proposals 110

5.4 Solution from ParaStream . 113

5.5 Preserve Semantics with Signatures 118

5.5.1 Complexity of Signature Manipulation 125

5.5.2 Heartbeats . 126

5.6 Experimental Evaluation . 128

ix

5.6.1 Evaluation of Sequential Implementation 128

5.6.2 Evaluation of Parallel Implementation 129

5.7 Chapter Summary . 142

6 Conclusion 143

6.1 Summary . 143

6.2 Future Directions . 144

Bibliography 146

Illustrations

3.1 (a) Electrocardiogram or ECG, (b) ECG with annotated signal peaks,

(c) Pattern for peak detection. 28

3.2 Constructs in StreamQL. 38

3.3 Program for input preprocessing written in C (top-left), RxJava

(top-right), and StreamQL (bottom). 42

3.4 Program for peak detection written in C (top-left), RxJava (right),

and StreamQL (bottom-left). 43

3.5 Some of the features and streaming constructs supported by

StreamQL, Rx, Siddhi, and Trill. 45

3.6 Semantics of map, filter, reduce, aggr, seq, iter, emit, flatten, takeUntil,

par, groupBy and tWindow. 49

3.7 The left part shows an example that computes the sum of a nonempty

sequence of measurements, the top-right part shows the Sink interface,

the mid-right part shows an instance of Sink, and the bottom-right

shows the Algo interface. 53

3.8 The Java implementation of the tumbling window (left) and stream

sequencing (right) constructs. 54

3.9 (a) and (b) show the throughput (vertical axis) of twnd(sum) queries

with different window sizes (horizontal axis), and (c) shows the

throughput speedup (vertical axis) of StreamQL compared to other

libraries. 57

xi

3.10 (a) shows the size of intermediate memory (GB, vertical axis) of

twnd(sum) queries. (b) shows the garbage collection time (ms, vertical

axis) of twnd(sum) queries. (c), (d), and (e) show the ratio of the

execution time on the aggregation calculation to the total execution

time for StreamQL, RxJava, and Reactor. 58

3.11 (a), (b), and (c) show the throughput (vertical axis) of swnd(sum)

queries with different window sizes (log10(# of items), horizontal axis)

and a fixed sliding interval in RxJava, Reactor, and Rx.NET. (d)

shows the throughput speedup (vertical axis) of efficient

implementations compared with the default settings. 61

3.12 Throughput (# items/sec, vertical axis) of StreamQL, RxJava,

Rx.NET, Reactor, Trill, and Siddhi (left to right) in the micro

benchmark. 62

3.13 Throughput (# items/sec) of StreamQL, RxJava, Reactor, and Siddhi

(left to right) in the stock benchmark (S1a-S4c), NEXMark (N1-N8),

and TAQMark (T1-10). 64

3.14 Examples of (a) raw ABP signal with onset labels, (b) low-pass filtered

signal, and (c) SSF signal. 65

3.15 StreamQL program for ABP pulse detection. 67

4.1 Execution of the NCA for the regular expression Σ∗aΣ{5}. 78

4.2 The (a) running time and the (b) # of created token pairs of static

analysis for regexes. Exact means exact analysis, Approx means

approximate analysis, and Hybrid means hybrid analysis. E.g.,

“ClamAV Exact” means the exact analysis in the ClamAV benchmark. 89

4.3 Running time (ms) comparison of exact and hybrid analyses on the

Snort and Suricata benchmarks. 90

xii

4.4 The (a) Glushkov NCA for regex a(bc){1, 3}d and the (b)

corresponding NCA with STEs. 94

4.5 (a) shows the CAMA design with the unfolding of regexes. (b) shows

our augmented design with the counter or the bit vector. 95

4.6 Use of counter module to implement a(bc){m,n}d. 97

4.7 Use of bit vector to implement [ab]∗a[ab]{m,n}b. 98

4.8 Energy (upper two figures) and area (bottom two) trade-off of

unfolding vs using counter (left two figures) and bit vector (right two),

where axis is log-scaled. 99

4.9 Total number of MNRL nodes with different unfolding thresholds

(both axes are log-scaled). 101

4.10 Per-input-byte energy consumption (left) and total area cost (right) of

the augmented CAMA hardware. 102

5.1 The three-stage pipeline of the outlier detection algorithm. 107

5.2 Dataflow graph with parallel transformation I. 108

5.3 Dataflow graph with parallel transformation II. 109

5.4 Dataflow graph with parallel transformation III. 110

5.5 The use of sequence number to preserve the sequential semantics. . . 112

5.6 The use of timestamp to preserve the sequential semantics. 112

5.7 Dataflow graph with the use of signatures. 114

5.8 The use of signature for dataflow graph with non-linear task parallelism.116

5.9 Example of the execution of workers. 120

5.10 Example of the execution of splitters. 121

5.11 Example of execution related to data parallelism. 124

5.12 Example of execution without and with heartbeats. 127

5.13 Throughput (# items/sec, vertical axis) of ParaStream, Reactor,

RxJava, StreamQL, and Timely Dataflow in single-threaded settings. 129

xiii

5.14 The dataflow graph for evaluating the throughput of pipeline parallelism.130

5.15 The throughput scalability of the pipeline parallelism implemented in

ParaStream, RxJava, Reactor, and Timely Dataflow. 131

5.16 The dataflow graph for evaluating the throughput of data parallelism. 132

5.17 The throughput scalability of the data parallelism implemented in

ParaStream, RxJava, Reactor, and Timely Dataflow. 134

5.18 The dataflow graph for evaluating the throughput of task parallelism. 135

5.19 The throughput scalability of the task parallelism implemented in

ParaStream and Timely Dataflow. 136

5.20 Example of the dataflow graph for evaluating the impact of heartbeats

(epoch = 1). 136

5.21 The throughput scalability for parallelizing map(fn) with different

epochs in ParaStream. 138

5.22 Throughput speedup for real-world benchmarks with different degrees

of parallelism. 141

Tables

3.1 Map, Filter, Aggregate, and Reduce. 30

3.2 Key-based partitioning. 32

3.3 Tumbling and sliding windows. 33

3.4 Streaming (serial) composition. 33

3.5 Parallel composition. 34

3.6 Take, Skip, Ignore, and Search. 35

3.7 Temporal sequencing. 36

3.8 Temporal iteration. 36

3.9 Flatten and Emit. 37

3.10 Zip and ZipLast. 37

5.1 Parallel patterns supported with the preservation of sequential

semantics in ParaStream, StreamIt, Rx, [1], Trill, and Timely Dataflow

(✓/✣/✗ indicates whether the pattern is supported, conditionally

supported, or not supported, ✓/✣/✗ indicates whether the sequential

semantics is preserved, conditionally preserved, or not preserved). . . 116

5.2 Time and space complexity of the signature manipulation per data

item (k is the number of input edges, d is the dimension of the signature).126

1

Chapter 1

Introduction

Rapid advancements in technology have led to an enormous proliferation of streaming

data, i.e., data that is generated in real-time and at high rates. Such data arise

from diverse application domains. For example, in smart buildings [2, 3], IoT devices

continuously monitor parameters like temperature, humidity, and energy consumption,

providing real-time data that can be analyzed to optimize energy use, improve building

safety, and enhance the productivity of the occupants. In healthcare monitoring [4, 5],

wearable devices and smart medical equipment produce a continuous stream of patient

data, including heart rate, blood pressure, and other crucial health parameters.

Processing this real-time data can facilitate the early detection of potential health

issues. Smart transportation systems [6, 7] employ GPS, cameras, and road sensors

to generate real-time data for traffic management, route optimization, and accident

prevention. Smart electricity grids [8, 9] utilize sensors and smart meters to stream

data on electricity usage, enabling balance of supply and demand, and future capacity

planning. In financial market analysis [10, 11], streaming data comes from real-time

market data feeds, trading transactions, and social media sentiment analysis. Analysts

can utilize this data to make immediate investment decisions and predict market

trends. In the context of network traffic monitoring [12, 13], the continuous monitoring

and analysis of network traffic data can ensure the smooth operation of networks,

detect and respond to security incidents, and plan for future network capacity.

There are various proposals for specialized languages, compilers, and runtime

2

systems that handle the processing of streaming data. Relational database systems and

SQL-based languages have been adapted to the streaming setting [14, 15, 16, 17, 18, 19].

Several systems have been developed for distributed processing of data streams,

drawing on the dataflow model of computation [20, 21, 22]. Languages for detecting

complex events in distributed systems, informed by regular expression theory and

finite-state automata, have also been proposed [23, 24, 25, 26, 27, 28]. Synchronous

dataflow programming languages have been employed for streaming computations

[29, 30, 31, 32]. Additionally, various formalisms have been proposed for the runtime

verification of reactive systems, many of which are based on Temporal Logic variants

and their timed/quantitative extensions [33, 34, 35, 36, 37, 38]. A rich assortment of

languages and systems for reactive programming also exists [39, 40, 41, 42], which

focus on the development of event-driven and interactive applications such as web

programming. Moreover, regular expression matching is widely used for recognizing

patterns in data streams [43, 44], with various tools developed for matching regular

patterns, encompassing both software engines [45, 46, 47] and hardware architectures

[48, 49, 50, 51, 52, 53, 54].

Although the previously mentioned methods have demonstrated efficacy within

their respective application domains, contemporary applications necessitate advanced

language support to address the following challenges: (1) enabling high-level specifi-

cations for processing streaming data, (2) providing an efficient approach to identify

regular patterns in a streaming setting, and (3) ensuring semantics-preserving paral-

lelization of streaming computations.

3

1.1 Demand for High-level Specifications

Modern applications require further language support for the high-level specification

of processing over data streams. The processing of data streams typically involves

computations that integrate simple transformations, the detection of patterns, and

streaming aggregations. For example, let us consider the data streams generated by

sensors in a real-time health monitoring application (such as heart rhythm and brain

activity monitoring). These signals contain noise from various sources. Moreover, they

are mostly uneventful and interspersed with episodes of unusual activity that need to

be identified and analyzed in a timely manner. Therefore, the monitoring application

needs to perform a complex streaming computation that reduces the noise, identifies

abnormal patterns in the signals, and summarizes the most important information.

One approach for specifying the processing of streaming data is to use a low-level

imperative programming language such as C or C++. This approach quickly becomes

difficult and error-prone, as the overall computation cannot be easily expressed in

a modular way. The resulting program contains complex state-manipulating logic,

and the code is highly entangled. For this reason, it is desirable to provide language

support for assisting the programmer in specifying the application in a modular way

by composing simpler computational primitives.

However, existing approaches do not provide all the necessary abstractions for

specifying such complex computations in a natural and succinct way. For instance,

while streaming SQL and related query languages [14, 15, 16, 17, 18, 19] focus

on relational abstractions, they lack comprehensive support for computations that

hinge on the temporal sequencing of events. Similarly, synchronous and reactive

programming languages [29, 30, 31, 32, 55, 39, 40, 41, 42], despite providing dataflow

abstractions, are less expressive when it comes to the modular specification of complex

4

temporal patterns. Additionally, although monitoring formalisms rooted in Temporal

Logic [33, 34, 35, 36, 37] encompass some quantitative characteristics like timestamp

comparisons, they offer inadequate support for crucial streaming computations such

as aggregations and signal transformations.

1.2 Demand for Efficient Matching of Regular Patterns

The ever-increasing volume of streaming data across diverse domains presents the

challenge of uncovering patterns embedded within this data. These patterns contain

crucial insights, and their identification plays a vital role in a multitude of real-world

applications such as financial market analysis [10, 11], network traffic monitoring [12,

13], healthcare [4, 5], telecommunications [56], and smart infrastructure management [2,

3, 8, 9]. In numerous real-world applications, many of these patterns emerge as regular

patterns, and the matching of regular patterns has surfaced as an important technique

in many stream processing systems [57, 58, 27, 24, 59, 60, 61].

Regular patterns, whether expressed using regular expressions or finite-state au-

tomata, are widespread across an extensive range of application domains beyond

data stream processing. Regular patterns are employed in text analysis for searching,

extracting, parsing, or transforming segments of text [62, 63, 64]. Additionally, they

find applications in network security [43] for identifying signatures in network traffic

that signal intrusions or other security issues, in bioinformatics [65, 66] for denoting

DNA, RNA, or protein sequences, and in runtime verification [44, 67] for specifying

safety properties. The extensive use of regular expressions in software projects further

emphasizes their significance, as studies (e.g., [68]) indicate that 30%-40% of Java,

JavaScript, and Python software projects rely on regex matching for various purposes.

Several different techniques have been developed for matching regular patterns,

5

with many relying on deterministic finite automata (DFAs) or nondeterministic finite

automata (NFAs) execution. In general, DFA-based techniques are faster, as processing

an input element requires a single memory lookup, while NFA-based techniques are

slower, as they involve extending multiple execution paths when processing an element.

However, NFAs typically offer greater memory efficiency. In fact, for some NFAs, the

minimal equivalent DFA would be exponentially larger [69].

Numerous applications require the processing of large and complex NFAs on

real-time data streams. Both high-performance computing and battery-powered

embedded applications prioritize energy and memory efficiency (in terms of memory

capacity or chip footprint needed for a given NFA). NFA processing on general-

purpose processors demands frequent, irregular, and unpredictable memory accesses,

resulting in limited throughput and high power consumption on CPU and GPU

architectures [70, 71, 72]. Field Programmable Gate Arrays (FPGAs) offer high-speed

processing via hardware-level parallelism but often suffer from routing congestion-

related bottlenecks [73, 74] and high power, area, and cost limitations that impede

their use in mobile and embedded devices. Even digital application-specific integrated

circuit (ASIC) accelerators face memory access bandwidth constraints that limit

parallelism [75, 76]. The latest hardware technology addressing these challenges is

in-memory architecture [54, 77, 53], which processes NFA transitions directly within

memory using massive parallelism.

Classical regular expressions (regexes) involve operators for concatenation ·, non-

deterministic choice +, and iteration (Kleene’s star) ∗. They can be translated into

NFAs whose size is linear in the size of the regex [78, 79]. However, regexes utilized

in practice often include additional features that increase their succinctness. One

such feature is counting, written as r{m,n}, which is also referred to as bounded

6

repetition. The pattern r{m,n} expresses that the subpattern r is repeated between

m and n times. This counting operator is ubiquitous in practical regex use cases. The

näıve approach to handling counting operators is unfolding. For example, r{n, n} is

unfolded into r · r · · · r (n-fold concatenation) and results in an NFA of size linear in n,

potentially producing a DFA of size exponential in n. Since n can become quite large,

dealing with bounded repetition is one of the main technical challenges for effectively

utilizing hardware-based approaches to execute practical regular patterns. Existing

in-memory NFA architectures employ this näıve unfolding method to handle counting,

resulting in large memory and energy cost, which is inefficient.

1.3 Demand for Parallel Stream Processing with the Preser-

vation of Sequential Semantics

Applications handling large-scale data streams have significant scalability requirements

and can benefit from a multicore implementation of the streaming language or engine.

For instance, in applications related to high-frequency stock trading, billions of quotes

and transactions occur daily [80]. The complex analysis of such high-volume and high-

velocity data necessitates a multicore implementation capable of meeting throughput

requirements. Furthermore, applications dealing with streaming data typically demand

strict correctness, ensuring in-order processing of input items. Many workloads, such

as stock market price pattern analysis [26] and healthcare monitoring [81], demand

a semantics-preserving, or safe parallel implementation, which, as emphasized in [1],

must process items based on input order and produce results consistent with sequential

implementations.

This thesis focuses on the parallel processing of data streams using multicore CPUs.

7

In this scenario, inter-thread communication is more reliable than in distributed sys-

tems, as messages or data items experience lower latency and a reduced likelihood of

loss compared to network communication. To parallelize stream processing, program-

mers often express computation as a dataflow graph, with each node corresponding to

a computation stage, where nodes communicate using FIFO channels. During compi-

lation and deployment, this dataflow graph is mapped to physical cores and processes

to achieve parallelism, thereby accelerating the overall streaming computation since

multiple nodes can compute simultaneously.

Many tools have been developed to expose parallelism in stream processing based on

dataflow graphs. However, they often lack adequate support for processing streaming

data while ensuring safety in our context, i.e., the output of parallel computation

should match that of sequential computation. For instance, distributed stream

processing systems [82, 22, 20, 83, 84], such as Storm [20], cannot preserve sequential

output order. Others, like Flink [83], utilize external APIs to reorder input item

timestamps. Synchronous dataflow (SDF) languages and models [85, 30, 86, 31, 55]

are valuable for implementing parallelism in streaming computations within the

embedded software domain. However, SDF languages typically assume fixed item

rates, implying that a given input item generates a fixed number of output items

during computation. This property enables efficient scheduling determined at compile-

time, but SDF languages inherently cannot express computations involving dynamic

item rates, where an arbitrary number of output items may be generated from a

given input item. A recent study [1] proposes a framework to ensure safe data

parallelism for streaming computations with dynamic item rates. This framework

offers multiple ordering strategies to preserve sequential semantics based on the use of

sequence numbers. However, it is insufficient to maintain sequential semantics when

8

implementing computations with complex patterns of parallelism.

1.4 Contributions

This thesis aims to provide language support for real-time data processing through

three approaches: (I) creating a language for specifying complex computations over real-

time data streams, (II) developing software-hardware co-design for efficient detection

of regular patterns in a streaming setting, and (III) designing a system for parallel

stream processing with the preservation of sequential semantics.

The detailed contributions in each part are listed as follows:

Part I. We developed a novel language, called StreamQL, that simplifies the task

of specifying complex streaming computations over data streams. Unlike exist-

ing approaches that primarily focus on streams as their basic object, such as

the Observable in Rx [39], StreamQL uses stream transformations to define

how input streams are converted into output streams. By focusing on stream

transformations, StreamQL effectively integrates several valuable programming

abstractions for stream processing, including: (1) relational constructs, such

as filtering, mapping, aggregating, key-based partitioning, and windowing; (2)

dataflow constructs, like streaming/serial and parallel composition; and (3) tem-

poral constructs, which are inspired by Temporal Logic and regular expressions.

Furthermore, the composition of stream transformations enables programmers

to express streaming analyses as modular data queries, allowing for the flexible

composition of computations.

We provided an implementation of StreamQL as a lightweight, high-throughput

Java library. We compared our StreamQL implementation against popular

9

open-source streaming engines. The experiments show that our implementation

consistently performs well when compared to these state-of-the-art streaming en-

gines. In benchmarks with real-world applications, the throughput of StreamQL

is consistently higher (up to 100 times) than these engines.

Part II. We proposed software and hardware co-design for integrating counting

modules into state-of-the-art in-memory NFA architectures. This approach opti-

mizes the memory and energy efficiency of NFA processing with counting while

maintaining the performance advantages offered by in-memory architectures.

By developing innovative methods to handle the counting construct, we can

enhance the effectiveness of hardware-based approaches for executing regular

patterns in various real-world applications.

In particular, we proposed a novel notion called counter-unambiguity to identify

instances of bounded repetition that can be handled with a small amount of

memory. We provided an efficient algorithm for analyzing counter-(un)ambiguity

over regular expressions that arise in several application domains. We developed

a compiler that translates POSIX-style regular expressions into high-level pro-

gramming specifications used by the hardware, where the compiler first performs

the static analysis for checking counter-(un)ambiguity and then leverages the

analysis results to produce a low-level description of the automaton. We pro-

posed a hardware design that augments the prior NFA-based CAMA architecture

[53] with counter and bit vector modules. This architecture achieves substantial

energy (up to 76%) and area (up to 58%) reductions compared to prior designs.

Part III. We proposed a novel ordering strategy for data items that leverages

signatures, which consist of a series of sequence numbers that unambiguously

10

define the data processing order. We have developed a novel programming system

using this signature-based approach, capable of preserving sequential semantics.

This system enables programmers to effortlessly develop semantics-preserving

parallel programs for expressing complex patterns of parallelism.

We implemented this system as a lightweight Rust library called ParaStream,

which consists of a comprehensive set of operators for describing streaming

computations executed by a node in the dataflow graph. Our algorithms for

preserving sequential semantics are implemented on top of each node, allowing

users to program their computations with semantics-preserving parallelism

without the need of implementing low-level item reordering algorithms. We have

compared this library to state-of-the-art engines for the efficient processing of

data streams. The benchmarking results show that ParaStream consistently

provides higher throughput than state-of-the-art tools in single-threaded settings

and more substantial speedups with increasing degrees of parallelism.

The work in this thesis was done in close collaboration with my advisor, Kon-

stantinos Mamouras, and other collaborators: particularly Qixuan Yu, Agnishom

Chattopadhyay, Alexis Le Glaunec, and Kaiyuan Yang for works related to the match-

ing of regular expressions. Qixuan and Kaiyuan lent their expertise to help complete

the design of the hardware architecture, as presented in Chapter 4. Different chapters

of this thesis correspond to several of my publications, as referenced [87, 88, 89].

My work is implemented in open-source tools:

• StreamQL∗ is a query language for efficient data stream processing.

∗https://ohyoukillkenny.github.io/source/streamql.html

https://ohyoukillkenny.github.io/source/streamql.html

11

• C-Ambiguity Checker† is a tool that can provide a static analysis over regexes

to determine whether a regex is counter-(un)ambiguous.

1.5 Thesis Overview

Chapter 2 provides a review of related literature and introduces the necessary notation

and background. The technical part of this thesis has been split into three sections.

Chapter 3 presents the design and the implementation of the StreamQL language.

Chapter 4 shows our software-hardware co-design for efficient in-memory regular

pattern matching. Chapter 5 presents the programming system used for parallel

stream processing with the preservation of sequential semantics. Finally, Chapter 6

concludes this thesis.

†https://ohyoukillkenny.github.io/source/regexchecker.html

https://ohyoukillkenny.github.io/source/regexchecker.html

12

Chapter 2

Background and Related Works

This chapter surveys related work, introducing requisite notation and background. It

covers languages and tools for stream processing, studies on regular expression match-

ing, and research on maintaining sequential semantics in parallel stream processing.

2.1 Languages and Tools for Stream Processing

2.1.1 Streaming Database Systems

A large body of work exists on streaming database systems such as STREAM [90],

Aurora [16], Borealis [18], CACQ [91], TelegraphCQ [17], Niagara [92], Gigascope [12],

Nile [93], Microsoft’s CEDR [94], and StreamInsight [95]. The languages supported

by these database systems (for example, CQL [19]) are typically variants of SQL with

additional streaming constructs for sliding windows. These languages are limited in

their ability to perform computations that depend on the order of arrival of data

items, such as detecting complex patterns.

2.1.2 Distributed Stream Processing Systems

Numerous distributed stream processing systems are based on the distributed dataflow

model of computation, including S4 [96], IBM Streams [6], MapReduce Online [97],

Storm [20], Summingbird [98], Heron [21], Naiad [82], Spark Streaming [22, 99], Flink

[83], Google’s MillWheel [100], Samza [101], and Beam [84]. Many of these systems,

13

such as Storm, Heron, and Samza, provide a low-level API for specifying a dataflow

graph of operators, with each operator defined as an event-handling function. Others,

including IBM Streams, Spark Streaming, Flink, and Beam, offer higher-level APIs

for describing streaming computations. IBM Streams and Flink include specialized

pattern detection operators based on regular expressions. All these systems aim to

achieve high throughput, scalability, load balancing, load shedding, fault tolerance,

and recovery. For instance, Spark Streaming utilizes micro-batches to ensure high

throughput and fault recovery guarantees.

2.1.3 Complex Event Processing

Complex Event Processing (CEP) languages and tools focus on detecting complex

patterns within event streams. These languages often rely on regular expressions [25]

and are implemented using variants of finite-state automata [57, 58, 27, 24, 59, 60, 61]

or evaluation trees [102, 103, 104, 105]. Several streaming engines, such as Trill

[106], Esper [107], Siddhi [108], Flink [28], Oracle Stream Analytics [109], and IBM

Streams [6], offer specialized operators or extensions for CEP. A typical issue with

CEP implementations is the need to explore all possible input stream parse trees

that match a regular expression, which can lead to an exponential blowup in memory

requirements in the worst case.

2.1.4 Lightweight Streaming Engines

Several lightweight streaming engines are implemented as libraries within a general-

purpose host language, enabling easy integration with other systems and allowing

existing code to be repurposed for application-specific tasks. Microsoft’s Trill [106]

is a high-performance streaming library that utilizes a batched-columnar data rep-

14

resentation and dynamic compilation. Trill accommodates out-of-order events and

offers extensions for pattern matching and signal processing [110, 57, 111]. Esper

[107] and Siddhi [108] are lightweight engines for CEP and streaming analytics, pro-

viding a rich set of operators, including SQL-based constructs, windows, and pattern

matching. Java Stream [112] and Stream Fusion [113] deliver a simpler streaming API

for processing static data collections. NetQRE [114] and StreamQRE [115] integrate

unambiguous regular expressions with quantitative calculations and other streaming

constructs like streaming composition [116]. The core of these two languages is related

to transducers with registers capable of holding values [117, 118, 119] and other related

models [120]. InfluxDB [121] is a database system optimized for time-series data and

implements two query languages: (1) InfluxQL, based on SQL syntax, and (2) Flux

[122], featuring a more functional syntax.

2.1.5 Reactive Programming

The survey paper [123] explores various approaches to reactive programming. Func-

tional reactive programming (FRP) focuses on the transformation of time-varying

values (signals), with early representative languages including Fran [40] and Yampa

[124]. Several subsequent frameworks embed FRP in imperative languages, such as

Flapjax [125], Frappé [41], and Scala.React [42]. FRP has primarily been used in

developing event-driven and interactive applications like GUIs. Elm [126] is a practical

FRP language designed for the easy creation of responsive GUIs. Libraries such as Rx

[127, 39], Reactor [128], and Akka Streams [129] share similarities with FRP languages

but deal with event streams instead of signals. These libraries present data streams

as push-based collections (e.g., Observable in Rx) and provide APIs for transforming

these streams.

15

2.1.6 Signal Processing on Streams

The WaveScope project [130, 131] highlights the need to combine event-stream pro-

cessing with signal processing for applications that make use of sensor-generated data

streams. TrillDSP [111] extends Trill with signal processing functionality. LifeStream

[132] is a stream processing engine for physiological data, offering comprehensive

temporal query language support for signal processing.

2.2 Matching of Regular Expressions

2.2.1 Regular Expression with Bounded Repetition

Regular expressions, often abbreviated as regex or regexp, represent a widely used

formalism for describing regular patterns. Classical regular expressions involve con-

structs for nondeterministic choice r1|r2, concatenation r1 · r2, and Kleene’s star r∗

(repetition of r zero or more times). They can be translated into NFAs whose size is

linear in the size of the regex [78, 79].

In practice, the syntax of regular expressions is often extended with more features

for convenience and succinctness, such as character classes for describing sets of

letters/symbols (e.g., [ab] and [0−9]), the construct r? for indicating that the pattern

r is optional, and Kleene’s plus r+ (repetition of r at least once). The construct of

bounded repetition (i.e., counting), which is written as r{m,n} and describes the

repetition of r from m to n times, can be translated using concatenation and ? but

makes regular expressions exponentially more succinct. In practice, r{n} is written as

the abbreviation for r{n, n}. The expression r{n, } = r{n}r∗ describes the repetition

of r at least n times. The construct of bounded repetition is ubiquitous in practical

use cases of regexes. For example, it is extremely common in datasets for network

16

intrusion detection [133, 134] and motif search in biological sequences [135, 65]. The

näıve approach for dealing with bounded repetition is to rewrite it by unfolding. For

example, r{n} is unfolded into r · r · · · r (n-fold concatenation) and results in an NFA

of size linear in n (and therefore can produce a DFA of size exponential in n).

Formalization of Regular Expressions with Bounded Repetition

Let Σ be a finite alphabet. This thesis considers a set of regular expressions, which

we call Regex, over Σ. Regex is the smallest set that satisfies the following properties:

1. Regex contains the expression ε (regex that recognizes the empty string).

2. Regex contains every predicate σ over the alphabet (i.e., σ ⊆ Σ).

3. For every r, r1, r2 ∈ Regex, r1 · r2 ∈ Regex (concatenation), r1|r2 ∈ Regex

(nondeterministic choice) and r∗ ∈ Regex (Kleene’s star).

4. For every r ∈ Regex and all integers m,n with 0 ≤ m ≤ n, r{m,n} ∈ Regex.

The concatenation symbol is sometimes omitted, i.e., r1 · r2 sometimes is written as

r1r2. The interpretation of a regex r is a language L(r) ⊆ Σ∗, which is defined in the

standard way.

Notation for Character Classes

A predicate over the alphabet is also called a character class. The predicate Σ contains

all symbols in the alphabet. When we use a symbol a ∈ Σ in a regex, it should be

understood as the singleton predicate {a} ⊆ Σ. The notation [a1 . . . an] is used for

representing the predicate {a1, . . . , an} ⊆ Σ. We write [ˆa1 . . . an] for the predicate

Σ \ {a1, . . . , an} that contains all symbols except for a1, . . . , an.

17

2.2.2 Regular Expression Matching on Software

There are several approaches for implementing the matching of regular expressions on

software (i.e., CPU). The regex matching engines of many programming languages

such as Java, .NET, Python, and JavaScript use backtracking search. For some

regexes, these engines need time that is exponential in the size of the input text. For

other regexes, backtracking engines may need time that is polynomial in the length

of the input text, but the polynomial has degree at least 2. This is a lot worse than

Thompson’s algorithm [78], which has time complexity O(m ·n), where m is the size of

the regular expression and n is the size of the input text. The benefit of backtracking

is the simplicity of its implementation and the ease with which advanced features (e.g.,

lookaround [136] and backreferences [137]) can be added.

Many modern regex engines are based on the classical theory of automata. They

employ DFAs or NFAs, or both [63, 45, 47]. DFA-based algorithms perform a memory

lookup when receiving an input symbol to execute the transition of the automaton.

This makes them fast, because they need O(1) time per symbol. One potential problem

is that the representation of the DFA might require a large amount of memory. For

many patterns that arise in practice, their encoding as NFAs can be substantially

more compact that their encoding as DFAs. In fact, it is known that there are families

of patterns for which minimal DFAs are exponentially larger than equivalent NFAs

[69]. The downside with NFAs is that their execution is less efficient in terms of time

complexity. NFA execution involves maintaining a set of active states, which represent

several possible execution paths, and performing at every step a transition for each

one of the currently active states. So, for every step, this may involve work that is

proportional to the number of states of the NFA.

18

2.2.3 Regular Expression Matching on Hardware

Software-based implementations of regular pattern matching often explore this trade-

off between time- and memory-efficiency that we described in the previous subsection.

There are also hardware-based implementations that make use of the inherent paral-

lelism that is available in hardware, where circuit elements compute independently

and in parallel. There are several proposals that use field-programmable gate arrays

(FPGAs) to support the matching of regexes [138, 139, 140, 73, 74, 141, 142, 143]. A

number of digital application-specific integrated circuit (ASIC) accelerators [52] have

been designed to achieve high throughput for regex matching. The IBM RegX [76]

accelerator expands on the concept of representing regexes with compressed DFAs

[144, 145, 146] and its parallelized architecture enhances performance on large work-

loads. The Automata Processor (AP), introduced in [54], is a reconfigurable ASIC

hardware based on bit-parallelism [147] that simulates NFAs in parallel. SparseAP

[148] enables AP to efficiently execute large-scale applications. AP can support numer-

ous regexes found in real-life applications [70, 149], but provides limited support for

regexes with counting (when upper bounds exceed 512, they are considered unbounded

[150]). Other significant ASIC works are based on the Aho-Corasick algorithm [151],

including [51], HAWK [75], and HARE [152]. Moreover, there are several works that

implement regex matching algorithms on GPUs [153, 154, 48, 155, 156]. Hardware

offers the memory-efficiency of NFAs without a penalty in execution time, since NFA

transitions from active states are explored in parallel in one step.

2.2.4 Automata With Counters

Previous studies have proposed automata with counters for efficiently handling regular

expressions with bounded repetitions (i.e., counting). XFA extends traditional DFA

19

with counters to reduce memory requirements when representing regular expressions

with bounded repetitions [157]. Similarly, counting-NFA [144] extends NFA for dealing

with counting in regular expressions. The determinization of a class of counter

automata is considered in [158]. This determinization produces smaller automata

than standard determinization into DFAs. The work of [158] is extended in [159]

and the CA regex engine, which handles bounded repetition using a specialized

algorithm, is presented. The CA engine uses a class of automata with counters, called

“counting automata” (CAs), which are nondeterministic, to represent patterns. CAs

are converted into deterministic “counting-set automata” (CsAs). Using CsAs, the

work of [159] develops an algorithm to efficiently handle certain cases of bounded

repetition. One issue with the approach of [159] is that the automata underlying the

matching algorithm may over-approximate the language of the pattern, potentially

resulting in false matches.

2.3 Semantics-preserving Parallel Stream Processing

2.3.1 Classical Parallel Programming Models

Several classical parallel programming models have been developed to parallelize serial

programs for general applications. OpenMP [160] uses directives like critical and

atomic to design safe programs. Cilk [161, 162], a parallel C-like language, can avoid

data races with specific data structures called hyperobjects. X10 [163], a Java-based

language, requires static analysis to identify parallel tasks that may lead to data races.

The MPI library [164] offers communication and distribution primitives for programs

running on large clusters.

20

2.3.2 Kahn Process Networks

Dataflow programming models are extensively utilized in parallel computing and

distributed systems, wherein a program is decomposed into nodes that communicate

exclusively through First-In-First-Out (FIFO) channels. The history of the dataflow

model can be traced back to Petri nets [165, 166] followed by several pioneering studies

on the dataflow model [167, 168]. Kahn Process Networks (KPN) [169] is one of

the prominent dataflow programming models. KPN operates by decomposing the

computation into independent processes or nodes that interact solely through FIFO

channels. When a KPN node is scheduled for execution, it becomes challenging to

ascertain the precise number of data items it will read from or write to its input or

output channels. Consequently, determining buffer sizes and scheduling the activation

of nodes cannot be statically determined. Moreover, there is no guarantee that a KPN

program can be executed using finite memory.

2.3.3 Synchronous Dataflow Programming Models

In the pursuit of achieving static predictability of boundedness, researchers have

explored various models and languages. One such variant is the synchronous dataflow

programming model, also known as SDF [85], which effectively is the restriction of

KPN. In SDF, the programmer specifies, for each node, the static number of data items

the node reads or writes on each of its input or output channels during activation.

The SDF models are useful for explicitly identifying the parallelism present in

streaming computations that arise in the embedded software domain, such as signal

processing [85] and embedded controller design [30, 86, 31, 170]. The StreamIt

language, in particular, provides a general framework for streaming signal processing

with efficient execution on multicore architectures [55].

21

2.3.4 Actors and Active Objects

Various languages employ actors and active objects for parallel computation. Ac-

tors [171] are single-threaded entities that communicate asynchronously, while active

objects [172] merge actors and object-oriented programming concepts, using asyn-

chronous method invocation for communication. Erlang [173] is a prominent actor

language known for massive parallelism and industry use. Rebeca [174, 175] is an actor-

based language for modeling and verifying concurrent and distributed systems. There

are also other languages based on the use of actors, which includes ABS [176], ASP [177],

Encore [178], etc. The actor community has mitigated the inherited nondeterminism

of actors and associated bugs through advanced debugging tools [179, 180, 181, 182],

while Lingua Franca [183], a reactor-based language, augments mainstream languages

with a concurrency model for exploiting parallelism without nondeterminism.

2.3.5 Algorithmic Skeletons

Algorithmic skeletons [184] abstract common patterns of parallel computation. Using

skeletons, programmers can express parallel computations using a composition language

that assembles basic sequential blocks. Classic parallel programming patterns, like

map, reduce, pipeline, farm, and divide and conquer are used for skeleton composition.

Libraries such as ASSIST [185], Calcium [186], Eden [187], Muskel [188], P 3L [189],

Skandium [190], etc., offer various algorithmic skeletons for parallel programming. The

determinism of the parallel computation is not the primary focus in the design of the

algorithmic skeletons. However, several skeleton programs are inherently deterministic

due to independent sequential skeletons and composition operations.

22

2.3.6 Lightweight Libraries for Parallel Stream Processing

There are several lightweight parallel streaming libraries that are implemented as

libraries within a general-purpose host language. Microsoft’s Trill [106] is a high-

performance streaming library that employs a batched-columnar data representation

and dynamic compilation. Trill provides streaming generalizations of the classic

MapReduce operations with temporal support to allow parallel stream processing.

Inspired by Trill’s columnar store and bit-vector design, StreamBox [191, 192, 193]

exploits the parallelism and memory hierarchy of modern multicore hardware with

more efficient data structures to support high-performance stream processing. Java

Stream [112] and PLINQ [194] provide streaming APIs. PLINQ provides mechanisms

to reorder the output data generated by multiple worker threads during parallel data

processing.

2.3.7 Correctness of Parallel Stream Processing

To ensure the correctness for parallel stream processing, many existing works fo-

cus on the testing of batch processing programs under the MapReduce framework

[195, 196, 197] and of general dataflow or stream-processing programs [198, 199]. There

are also language-based approaches that enforce correct (i.e., semantics-preserving)

parallelization in stream processing programs [1, 200, 201, 202]. In particular, [1] has

presented a runtime system that is capable to preserve the sequential semantics in the

presence of operators that can be stateful and have dynamic item rates. Moreover,

[202] proposes dependency-guided synchronization (DGS), which is an alternative

programming model for streaming computations with complex synchronization re-

quirements. DGS requires users to specify the dependency relation between input

events and decomposes the input stream using the fork-join operations [203, 204].

23

Chapter 3

Language Design for Stream Processing

3.1 Motivation

The emergence of new technologies, notably the Internet of Things (IoT), has led to a

significant increase in the amount of streaming data. This type of data is created in

real time and at high rates. Such data arise in various application domains, such as

smart buildings [2, 3], healthcare monitoring [4, 5], smart transportation [6, 7], smart

electricity grids [8, 9], financial market analysis [10, 11], telecommunications [56], and

network traffic monitoring [12, 13].

There are various proposals for specialized languages, compilers, and runtime

systems that deal with the processing of streaming data. Relational database systems

and SQL-based languages have been adapted to handle streaming data [14, 15, 16,

17, 18, 19]. Several systems have been designed for the distributed processing of data

streams using the dataflow model of computation [20, 21, 22]. Languages for detecting

complex events in streaming data, which draw on the theory of regular expressions and

finite-state automata, have also been proposed [23, 24, 25, 26]. Synchronous dataflow

programming languages [29, 30, 31, 32] have been used for streaming computations

in embedded systems. Several formalisms for the runtime verification of reactive

systems have been proposed, many of which use variants of Temporal Logic and its

timed/quantitative extensions [33, 34, 35, 36, 37]. Finally, there exists a wide range

of languages and systems for reactive programming [39, 40, 41, 42], which focus on

24

creating event-driven and interactive applications.

While the approaches mentioned above have proven effective in their respective

fields of application, modern applications demand further language support for the

high-level specification of processing over data streams. The processing of such

data typically involves computations that integrate simple transformations, pattern

detection, and streaming aggregations. For instance, in a real-time health monitoring

application, data streams from sensors, such as heart rhythm and brain activity,

often contain noise and uneventful data mixed with unusual activity. Therefore, the

monitoring application needs to perform complex streaming computations to reduce

noise, identify abnormal patterns, and summarize the most important information.

Using a low-level imperative programming language like C or C++ for processing

streaming data can be complex and prone to errors, as it is challenging to express the

overall computation in a modular fashion. The resulting program contains complex

state-manipulating logic and the code is highly entangled. Hence, it is desirable

to provide language support that helps programmers to specify the computation in

a modular way by composing simpler computational primitives. However, existing

approaches do not provide all the necessary abstractions for specifying such complex

computations in a natural and succinct way. For example, streaming SQL and related

query languages focus on relational abstractions, but they provide limited support

for computations that rely on the temporal sequencing of events. The synchronous

and reactive languages offer dataflow abstractions, but they are less suitable for the

modular specification of complex temporal patterns. Monitoring formalisms based

on Temporal Logic include quantitative features like timestamp comparisons and

simple value thresholds, but they offer little support for aggregations and signal

transformations.

25

3.2 Contributions

This thesis presents StreamQL (Streaming Query Language), a language designed to

simplify complex streaming computations over real-time data. This proposed language

diverges from existing proposals, in which the fundamental component is the data

stream such as the Observable in Rx [39] and the IStreamable in Trill [106]. Instead,

the basic object of StreamQL is the stream transformation, which describes how

each input stream is transformed into an output stream. StreamQL provides a novel

fusion of several useful programming abstractions for stream processing: (1) relational

constructs (such as filtering, mapping, aggregating, key-based partitioning, and win-

dowing), (2) dataflow constructs (such as streaming/serial and parallel composition),

and (3) temporal constructs that are inspired from Temporal Logic and regular ex-

pressions. Beyond providing these abstractions, StreamQL empowers programmers

with a modular approach for specifying streaming analyses. The language constructs

offered in StreamQL are freely composable, allowing a flexible combination of different

computations.

In StreamQL, a stream transformation is captured syntactically with a query.

We classify queries according to their input/output type in order to guarantee that

composite queries (i.e., queries that result from the composition of simpler queries)

are well-formed. We write f : Q(A,B) to indicate that the query f processes an input

stream with items of type A and produces an output stream with items of type B.

A stream is typically viewed as an unbounded sequence of data items (elements). A

key feature of StreamQL is that it generalizes this notion of a stream by allowing the

occurrence of a distinguished symbol □, called end-of-stream marker, that signals the

termination of the stream. This is useful not only because there are certain streams

that indeed terminate (e.g., when reading lines from a text file), but more importantly

26

because it allows us to decompose unbounded streams into finite regions: each finite

region can be viewed as a stream that eventually terminates. Such decompositions of

streams are essential for the modular description of complex streaming computations.

A key design feature of StreamQL is that a query can halt (terminate), even before the

input stream has terminated. After a query has halted, then our language allows the

computation to proceed according to some other query, thus varying the computation

over time. This novel feature of StreamQL enhances modularity by enabling the

unrestricted composition of temporal and dataflow/relational operators.

StreamQL has an expressive set of combinators for describing common stream

processing primitives, as well as rich forms of composition. The primitive queries

map, filter, reduce and aggr describe basic streaming operators for transforming,

filtering, and aggregating streams. The combinator groupBy supports the key-based

partitioning of a stream and independent computation over disjoint sub-streams, which

is similar to the Group-By construct in database query languages. The windowing

combinators tWindow (tumbling) and sWindow (sliding) facilitate the specification

of computations that operate on finite spans of an unbounded data stream. The

combinators ≫ (streaming/serial composition) and par (parallel composition) allow

the programmer to describe a complex computation as a directed acyclic graph of

independent tasks, which facilitates modular specification and exposes pipeline and

task parallelism. The atomic queries takeUntil, skipUntil and search are used to

identify simple single-event patterns in a stream. They are inspired from the Until

connective of Temporal Logic. The combinators seq (temporal sequencing) and iter

(temporal iteration) are useful for describing time-varying analyses and detecting

complex temporal patterns. The constructs seq and iter can be viewed as stream-

transforming analogs of concatenation and Kleene’s star from regular expressions.

27

The StreamQL language has a formal denotational semantics. A query f : Q(A,B)

represents a monotone function A∗ · {ε,□} → B∗ · {ε,□}, where ∗ is Kleene’s star,

ε is the empty string, and · is string concatenation. The monotonicity requirement

captures a key requirement of streaming computation: an output item cannot be

retracted after it has been emitted to the output. Every combinator of StreamQL has

a denotational semantic analog, which provides unambiguous meaning for the entire

language and thus validates the language design.

We provided an implementation of StreamQL as a lightweight Java library. We use

an explicit mechanism to reset the streaming computation, which allows us to reuse the

allocated memory when performing operations that involve stream decomposition. In

addition to the core combinators, the implementation provides support for aggregation

(e.g., median and general percentiles), efficient algorithms for sliding windows, signal-

processing primitives such as FFT (Fast Fourier Transform), FIR (Finite Impulse

Response) filters, IIR (Infinite Impulse Response) filters, and several common stream

processing idioms. We have used the library to specify real-world streaming applications

for health monitoring.

We compare our StreamQL implementation against three popular open-source

streaming engines: RxJava [205], Reactor [128], and Siddhi [108]. The experiments

show that our implementation consistently performs well when compared to these

state-of-the-art streaming engines. In benchmarks with real-world applications, the

throughput of StreamQL is 1.1–10 times higher than RxJava, 1.2–20 times higher

than Reactor, and 5–100 times higher than Siddhi.

The main contribution of this work lies in defining language abstractions for data

stream processing that balance the following desirable characteristics:

• They provide clear formal semantics.

28

(a)

(b) (c)

hTh
lTh

pattern

Figure 3.1 : (a) Electrocardiogram or ECG, (b) ECG with annotated signal peaks, (c)
Pattern for peak detection.

• They give rise to an expressive and compositional language.

• They enable an efficient lightweight implementation.

The key design choice of StreamQL is to base the language on stream transformations

that can potentially halt (instead of nested streams) and combinators on them. With

respect to the implementation, a key idea is the introduction of an execution model that

is essentially a stream transducer [206] that receives a special control signal for resetting

its internal state. We have used this model to provide an efficient implementation of

the language that avoids common sources of computational overheads that are present

in related streaming languages.

3.3 Overview of StreamQL

To provide an overview of StreamQL, we will examine the processing of an electrocar-

diogram (ECG), which is a cardiac signal from a patient. We will particularly focus

on the problem of peak detection in the ECG, which equates to detecting heartbeats.

This problem has gained considerable attention in the realm of biomedical engineering

[207, 208], as it underpins numerous analyses performed on cardiac data.

Figure 3.1(a) shows part of an ECG, which is the electrical cardiac signal recorded

29

on the surface of the skin near the heart. The horizontal axis is time and the vertical

axis is voltage. A simple but effective procedure for detecting the peaks consists of

three stages: (1) smoothing the signal to eliminate high-frequency noise, (2) taking

the derivative of the smoothed signal to calculate the slope, and (3) finding the peaks

using both the raw measurements and the derivatives.

smooth deriv detect
x(n) y(n) z(n)

Figure 3.1(b) shows a short snippet (about 3 seconds) of an ECG signal, where the

gray line corresponds to the input time series x(n), the green line is the smoothed

data y(n) = (x(n− 2) + 2x(n− 1) + 4x(n) + 2x(n+ 1) + x(n+ 2))/10, and the blue

line is the derivative z(n) = y(n)− y(n− 1). A straightforward algorithm for detecting

the peaks is to find the first occurrence (let us say at time i) where the derivative

z(n) exceeds a pre-defined threshold hTh, followed by the first occurrence after i (let

us say at time j) where the derivative z(n) becomes less than a threshold lTh. Time

point i is located on the ascending slope towards the peak, and time point j is located

on the descending slope after the peak. So, the exact peak location can be found by

searching for the maximum value of the original x(n) time series in the interval from i

to j. This pattern is illustrated in Figure 3.1(c). Every time a peak is identified, this

detection procedure is reset and repeated.

This motivating example shows that the detection of complex patterns requires

the transformation of the data stream (e.g., smoothing and differentiation) to enrich it

with extra information. For this reason, the basic concept in the design of StreamQL

is the stream transformation, which specifies how an input stream is transformed

into an output stream. A query is a syntactic description of a stream transformation.

Every query f has a type Q(A,B), where A is the type of input data items, and B is

30

Table 3.1 : Map, Filter, Aggregate, and Reduce.

input: ⟨2.5, 1⟩ ⟨0.8, 2⟩ ⟨3.5, 3⟩ ⟨0.9, 4⟩ □
f output: 5.0 1.6 7.0 1.8 □
g output: ⟨2.5, 1⟩ ⟨3.5, 3⟩ □
h output: 2.5 3.3 6.8 7.7 □
k output: 7.7 □

the type of the output data items. We write f : Q(A,B) to indicate that f is of type

Q(A,B).

A stream is typically viewed as an unbounded sequence of data items. We consider

here a generalization of this notion of streams by assuming that the stream can

potentially contain an occurrence of a special □ symbol, called end-of-stream marker,

that signals the end of the stream. We say that a stream is terminated if it ends with

□. As we will see later, the introduction of the end-of-stream marker allows us to

define stream transformations that operate only on finite parts of the stream, which

is useful for the modular specification of complex streaming computations such as

time-varying analyses.

We will proceed to present the basic programming constructs of the StreamQL

language. We will start with some simple primitives, and we will gradually build up

toward the more complex combinators (i.e., composition constructs) of the language.

Finally, we will conclude this section with a complete description of the ECG peak

detection algorithm.

Primitive Constructs: Map, Filter, Aggregate, and Reduce

Suppose that the input stream is a real-valued discrete-time signal. The type of

the input data items is a record type VT = {val : V, ts : T}, where V is the type

of scalar values (e.g., real numbers) and T is the type of time points (e.g., natural

31

numbers). The map query f = map(x -> 2 · x.val) has type Q(VT, V) and represents

the transformation that outputs the double of the value of each item. The argument

x -> 2 · x.val is a lambda expression that defines a function of type VT→ V. The filter

query g = filter(x -> x.val ≥ 2.0), of type Q(VT, VT), filters out those items with a

value less than 2.0 and keeps the rest. The lambda expression x -> x.val ≥ 2.0 is a

predicate on VT. The aggregation query h = aggr(0.0, (x, y) -> x+ y.val) : Q(VT, V)

represents the running sum of the values in the input stream. The first argument

0.0 : V is the initial aggregate value, and the second argument is a binary function of

type V × VT → V that specifies how to aggregate each input data item. The reduce

query k = reduce(0.0, (x, y) -> x+ y.val), of type Q(VT, V), is similar to the running

aggregation query h, with the difference that it only emits the total aggregate when

the input stream terminates. Table 3.1 shows the execution of the queries f, g, h, k,

where time progresses in the left-to-right direction. For a function op : A× A→ A,

we also consider the variants aggr(op), reduce(op) : Q(A,A), which do not need an

initial aggregate (the first item of the input serves this purpose). The most general

variants take a function init : A → B for initialization (using the first item of the

input) and an aggregation function op : B × A→ B.

Key-based Partitioning

Let us consider an input stream with items of type IV = {id : ID, val : V}, where ID

is a type of the identifier. Suppose that we have written a query f : Q(IV, B) that

computes an aggregate of items with a fixed identifier, i.e. under the assumption

that all the items of the input stream have the same identifier. Then, to compute

this aggregate across all identifiers, the most natural way is to partition the input

stream by a key, the identifier field id in this case, and supply the corresponding

32

Table 3.2 : Key-based partitioning.

input: ⟨a, 3⟩ ⟨b, 5⟩ ⟨a, 1⟩ ⟨c, 2⟩ ⟨c, 1⟩ ⟨a, 4⟩ □
group a: ⟨a, 3⟩ ⟨a, 1⟩ ⟨a, 4⟩ □
group b: ⟨b, 5⟩ □
group c: ⟨c, 2⟩ ⟨c, 1⟩ □

g output: 3 5 4 2 3 8 □

projected sub-stream to a copy of f. This construct is called key-based partitioning and

it is described by the query g = groupBy(x -> x.id, f) : Q(IV, B). The first argument

x -> x.id is a function of type IV → ID that specifies the partitioning key, and f

describes the computation that will be independently performed on each sub-stream.

If we choose f = aggr(0, (x, y) -> x + y.val) : Q(IV, V) to be a running sum, then

the query g = groupBy(x -> x.id, f) : Q(IV, V) performs the computation shown in

Table 3.2.

Constructs: Tumbling & Sliding Windows

The so-called windowing constructs are used to partition an unbounded stream into

finite fragments called windows and perform computations on each one of them

independently. The tumbling window combinator splits the stream into contiguous

non-overlapping regions. For a query f : Q(A,B) and a natural number n ≥ 1, the

query tWindow(n, f) applies f to tumbling windows of size n. The sliding window

combinator splits the stream into overlapping regions. For a query f : Q(A,B)

and natural numbers n, s with 1 ≤ s < n, the query sWindow(n, s, f) applies f to

windows of size n with a new window starting every s items. Let us consider now

the query f = reduce(0, (x, y) -> x + y) : Q(V, V), which calculates the total sum of

a terminated stream. Table 3.3 illustrates tWindow and sWindow. We also provide

variants of the windowing constructs that allow the programmer to specify a function

33

Table 3.3 : Tumbling and sliding windows.

input: 1 2 3 4 5 6 7 8 □
tWindow(2, f) output: 3 7 11 15 □
tWindow(3, f) output: 6 15 □

sWindow(2, 1, f) output: 3 5 7 9 11 13 15 □
sWindow(3, 1, f) output: 6 9 12 15 18 21 □
sWindow(3, 2, f) output: 6 12 18 □

Table 3.4 : Streaming (serial) composition.

input: ⟨2.5, 1⟩ ⟨0.8, 2⟩ ⟨3.5, 3⟩ ⟨0.9, 4⟩ □
f output: 2.5 0.8 3.5 0.9 □

f≫ g output: 2.5 2.5 3.5 3.5 □

op : An → B to summarize the contents of a window of size n, as in tWindow(n, op)

and sWindow(n, s, op). For example, the query sWindow(3, 1, (x, y, z) -> (x+ y+ z)/3)

computes the sliding (moving) average over windows of size 3.

Streaming/Serial Composition

A natural construct for streaming computation is to compose queries f : Q(A,B) and

g : Q(B,C) so that the output items produced by f are supplied as input to g. This is

denoted by pipeline(f, g) : Q(A,C), which we abbreviate as f≫g. We call this query

the streaming or serial composition of f and g. This construct generalizes to more

than two arguments. It is useful for setting up a complex computation as a pipeline of

stages. Consider the queries f = map(x->x.val) : Q(VT, V) and g = aggr(max) : Q(V, V).

The query f≫ g : Q(VT, V) computes the running maximum (see Table 3.4).

34

Table 3.5 : Parallel composition.

input: 10 20 30 40 50 □
f output: 10 30 60 100 150 □
g output: 1 2 3 4 5 □

par(f, g) output: 10 1 30 2 60 3 100 4 150 5 □
h output: 10 15 20 25 30 □

Parallel Composition

We introduce a construct for executing multiple queries in parallel on the same

input stream and combining their results. For queries f and g of type Q(A,B), the

query par(f, g) : Q(A,B) describes the following computation: The input stream

is duplicated with one copy sent to f and one copy sent to g. The queries f and

g compute in parallel, and their outputs are merged (specifically, interleaved) to

produce the final output. Using the running sum query f = aggr(+) and the

running count query g = aggr(0, (x, y) -> x+ 1), both of type Q(V, V), the query

h = par(f, g)≫ tWindow(2, (x, y) -> x/y) : Q(V, V) computes the running average (see

Table 3.5). The par construct generalizes to several arguments.

Temporal Constructs

As mentioned before, the end-of-stream marker □ indicates the end of a stream. When

a query emits □ to the output we say that it halts, because it cannot produce any

more output. All the query examples that we have seen so far have the property

that they halt exactly when they encounter □ in the input stream. By lifting this

restriction we can support queries that can halt early. This is useful (1) for varying

a streaming computation as time progresses and (2) for detecting complex temporal

patterns.

35

Table 3.6 : Take, Skip, Ignore, and Search.

input: 1 2 3 4 5 □
takeUntil(x -> x ≥ 4) output: 1 2 3 4 □

take(3) output: 1 2 3 □
skipUntil(x -> x ≥ 4) output: 4 5 □

skip(2) output: 3 4 5 □
ignore() output: □
ignore(3) output: □

search(x -> x ≥ 2) output: 2 □

The query takeUntil(p) : Q(A,A), where p is a predicate over A, computes like

the identity transformation while there is no occurrence of an item satisfying p in

the input. When it encounters the first item satisfying p, it emits it to the output

and halts. A similar query is take(n) : Q(A,A), where n ≥ 1 is an integer, which

echoes the first n items of the input stream to the output and then halts. The query

skipUntil(p) : Q(A,A), for a predicate p on A, emits no output while the input

contains no item satisfying p. When the first item satisfying p is seen, it emits it to

the output and continues to compute like the identity transformation. The query

skip(n) : Q(A,A), for an integer n ≥ 1, emits no output for the first n input items, and

then proceeds to echo the rest of the input stream. The query ignore() : Q(A,A) emits

empty output for all input items and halts for the end-of-stream marker. The query

ignore(n) : Q(A,A), for an integer n ≥ 1, emits no output for the first n input items

and then immediately halts. For a predicate p on A, the query search(p) : Q(A,A)

emits no output while it searches for the first occurrence of an item satisfying p. When

it encounters such an item, it emits it to the output and halts. See Table 3.6.

The temporal sequencing combinator can apply different queries in sequence

(i.e., one after the other), thus varying the computation over time. For queries f and g

of type Q(A,B), their temporal sequencing seq(f, g) : Q(A,B) computes like f until it

36

Table 3.7 : Temporal sequencing.

input: 1 2 3 4 3 2 1 □
f output: 3 □

seq(f, g) output: 3 4 3 2 □

Table 3.8 : Temporal iteration.

input: 2 3 0 9 0 1 7 0 3
f output: 2 3 0 □

f≫ g output: 5 □
iter(f≫ g) output: 5 9 8

halts, and then it proceeds to compute like g. For example, if f = search(x -> x ≥ 3)

and g = takeUntil(x -> x ≤ 2), then seq(f, g) computes as shown in Table 3.7.

The temporal iteration combinator can be used to repeat a streaming compu-

tation indefinitely. For a query f : Q(A,B), its temporal iteration iter(f) : Q(A,B)

executes f and restarts it every time it halts. This results in an unbounded temporal

repetition of the computation that f specifies. Now, the iteration of f≫ g, where

f = takeUntil(x -> x = 0) and g = reduce(0,+), computes as shown in Table 3.8.

Flatten and Emit

The query flatten : Q(List(A), A) processes an input stream whose data items

are lists that contain elements of type A, and it propagates elements in the list to

the output. For a list out : List(B), the query emit(out) : Q(A,B), specifies the

computation that outputs the elements of out at the very beginning (before any input

items are consumed) and then immediately halts. See Table 3.9 for examples.

37

Table 3.9 : Flatten and Emit.

input: [a1, a2] [] [a3] [] □
flatten output: a1 a2 a3 □

input: a1 a2 ...
emit([b1, b2]) output: b1 b2 □

Table 3.10 : Zip and ZipLast.

input: 2.4 a b 3.5 c −0.9 □
val: 2.4 3.5 −0.9
id: a b c

f output: ⟨2.4, a⟩ ⟨3.5, b⟩ ⟨−0.9, c⟩ □
g output: ⟨2.4, a⟩ ⟨2.4, b⟩ ⟨3.5, b⟩ ⟨3.5, c⟩ ⟨−0.9, c⟩ □

The Join Construct

StreamQL provides the constructs zip, zipLast, and join to combine input data

from several input sub-streams. Let us consider an input stream with data items from

two different sources, in which one is the signal measurement (of type V), and the

other is the signal identifier (of type ID). The input type is Or(V, ID), which means

that an input item is either of type V or of type ID. Then, to annotate the signal

measurements with corresponding identifiers as outputs of type IV = {id : ID, val : V},

a natural way is to combine the values and the identifiers based on their order of

arrival. StreamQL provides the constructs zip and zipLast. Given a function

op = (val, id) -> ⟨val, id⟩ : V× ID→ IV that annotates a signal measurement with

an identifier, the query f = zip(op) : Q(Or(V, ID), IV) combines the measurements

and the identifiers one by one with respect to their order of arrival, and the query

g = zipLast(op) : Q(Or(V, ID), IV) combines the last arrived data items from different

categories (See Table 3.10).

38

Relational Constructs

op : A → B

map(op) : Q(A,B)

p : A → Bool

filter(p) : Q(A,A)

init : B op : B ×A → B

reduce(init, op) : Q(A,B)

init : B op : B ×A → B

aggr(init, op) : Q(A,B)

k : A → K f : Q(A,B)

groupBy(k, f) : Q(A,B)

n ≥ 1 f : Q(A,B)

tWindow(n, f) : Q(A,B)

1 ≤ s < n f : Q(A,B)

sWindow(n, s, f) : Q(A,B)

op : A×B → C

zip(op), zipLast(op) : Q(Or(A,B), C)

op : A×B → C

join(op) : Q(Timed(Or(A,B)), Timed(C))

Dataflow Constructs

f : Q(A,B) g : Q(B,C)

f≫ g : Q(A,C)

f : Q(A,B) g : Q(A,B)

par(f, g) : Q(A,B)

Temporal Constructs

n ≥ 1

take(n), skip(n), ignore(n) : Q(A,A)

p : A → Bool

takeUntil(p), skipUntil(p), search(p) : Q(A,A)

f, g : Q(A,B)

seq(f, g) : Q(A,B)

f : Q(A,B)

iter(f) : Q(A,B)

Flatten, Emit, and User-defined Constructs

A : Type

flatten(A) : Q(List(A), A)

A : Type out : List(B)

emit(A, out) : Q(A,B)

init : S next : S ×A → S out : S → List(B) end : S → List(B)

userDefined(init, next, out, end) : Q(A,B)

Figure 3.2 : Constructs in StreamQL.

Moreover, StreamQL allows users to assign a validity interval to the data item, and

it provides the join construct to combine data items that have overlapping validity

intervals. To assign validity intervals, users need to provide the start/end time of the

interval for each input – the input type is specified as Timed(D) = {data : D, startT :

T, endT : T}, where D denotes the type of the data, and T is the type of the time

unit (e.g., long integers). Suppose D = Or(A,B) (i.e., the input data is either of

type A or type B), given a binary function op : A × B → C that combines data,

the join(op) : Q(Timed(Or(A,B)), Timed(C)) query joins data items with overlapping

validity intervals. The output item, of type Timed(C), is also labeled by a validity

interval which is the intersection of the validity intervals of the input data.

39

User-defined Construct

The construct userDefined is used to specify a stream transformation with a trans-

ducer (state machine). The query userDefined(init, next, out, end) : Q(A,B) takes

four arguments to describe the computation: init (of type S) is the initial state of

the transducer, next : S ×A→ S is the state transition function, out : S → List(B)

is the output function, and end : S → List(B) gives the final output (upon the

termination of the input with □).

Program ECG Peak Detection in StreamQL

Figure 3.2 summarizes several constructs of StreamQL. At the beginning of this section,

we gave a high-level description of a simple streaming algorithm for detecting the

peaks in the ECG signal. We will now use StreamQL to provide a complete description

of this algorithm, which is a variant of the SQRS algorithm [209]. Later in Section 3.8,

we will present a significant example for processing the Arterial Blood Pressure signal.

Suppose that the data stream concerns multiple patients, that is, it is the interleaving

of several ECG time series, one for each patient. The type of the input data items

is a record type IVT = {id : ID, val : V, ts : T}, where ID is the type of patient

identifiers, V is the type of scalar values, and T is the type of time points. At the top

level, the algorithm partitions the input stream into several sub-streams, one for each

patient, and performs peak detection for each one of these sub-streams independently.

The query groupBy(x -> x.id, findPeak) describes this computation, where findPeak

specifies the peak detection algorithm for a single-patient ECG data stream. This is

defined as findPeak = smooth≫ deriv≫ detect, which is the composition of three

stages: (1) smoothing the signal, (2) computing derivatives, and (3) detecting peaks.

The smoothing query smooth : Q(IVT, IVTF) has output type IVTF, which is the record

40

type IVT extended with the component fval : V for storing the smoothed (low-pass

filtered) value.

smooth = sWindow(5, 1, (v, w, x, y, z) -> expr), where

expr = ⟨x.id, x.val, x.ts, fval⟩ : IVTF and

fval = (v.val+ 2 · w.val+ 4 · x.val+ 2 · y.val+ z.val)/10.

The idea is that for a sample x at time x.ts we consider the window (v, w, x, y, z)

centered around x and calculate a weighted average over the window for the smoothed

value. The differentiation query deriv : Q(IVTF, IVTFD) calculates discrete derivatives

by taking the difference of successive smoothed values. It is implemented as follows:

deriv = sWindow(2, 1, (x, y) -> expr), where

expr = ⟨y.id, y.val, y.ts, y.fval, dval⟩ : IVTFD and dval = y.fval− x.fval : V.

The record type IVTFD extends IVTF with dval : V for storing the derivative. The

detection of the first peak involves searching for the first time point ℓ1 when dval

exceeds the threshold hTh. The signal interval from this point until the time point r1

when dval falls below the threshold lTh contains the first peak. Thus, the signal in

the interval [ℓ1, r1] is streamed to the argmax query (see below), which finds the data

item with the highest value (in the raw, unfiltered signal). This process is repeated

indefinitely in order to detect all peaks:

start = search(x -> x.dval > hTh)

take = takeUntil(x -> x.dval < lTh)

argmax = reduce((x, y) -> (y.val > x.val) ? y : x)

detect = iter(seq(start, take)≫ argmax)

All four queries above are of type Q(IVTFD, IVTFD).

41

3.4 Discussion of the Expressiveness of StreamQL

A natural approach for processing a data stream is to write a program in a low-level

imperative programming language such as C. However, this process is tedious and

error-prone because the computation cannot be easily expressed in a modular way. The

program that specifies the computation typically contains complex state-manipulating

logic and the code is heavily entangled. For this reason, several domain-specific

languages have been proposed which offer various primitive streaming constructs (e.g.,

pipelines and sliding windows) in order to assist the programmer in expressing the

desired computation. In this section, we will illustrate some of the features of StreamQL

that facilitate the modular description of streaming computations, particularly for

time-series workloads. We will compare StreamQL to both low-level imperative

languages (such as C) and domain-specific languages (such as Rx) in the context of a

concrete example.

Assume that the input stream consists of signal measurements of type V (integer

type) which are collected at a fixed frequency. We will consider a computation that

is the composition of a smoothing filter and calculating the derivative. We use a

low-pass filter to smooth the input into results f : F (floating point type), where

f = (v1 + 2v2 + 4v3 + 2v4 + v5)/10 for each five consecutive input items v1, v2, ..., v5.

Then, we compute the derivative d : D (floating point type) where d = f2 − f1 for

every two consecutive smoothed values. The top-left part of Figure 3.3 shows the

algorithm implemented in C. It processes the input stream item by item by calling

the next function and produces output items by calling the out function. We use the

circular array t to buffer the input for smoothing. We update the array by replacing

its oldest element by the incoming input item, and then we apply the coefficients of

the low-pass filter (stored in the coef array) to the buffered elements to compute the

42

double coef[5] = {0.1, 0.2, 0.4, 0.2, 0.1};

V t[5]; // circular array

int cnt = 0, start = 0;

bool isFReady = false;

void next(V v){

// smooth the input

if (cnt < 5) {

t[cnt++] = v;

} else {

t[start] = v;

start = (start + 1) % 5;

}

F f = 0.0;

if (cnt == 5) {

// compute the result when t is full

for (int i = 0; i < 5; i++) {

f += coef[i] * t[(start + i) % 5];

}

}

if (isFReady) {

// compute the derivative

D d = f - lastF;

lastF = f;

out(d); // produce output

} else if (cnt == 5) {

lastF = f;

isFReady = true;

} // else do nothing

}

double coef[] = {0.1, 0.2, 0.4, 0.2, 0.1};

class FCnt{

F f; // FIR filtering result

int cnt;

FvalCnt(F f, int cnt){

this.f = f;

this.cnt = cnt;

}

}

Observable<D> outputStream = inputStream

.window(5, 1) // smooth the input

.flatMap(wnd -> wnd.reduce(

new FCnt(0.0, 0),

(pair, v) -> {

F f = pair.f;

int cnt = pair.cnt;

f += v * coef[cnt];

cnt ++;

return new FCnt(f, cnt);

}).map(p -> p.f).toObservable()

).window(2, 1) // compute the derivative

.flatMap(wnd -> wnd.reduce(

new ArrayList<>(),

(l, f) -> { // add f into list l

return List.copyOf(l.add(f));

}).map(l -> l.size() == 2 ?

l.get(1) - l.get(0) : null)

.filter(d -> d != null).toObservable()

);

Q<V,F> smooth = sWindow(5, 1, (a, b, c, d, e) -> (a + 2*y + 4*c + 2*d + e) / 10.0);

Q<F,D> deriv = sWindow(2, 1, (a, b) -> b - a);

Q<V,D> query = pipeline(smooth, deriv);

Figure 3.3 : Program for input preprocessing written in C (top-left), RxJava (top-
right), and StreamQL (bottom).

smoothing results. After that, the program computes the derivatives and produces the

output. The top-right part of Figure 3.3 shows the RxJava implementation. RxJava

does not provide a sliding window construct that uses circular arrays. To integrate

this efficient data structure, a user of the library would need to create a customized

operator from scratch. The bottom part of Figure 3.3 shows the implementation in

StreamQL, where the sWindow construct allows users to directly aggregate all elements

inside the window with efficient built-in data structures.

Now, let us consider an algorithm for detect peaks in a stream of numerical values

(suppose they are of type V). The algorithm searches for the first value that exceeds

43

V peak = -INFINITY;

enum mode { beforePeak, inPeak, afterPeak };

int cnt;

enum mode m = beforePeak;

void next(V v){

if (m == beforePeak) {

if (v > THRESH) {

m = inPeak;

cnt = PEAK_CNT;

} // else do nothing

} else if (m == inPeak) {

peak = (v > peak) ? v : peak;

cnt --;

if (cnt == 0) {

out(peak); // produce outputs

m = afterPeak;

cnt = SILENCE_CNT;

}

} else { // m == afterPeak

cnt --;

if (cnt == 0) {

m = beforePeak;

peak = -INFINITY;

}

}

}

Q<V,V> start = search(v -> v > THRESH);

Q<V,V> take = take(PEAK_CNT);

Q<V,V> max = reduce((x, y) -> (y > x) ? y : x);

Q<V,V> find1 = pipeline(seq(start, take), max);

Q<V,V> silence = ignore(SILENCE_CNT);

Q<V,V> query = iterate(seq(find1, silence));

enum Mode { beforePeak, inPeak, afterPeak }

class State{

Mode mode; int cnt;

boolean sendOut; V peak;

State(Mode m, int c, boolean s, V p) {

mode = m; cnt = c;

sentOut = s; peak = p;

}

}

Observable<V> outputStream = derivStream.scan(

new State(beforePeak, 0, false, -INFINITY),

(s, v) -> {

Mode m = s.mode;

int cnt = s.cnt;

boolean sendOut = false;

V peak = s.peak;

if (m == beforePeak) {

if (v > THRESH) {

m = inPeak;

cnt = PEAK_CNT;

} // else do nothing

} else if (m == inPeak) {

peak = (v > peak) ? v : peak;

if (-- cnt == 0) {

sendOut = true;

m = afterPeak;

cnt = SILENCE_CNT;

}

} else { // m == afterPeak

if (-- cnt == 0) {

m = beforePeak;

peak = -INFINITY;

}

}

return new State(m, cnt, sendOut, peak);

}).filter(s -> s.sendOut).map(s -> s.peak);

Figure 3.4 : Program for peak detection written in C (top-left), RxJava (right), and
StreamQL (bottom-left).

44

the threshold THRESH. Then, it search for the maximum over the next #PEAK CNT

elements, which is considered a peak. After that, the algorithm silences detection

for #SILENCE CNT elements to avoid a duplicate detection. This process is repeated

indefinitely in order to detect all peaks. The top-left part of Figure 3.4 shows the C

implementation of the algorithm, where the input stream is repeatedly partitioned

into three regions: beforePeak, inPeak, and afterPeak. This partitioning is data-

dependent as the end of beforePeak happens when the value exceeds the threshold.

The right part of Figure 3.4 is the RxJava implementation. Rx provides count/time-

based tumbling windows to split up the stream into non-overlapping regions. However,

such a decomposition is not data-dependent, as it does not rely on the input values.

Moreover, Rx has no operator like StreamQL’s iter for repeating the execution of

a query (i.e., detection of a single peak) every time it halts. Given the absence of

these features, the most convenient way to program the algorithm in RxJava is to

use its scan operator (similar to aggr in StreamQL). This amounts to providing a

monolithic imperative implementation of the whole algorithm. The bottom-left part

of Figure 3.4 shows the implementation of the algorithm in StreamQL.

Semantically, Rx and StreamQL can be viewed as algebras with combinators. There

is a key difference. Rx is an algebra of streams, where the basic objects are streams

and the combinators are operations on streams. StreamQL, on the other hand, is an

algebra of stream transformations, where its basic objects are stream transformations

and the combinators are operations on transformations. More specifically, Observable

is the basic object in Rx that represents a stream. Rx describes the overall computation

as a sequence of transformations to the source Observable. The first-class object in

StreamQL is the stream transformation, which is captured syntactically with a query.

StreamQL describes the computation as the composition of sub-computations defined

45

StreamQL Rx Siddhi Trill
1. stream filtering yes yes yes yes
2. stream mapping yes yes yes yes
3. sequential aggregation yes yes yes yes
4. key-based partitioning yes yes yes yes
5. tumbling window yes yes yes yes
6. sliding window yes yes yes yes
7. efficient window aggregation yes no yes yes
8. streaming pipeline yes yes yes yes
9. relational join yes yes yes yes
10. temporal sequencing yes no no no
11. temporal iteration yes no no no
12. signal processing primitives yes no no yes
13. regular parsing yes no yes yes
14. user-defined functions yes yes yes yes

Figure 3.5 : Some of the features and streaming constructs supported by StreamQL,
Rx, Siddhi, and Trill.

by queries. For example, iter(f) is the temporal iteration of a query f. So, if Rx is

considered first-order then StreamQL is second-order. This explains why iter and

seq are easily integrated into StreamQL but are more difficult to express in Rx.

Figure 3.5 lists some useful constructs for stream processing and the engines that

support them. The streaming operations marked with ∗ in Figure 3.5 indicate that

the library supports such operations, but their use requires additional encoding. For

example, for sequential aggregation, Siddhi does not have a construct like StreamQL’s

aggr. Instead, it defines a set of fixed aggregations (e.g., sum and average). Other

sequential aggregations can be implemented using user-defined functions. Rx does not

implement efficient algorithms for window aggregation, which is discussed in detail in

Section 3.7. The temporal sequencing and the temporal iteration constructs (seq and

iter in StreamQL) decompose the stream into sub-streams, and the decomposition is

data-dependent. It is not easy to express such computations in Rx, Siddhi, and Trill

46

in a modular way. Both StreamQL and Trill provide signal processing constructs (e.g.,

FFT, FIR, and IIR filtering) to transform and analyze signals.

3.5 Denotational Semantics of StreamQL

In this section, we present the denotational semantics of StreamQL using a class of

monotone functions. This semantics clarifies the meaning of the language primitives

and combinators. The use of monotone functions or other sequence transductions for

describing streaming computations has been considered in [200, 210, 211, 38] and in a

much more general algebraic setting in [212].

3.5.1 Formalization of Data Stream and Stream Transformation

A data stream can be viewed as a potentially unbounded sequence of data items that

may or may not terminate. Distinguishing the termination of a data stream proves

useful in real-world scenarios, as streams often eventually come to an end. For instance,

when a processing system logs in a streaming fashion, the data stream terminates if

there are no more entries in the input file. For a type A, we write A∗ to denote the

set of finite sequences over A. We write u · v or uv to denote the concatenation of

the sequences u and v, and ε for the empty word. We use the special symbol □ to

indicate the end of a stream, which is called the end-of-stream marker. We define

A† = A∗ · {ε,□} = A∗ ∪ (A∗ ·□) as the type of a data stream, i.e., A† contains the

finite sequences over A that could potentially end with an end-of-stream marker. For

sequences x, y ∈ A†, we write x ≤ y if x is a prefix of y, i.e. xz = y for some z ∈ A†.

We say that ≤ is the prefix relation on sequences. When x ≤ y, there is a unique z

with xz = y, which we denote by x−1y. We write x < y when x ≤ y and x ≠ y. A

sequence x ∈ A† is said to be terminated if it ends with □.

47

Given A† as the type of a data stream, the input/output behavior of a streaming

computation can be described semantically by a function of type A† → B†, where A

is the type of the input items and B is the type of the output items. If x ∈ A† is the

prefix of the input stream seen so far (which we also call the cumulative input), then

f(x) ∈ B† is the cumulative output that has been emitted after the whole sequence

x is processed. As more input data items arrive, the output stream gets extended

with more output items. This is captured formally by requiring that the function f is

monotone: x ≤ y implies that f(x) ≤ f(y) for every x, y ∈ A†. A monotone function

f : A† → B† is said to be a stream transformation. We write ST(A,B) to denote

the set of all stream transformations with input (resp., output) data items of type A

(resp., B).

As mentioned earlier, a stream transformation f : ST(A,B) specifies the cumulative

output of a streaming computation, i.e. the total output that has been emitted from

the beginning until the entire cumulative input is consumed. The computation can be

described equivalently by specifying the incremental output, i.e. the output increment

that is emitted exactly when the last item of a cumulative input is consumed. The

incremental output of f for the cumulative input xa is equal to f(x)−1f(xa).

incremental input cumulative input incremental output cumulative output

ε 0 0

1 1 1 0 1

2 1 2 3 0 1 3

3 1 2 3 6 0 1 3 6

□ 1 2 3 □ □ 0 1 3 6 □

The table above illustrates these concepts with the example of calculating the running

sum over a stream of integers. Suppose f : ST(A,B) describes the input/output

48

behavior of a streaming computation in a cumulative fashion, and φ : A† → B†

describes the same computation in an incremental fashion. Then, f and φ are related

in the following way:

f(a1a2 . . . an) = φ(ε) · φ(a1) · φ(a1a2) · · ·φ(a1a2 . . . an)

f(a1a2 . . . an□) = f(a1a2 . . . an) · φ(a1a2 . . . an□)

for all a1a2 . . . an ∈ A∗. Equivalently, we have that

φ(ε) = f(ε) φ(ua) = f(u)−1f(ua) φ(u□) = f(u)−1f(u□)

for all u ∈ A∗ and a ∈ A. Function φ satisfies the following property: if φ(x) ends

with □, then φ(y) = ε for all y ≥ x. This says that when the output stream terminates,

no more output data items can be emitted. We write ∂f : A† → B† to denote the

incremental version of f : ST(A,B).

Figure 3.6 gives the denotational semantics for some core combinators of StreamQL.

The definition of the stream transformations map(op) and filter(p) are straightforward.

The transformations reduce(b, op) and aggr(b, op) are both aggregations, but differ

in when they give output. Informally, reduce(b, op) gives the total aggregate when

the stream terminates, whereas aggr(b, op) gives the running aggregate every time a

new item arrives. Their definition requires the fold combinator fold : B × (B × A→

B)×A∗ → B, given by fold(b, op, ε) = b and fold(b, op, ua) = op(fold(b, op, u), a). The

streaming (serial) composition combinator is given by:

f : ST(A,B) g : ST(B,C)

f ≫ g : ST(A,C)
(f ≫ g)(a) = g(f(a))

49

op : A → B

f = map(op) : ST(A,B)

f(ε) = ε

f(ua) = f(u) · op(a)
f(u□) = f(u)□

p : A → Bool

f = filter(p) : ST(A,A)

f(ε) = ε, f(u□) = f(u)□
f(ua) = f(u) · a, if p(a) = true

f(ua) = f(u), if p(a) = false

b : B op : B ×A → B

f = aggr(b, op) : ST(A,B)

f(ε) = ε

f(ua) = f(u) · fold(b, op, ua)
f(u□) = f(u)□

b : B op : B ×A → B

f = reduce(b, op) : ST(A,B)

f(u) = ε

f(u□) = fold(b, op, u)□

A : Type

f = flatten(A) : ST(List(A), A)

(∂f)(ε) = ε, (∂f)(u□) = □
(∂f)(ul) = extract(l)

A : Type out : List(B)

f = emit(A, out) : ST(A,B)

(∂f)(ε) = extract(out)□
(∂f)(u) = ε, if |u| > 0,

(∂f)(u□) = ε

f : ST(A,B) f ↑ ε

g = iter(f) : ST(A,B)

g(x) = f(x), if f ↑ x

g(ux) = f(u)□−1 · g(x), if f ⇓ u

g(u□) = f(u□)□−1 · f(ε), if f ⇓ u□

f : ST(A,B) g : ST(A,B)

h = seq(f, g) : ST(A,B)

h(x) = f(x), if f ↑ x

h(ux) = f(u)□−1 · g(x), if f ⇓ u

h(u□) = f(u□)□−1 · g(ε), if f ⇓ u□

p : A → Bool

f = takeUntil(p) : ST(A,A)

(∂f)(ε) = ε and (∂f)(u□) = ε

(∂f)(ua) = ε, if p′(u) = true

(∂f)(ua) = a, if p′(u) = false and p(a) = false

(∂f)(ua) = a□, if p′(u) = false and p(a) = true

f : ST(A,B) g : ST(A,B)

h = par(f, g) : ST(A,B)

(∂h)(u) = (∂f)(u)□−1 · (∂g)(u)□−1, if f ↑ u or g ↑ u.

(∂h)(u) = (∂f)(u)□−1 · (∂g)(u)□−1□, if f ↓ u and g ⇓ u.

(∂h)(u) = (∂f)(u)□−1 · (∂g)(u)□−1□, if f ⇓ u and g ↓ u.

(∂h)(u) = ε, otherwise

key : A → K f : ST(A,B)

g = groupBy(key, f) : ST(A,B)

(∂g)(ε) = ε

(∂g)(ua) = (∂f)(u|key(a) · a)□−1

(∂g)(u□) =
(∏n

i=1(∂f)(u|ki
□)□−1

)
□

n ≥ 1 f : ST(A,B)

g = tWindow(n, f) : ST(A,B)

g(u) = f(u)□−1, if |u| < n

g(u□) = g(u)□, if |u| < n

g(ux) = f(u□)□−1 · g(x), if |u| = n

Figure 3.6 : Semantics of map, filter, reduce, aggr, seq, iter, emit, flatten, takeUntil, par,
groupBy and tWindow.

We write ≫ to denote the composition of functions. For a stream transformation

f : ST(A,B), we write f ↓ x to indicate that f(x) is terminated, and f ↑ x to mean

that f(x) is not terminated. We say that f halts on x ∈ A†, denoted f ⇓ x, if the

following hold: (1) f(x) is terminated, and (2) f(y) is not terminated for every y < x.

For a sequence u ∈ A∗, we define (u□) · □−1 = u and u · □−1 = u. In other words,

(− ·□−1) is the operation that removes the end-of-stream marker from a sequence if

it is present. Using this notation, we define the temporal sequencing combinator seq,

and the temporal iteration combinator iter in Figure 3.6. Notice that iter(f) is defined

under the assumption that f(ε) is not terminated. This is required, because otherwise

50

the computation of iter(f) would enter an infinite loop of halting and restarting

without consuming any input. The definition of groupBy(key, f) in Figure 3.6 uses

the incremental viewpoint for notational brevity. For a sequence u ∈ A∗ and a key

k ∈ K, we write u|k to denote the subsequence of u that contains the items whose key

is equal to k. More formally, ε|k = ε, (ua)|k = u|k if key(a) ̸= k, and (ua)|k = u|k · a

if key(a) = k. In the third case (∂g)(u□) of the groupBy(key, f) definition, we use∏
as a generalization of concatenation to arbitrarily many arguments. Moreover,

k1, k2, . . . , kn is taken to be the sequence of keys that appear in the sequence u (in

their order of appearance). The definition of the transformations emit and flatten both

require the extract combinator extract : List(A)→ A∗, given by extract(nil) = ε and

extract(cons(a, l)) = a ·extract(l). In the definition of takeUntil(p), we lift the predicate

p on A to the predicate p′ on A∗, where, for a sequence u ∈ A∗, p′(u) = true if

there exists an item a in u such that p(a) = true, and p′(u) = false if for all a in u

such that p(a) = false. In the definition of the parallel composition, given stream

transformations f and g, par(f, g) emits the end-of-stream marker only when f and

g have both terminated. Finally, in the definition of tWindow(n, f) and emit(out) in

Figure 3.6, |u| denotes the length of u.

Theorem 3.5.1 (Expressive Completeness). Let f : ST(A,B) be a stream

transformation. If f is computable, then there is a query of type Q(A,B) that

computes it.

Proof. A streaming algorithm for f can be viewed as an automatonA = (S, init , next , out),

where S is a (potentially infinite) state space, init ∈ S is the initial state, next :

S × (A ∪ {□})→ S is the state transition function, and out : S → B† is the output

function. We put S = A†, init = ε, next(s, a) = sa, next(s,□) = s□, out(s) = (∂f)(s),

and out(s□) = (∂f)(s□) for every s ∈ A∗ and a ∈ A. The execution of A is an

51

obvious generalization of the execution of finite-state automata. Since f is computable,

so are next and out . It remains to show that the execution of A can be encoded by a

query of type Q(A,B). Let δ : S × A→ S be the restriction of next to S × A. Define

f = par(emit(A, [init]), aggr(init , δ), reduce(init , δ)≫map(x->next(x,□)) : Q(A, S).

The query f transforms the stream of input items (of type A) into the stream of states

(of type S) that the automaton A goes through. Let ϑ : S → Bool be the function

that indicates whether a state is halting or not, that is, for all s ∈ S, ϑ(s) = true iff

out(s) ends with □. Then, the query g = takeUntil(ϑ) : Q(S, S) takes a stream of

states and echoes them up until (and including) the first halting state. Let o : S → B∗

be given by o(s) = out(s) · □−1. The query h = flatten(map(o)) : Q(S,B) takes a

stream of states as inputs and emits the corresponding flattened output. Finally, the

query f≫ g≫ h : Q(A,B) computes the stream transformation f .

We will use an example to illustrate the construction in the proof of Theorem 3.5.1.

Suppose the input is ā = a1a2a3□. Define the states s0 = init , si+1 = next(si, ai+1),

and ti = next(si,□). The output of f on ā is s̄ = s0s1s2s3t3□. Suppose that s2 is

the first halting state. Then, the output of g for input s̄ is t̄ = s0s1s2□. Finally, the

output of h for input t̄ is o(s0) · o(s1) · o(s2) ·□ = f(ā).

3.6 Implementation of StreamQL

In this section, we will describe the implementation of StreamQL. We have chosen to

implement StreamQL as an embedded domain-specific language in Java (effectively a

Java library) in order to provide easy integration with user-defined types and operations.

The implementation covers all the core constructs we introduced in Section 3.3 and

52

also provides a rich set of specialized algorithms for real-world applications, such as

efficient algorithms for aggregation over windows and a variety of signal processing

primitives: FFT (Fast Fourier Transform), Hilbert Transform, FIR (Finite Impulse

Response) filters, and IIR (Infinite Impulse Response) filters.

The left part of Figure 3.7 gives a simple example of a StreamQL program in Java.

Given a signal measurement of type VT that contains a double value in the field of

val, the query sum of type Q computes the sum of the values of the measurements.

The method eval returns an object that encapsulates the evaluation algorithm for the

query. The methods init and next are used to initialize the memory and consume

data items. When the input stream terminates, the end method is invoked.

We define two interfaces, Sink and Algo, to describe the streaming computation in

a push-based manner. The Algo interface is used to implement stream transformations.

The Sink interface is similar to the Observer interface of Rx. It is used for specifying

a sink that consumes a stream. A sink consumes a stream with two methods, next

and end, that are used for stream elements and the end-of-stream marker respectively.

The top-right part of Figure 3.7 shows the definition of the Sink interface in Java,

and the mid-right part presents an instance of Sink that prints each incoming data

item and the end-of-stream marker to the console.

The Algo interface is used for describing the evaluation algorithm of a query. An

implementation of Algo specifies how the input stream is transformed into the output

stream. The bottom-right of Figure 3.7 shows the definition of the Algo interface,

which extends the Sink interface because it consumes a stream. The connect method

connects the algorithm to a sink, and the init method initializes/resets the state of

the algorithm.

Libraries like RxJava and Trill use nested streams (e.g., Observable⟨Observable⟩

53

// VT is the type of measurements, which

// contains a double value in the field val

Iterator<VT> stream = ... // input stream

// sink of the output stream

Sink<Double> sink = ...

// sum of the measurements

Q<VT,Double> sum =

QL.aggr(0.0, (s, vt) -> s + vt.val);

// evaluation of the query

Algo<VT,Double> exe = sum.eval();

// connect the output of query to sink

exe.connect(sink);

// execution loop

exe.init();

while (stream.hasNext()) {

VT vt = stream.next();

exe.next(vt);

}

exe.end();

abstract class Sink<T> {

// deal with incoming items

abstract void next(T item);

// deal with the end-of-stream marker

abstract void end();

}

class Printer<T> extends Sink<T>{

// print each arrived data item

void next(T item) { print(item); }

// print "Job done" when input ends

void end() { print("Job done"); }

}

abstract class Algo<A,B> extends Sink<A>{

// connect to a sink

abstract void connect(Sink sink);

// initialize or reset the memory

abstract void init();

}

Figure 3.7 : The left part shows an example that computes the sum of a nonempty
sequence of measurements, the top-right part shows the Sink interface, the mid-right
part shows an instance of Sink, and the bottom-right shows the Algo interface.

in RxJava) to decompose the input stream into windows or partitioned sub-streams.

StreamQL, on the other hand, eliminates the overheads introduced by the construction

of nested streams. For example, the left part of Figure 3.8 presents the algorithm

for implementing the tumbling window combinator. Given the size of the window

and a sub-query, the tumbling window combinator splits the stream into contiguous

non-overlapping windows and applies the sub-query to data items in each window.

We provide an algorithm for implementing the tumbling window with a small memory

footprint. As shown in the left of Figure 3.8, our algorithm sends incoming data

items to the sub-query and maintains a counter to count the number of data items in

the window. When the window is full, the algorithm resets the internal state of the

sub-query. In contrast, to implement a tumbling window, libraries like RxJava and

Trill will construct nested streams to decompose the input stream as several stream

54

class TWnd<A,B> extends Algo<A,B> {

private final int size;

// algorithm of the sub-query

private final Algo<A,B> algo;

private Sink sink;

// counter of items in the window

private int cnt;

TWnd(int size, Algo<A,B> algo) {

this.size = size;

this.algo = algo;

}

void connect(Sink sink) {

this.sink = sink;

// sink for the sub-query that transfers

// its output to the output of TWnd

Sink subSink = new Sink() {

void next(B item) { sink.next(item); }

// discard the end-of-stream marker

void end() { }

};

algo.connect(subSink);

}

void init() { cnt = 0; }

void next(A item) {

// reset algo if old window is full

if (cnt == 0) { algo.init(); }

algo.next(item);

cnt = (cnt + 1) % size;

if (cnt == 0) { algo.end(); }

}

void end() { sink.end(); }

}

class Seq<A,B> extends Algo<A,B>{

// algorithms of the sub-queries

private final Algo<A,B> left;

private final Algo<A,B> right;

// pointer of the currently active algorithm

private Algo<A,B> active;

Seq(Algo<A,B> left, Algo<A,B> right) {

this.left = left;

this.right = right;

}

void connect(Sink sink) {

// sink for the left algorithm that

// activates right when left terminates

Sink leftSink = new Sink() {

void next(B item) {

sink.next(item);

}

void end() {

active = right;

right.init();

}

};

left.connect(leftSink);

right.connect(sink);

}

void init() {

active = left;

left.init();

}

void next(A item) { active.next(item); }

void end() { active.end(); }

}

Figure 3.8 : The Java implementation of the tumbling window (left) and stream
sequencing (right) constructs.

55

objects. Whenever the current window becomes full, a new window will be created as

a stream object. Moreover, to produce the output stream, some additional overhead

is introduced to merge (flatMap in RxJava) the output sub-streams that are created

from the individual windows. The construction of nested streams introduces overheads

in terms of throughput and memory usage. In Section 3.7, we experimentally validated

these overheads. Our Java library avoids the overheads of nested streams for all

other computations that involve stream decomposition, such as sliding windows and

key-based partitioning.

The Algo interface facilitates the implementation of the constructs seq and iter.

Such constructs are difficult to be encoded in RxJava and Trill because they decompose

the input stream in a data-dependent way. Recall that a query seq(f, g) starts

executing as the query f, and after f terminates, it continues executing as the query

g. This computation thus splits the input stream into two parts. Figure 3.8 shows our

implementation of the seq construct. Notice that all data items are simply routed

to the appropriate algorithm/sink without creating any intermediate objects. In the

implementation of the method connect, we provide a sink for the algorithm left,

which will activate the algorithm right once it terminates. The implementation of

iter uses similar ideas.

3.7 Experimental Evaluation

We evaluated the performance of our library using four benchmarks: (1) a micro-

benchmark that focuses on basic operators, (2) a benchmark for pattern detection

in real-time stock market data, (3) the popular NEXMark benchmark [213], and

(4) TAQMark for the analysis of high-frequency market data. We compare our

implementation with RxJava, Rx.NET, Reactor, Siddhi, and Trill. These are chosen

56

because they are all lightweight and high-performance streaming engines that offer

rich APIs and have well-maintained implementations. RxJava, Reactor, and Siddhi

are implemented in Java, while Rx.NET and Trill are implemented in .NET.

Experimental Setup

The experiments were executed in Ubuntu 16.04 LTS on a desktop computer equipped

with an Intel Xeon(R) E3-1241 v3 CPU (4 cores) with 16 GB of memory (DDR3 at

1600 MHz). For Java programs, we used version 1.8.0 181 of the JDK, and we set the

maximum heap size at 3.5 GB. For .NET programs, we used the NET Core 3.1.100

SDK with C# 8.0. To test the performance of Trill, we set the batch size to 1000

for its columnar representation (as suggested by its official documentation [214]). All

data points in our experiments represent the average of at least five runs, with error

bars showing the standard deviation.

3.7.1 Overhead of the Construction of Nested Streams

StreamQL distinguishes itself from Rx-like libraries by evading the performance drag

caused by the construction of nested streams. To empirically establish the performance

advantages of this approach, we conducted an experiment testing the throughput of

queries, particularly those that necessitate the decomposition of the input stream,

leading to the construction of nested streams in Rx-like libraries. We synthesized

an input stream of timestamped integers, designated as {ts, val}, patterned as

“{1, 1}, {2, 2}, ..., {n, n}”, where both ts (timestamp) and val (data value) are integer

types, and n is defined as 100 million. We used the tumbling window construct to

segment the input into non-overlapping regions, with computing the sum of integers

in each region. The throughput of this twnd(sum) query was measured across a range

57

0 50 100 150
window size (# of items)

10 M

20 M

30 M
th

ro
ug

hp
ut

 (#
 o

f i
te

m
s/

se
c)

(a)

RxJava
Rx.NET
Reactor

0 50 100 150
window size (# of items)

0 M

20 M

40 M

60 M

80 M

100 M

th
ro

ug
hp

ut
 (#

 o
f i

te
m

s/
se

c)

(b)

StreamQL
RxJava
Rx.NET

Reactor
Trill
Siddhi

0 50 100 150
window size (# of items)

5

10

15

20

25

30

sp
ee

du
p

(c)

RxJava
Rx.NET
Reactor

Trill
Siddhi

Figure 3.9 : (a) and (b) show the throughput (vertical axis) of twnd(sum) queries
with different window sizes (horizontal axis), and (c) shows the throughput speedup
(vertical axis) of StreamQL compared to other libraries.

of window sizes in our experiments. The window size is the count of integers within a

window. Consequently, smaller window sizes result in a higher number of windows,

which in turn avoids the generation of nested stream objects in Rx-like libraries.

Figure 3.9 shows the throughput of queries that sum the integers over tumbling

windows of various sizes. Figure 3.9(a) presents the throughput in libraries (RxJava,

Rx.NET, and Reactor) that decompose the input by nested streams. The results

indicate that the construction of nested streams is a significant overhead: when the

window size is small (e.g., 4), the throughput is 3 times lower than when the window

size is large (e.g., 150). This suggests that the intensive construction of nested streams

largely decreases the throughput of stream processing. In Figure 3.9(b), we show the

throughput of our StreamQL library along with RxJava, Rx.NET, Reactor, Trill, and

Siddhi. In comparison to RxJava, Rx.NET, Reactor, and Siddhi, the throughput of

StreamQL queries remains stable with regards to different size of tumbling windows.

Finally, Figure 3.9(c) presents the throughput speedup of StreamQL with respect to

other libraries. By avoiding the construction of nested streams, StreamQL provides

significant performance speedup when the input stream is decomposed into a large

58

0 50 100 150
window size (# of items)

0

10

20

m
em

or
y

siz
e

(G
iB

)
(a) Intermediate Memory

StreamQL
RxJava
Reactor

0 50 100 150
window size (# of items)

50

100

GC
 ti

m
e

(m
s)

(b) GC Time Usage

StreamQL
RxJava
Reactor

0 50 100 150
window size (# of items)

0

25

50

75

100

cp
u

tim
e

ra
tio

 (%
)

(c) StreamQL

n=0
n=2
n=4

n=6
n=8

0 50 100 150
window size (# of items)

0

25

50

75

100

(d) RxJava

0 50 100 150
window size (# of items)

0

25

50

75

100

(e) Reactor

Figure 3.10 : (a) shows the size of intermediate memory (GB, vertical axis) of twnd(sum)
queries. (b) shows the garbage collection time (ms, vertical axis) of twnd(sum) queries.
(c), (d), and (e) show the ratio of the execution time on the aggregation calculation to
the total execution time for StreamQL, RxJava, and Reactor.

number of windows, and it is more than 3 times faster than Rx-like libraries even

when the size of the window is large (e.g. 150) as StreamQL also eliminates the

overhead of flattening nested sub-stream objects. The performance of Trill is stable

as its windowing operator works by altering the interval timestamp of each stream

element. Trill enriches each raw input data item with a “temporal validity” annotation

(interval timestamp) to obtain a stream element of type StreamEvent. This choice for

the temporal and data model has certain semantic advantages, but it also introduces

computational costs to incorporate this additional time information.

To further investigate the overheads, we analyzed the memory allocation of the

twnd(sum) computation for StreamQL, RxJava, and Reactor. We measured the size

of the total allocated memory on the heap, and we estimated the memory size for

intermediate data structures by subtracting the memory allocated for the input/output

59

streams from the total allocated memory. Figure 3.10(a) presents the estimation. The

StreamQL implementation allocates almost zero additional memory since it uses a

counter to record the number of items in the window and maintains the aggregate using

a single variable. RxJava and Reactor allocate a significant amount of intermediate

memory when the window size is small, which is mainly composed of the nested stream

objects (e.g., InnerObserver in RxJava), subscription objects (e.g., UnicastSubject

in RxJava), and internal data buffers (e.g., SpscLinkedArrayQueue in RxJava). We

also measured the garbage collection (GC) time of the twnd(sum) computation. The

result is shown in Figure 3.10(b). In addition, we measured the ratio of GC time to

total CPU execution time on the main thread, and we observed this ratio is lower

than 1% for StreamQL, RxJava, and Reactor. Moreover, we measured the CPU

execution time for the twnd(sum) query. We estimated the overheads by measuring

the time ratio of the cost of the aggregation calculation to the total execution time

(higher ratio indicates lower overheads). To illustrate, we aggregated an integer stream

using the function f(agg, x) = agg + 3n · x, where n is an integer that controls the

complexity of the computation, and when n = 0, the aggregation is exactly the sum

computation. Figure 3.10(c), (d), and (e) show the results for StreamQL, RxJava,

and Reactor. In our observation, when the size of the tumbling window is small (10

items) and the computation per item is cheap (n = 0), more than 70% of the time cost

in RxJava (80% in Reactor) on the main thread is caused by API calls related with

the construction of nested streams, which include the creation of the stream objects

(e.g., InnerObservable.create() in RxJava), the communication between the stream

objects and the corresponding data consumers (e.g., ObservableFlatMap.drain() in

RxJava), and the management of the data subscriptions (e.g., Subject.create() in

RxJava).

60

3.7.2 Efficient Sliding Window Aggregation

The StreamQL library provides efficient algorithms for aggregations over sliding win-

dows. When the aggregation is given by a binary function op, then efficient algorithms

[215, 216, 217] can be given for the special cases where (1) op is associative, and

(2) op is associative and invertible. Consider the aggregation max. The implementa-

tion of max over a sliding window of size n requires a buffer of size n (to store the

contents of the window) [218]. Every time a new item arrives, the näıve algorithm

scans through the entire window to calculate the new maximum, which requires O(n)

time. Since max is associative, there is a better algorithm, which maintains a tree of

partial aggregates and only needs O(log n) time at each step [219]. For a function op

that is invertible (e.g., sum and count) there is an obvious efficient algorithm, which

requires O(1) time at each step (“add” the new item, “subtract” the item falling off

the window). Libraries such as Trill and Siddhi also provide efficient algorithms for

sliding window aggregation. RxJava, Rx.NET, and Reactor, on the other hand, do

not incorporate such algorithms. After creating custom constructs for efficient sliding

window aggregation in RxJava, Rx.NET, and Reactor, we compare the performance

of our customized constructs with the default constructs. We measure the throughput

of queries that sum the integers over sliding windows that have a fixed sliding interval

(one item) but different lengths, and we show the results in Figure 3.11. The results

suggest that the efficient algorithm is more than 5000 times faster than the default

algorithm when the window size is large (e.g., 10,000) and it is about 5 times faster

when the size of the window is small.

Remark. To make fair comparisons among StreamQL, Rx, and Reactor, for all

queries that involve aggregation over sliding windows in the following benchmarks, we

program them using our customized constructs and then test their throughput.

61

2 4
wnd size (log10(# of items))

0 M

10 M

20 M

30 M

40 M

th
ro

ug
hp

ut
 (#

 o
f i

te
m

s/
se

c)

(a) RxJava

Efficient
Default

2 4
wnd size (log10(# of items))

0 M

5 M

10 M

th
ro

ug
hp

ut
 (#

 o
f i

te
m

s/
se

c)

(c) Reactor

Efficient
Default

2 4
wnd size (log10(# of items))

0 M

5 M

10 M

15 M

th
ro

ug
hp

ut
 (#

 o
f i

te
m

s/
se

c)

(c) Rx.NET

Efficient
Default

2 4
wnd size (log10(# of items))

0 K

10 K

20 K

30 K

sp
ee

du
p

(d) Speedup

Reactor
Rx.NET
RxJava

Figure 3.11 : (a), (b), and (c) show the throughput (vertical axis) of swnd(sum) queries
with different window sizes (log10(# of items), horizontal axis) and a fixed sliding
interval in RxJava, Reactor, and Rx.NET. (d) shows the throughput speedup (vertical
axis) of efficient implementations compared with the default settings.

3.7.3 Micro Benchmark

We run several basic streaming computations over an input stream of timestamped

integers, and the queries are: map selects the value of each input item, filter removes

items with odd integer values, and sum calculates the sum of the values. The qualifiers

tw, sw, and grp refer to aggregation over tumbling windows, sliding windows, and

key-based partitions respectively. The qualifier gtw(gsw) refers to tumbling (sliding)

window aggregation over key-based partitions. All the queries were executed with a

stream of timestamped integers. For computations that involve key-based partitioning,

we set the key function as key(x) = x.val mod 100, and for windows, we always

fix the window size to be 100 and the sliding interval to be 1 (if it is a sliding

window). Moreover, for sequential aggregation, although StreamQL provides built-in

constructs for arithmetical computations, we write queries using primitives to make

fair comparisons with libraries that do not provide such features. For example, we use

reduce(0, (sum, x) -> (sum+ x.val)) to compute the sum.

The results are shown in Figure 3.12. (1) StreamQL is 2–100 times faster than

Siddhi. The reason for the performance gap is that Siddhi creates complex event

62

filter
0 M

50 M

100 M

150 M

200 M

map
0 M

100 M

200 M

sum
0 M

50 M

100 M

150 M

200 M

tw(sum)
0 M

25 M

50 M

75 M

100 M

grp(sum)
0 M

20 M

40 M

60 M

80 M

sw(sum)
0 M

20 M

40 M

gtw(sum)
0 M

20 M

40 M

gsw(sum)
0 M

10 M

20 M

30 M StreamQL
RxJava
RxNET

Reactor
Trill

Siddhi

Figure 3.12 : Throughput (# items/sec, vertical axis) of StreamQL, RxJava, Rx.NET,
Reactor, Trill, and Siddhi (left to right) in the micro benchmark.

objects to ingress the data and queues the data to achieve streaming composition;

both of these bring computational overheads. (2) In comparison to RxJava, for trivial

operators (filtering, mapping, and aggregation), there is no significant difference

between StreamQL and RxJava. For operations that involve tumbling windows and

key-based partitioning, StreamQL is about 2–3 times faster than Rx-like libraries, as

it eliminates the overheads brought by nested streams. For sliding window operations,

we measured the performance of customized constructs in RxJava in order to make fair

comparisons, where the constructs implement efficient algorithms for sliding window

aggregation. Therefore, there is no significant difference between StreamQL and

RxJava (without these constructs, StreamQL is more than 100 times faster than

RxJava). (3) StreamQL is 3–10 times faster than Reactor. In design, Reactor and

Rx share many similarities, and Reactor also suffers from the overheads brought

by nested streams. (4) In the comparison to Rx.NET and Trill, the results are

largely influenced by the performance gap between the Java framework and the .NET

framework. Therefore, we can only have a rough comparison between StreamQL and

these two libraries.

63

3.7.4 Stock Benchmark

The stock benchmark [220, 221, 58, 57] uses a synthetic stream of stock quotes that

are of the form {stockId, price, volume, timestamp}. We consider four families of

queries for pattern detection: S1 detects three consecutive quotes whose volumes

are all above a threshold, S2 detects three consecutive quotes whose prices increase

continuously, S3 detects five consecutive quotes whose prices fluctuate in a V-pattern

(down, down, up, up), and S4 detects price peaks. For every query family there are

three variants: a. concerns a specific stock, b. detects the pattern for each stock

independently, and c. considers each stock over an 1-minute tumbling window. The

experimental results are given in Figure 3.13. For pattern detection that concerns a

specific stock (S1a, S2a, S3a, and S4a), StreamQL is about 10-15 times faster than

RxJava and Reactor, and 70-100 times faster than Siddhi. When the computation

involves excessive stream partitioning (queries labeled by variants b and c), the total

computational cost mostly depends on the cost of stream partitioning, and StreamQL

is around 3 times faster than RxJava, 4 times faster than Reactor, and 10-20 times

faster than Siddhi since it avoids the construction of nested streams.

3.7.5 NEXMark

The NEXMark [213] is about monitoring an on-line auction system. Its data stream

has four kinds of events: Person represents the registration of a new user, Item

indicates the start of an auction for a specified item, Bid records a bid made for an

auctioned item, and Close indicates the end of an auction. We used eight queries:

N1 converts the price of each bid to another currency, N2 searches for auctions

of a specific set of items, N3 counts the number of bids submitted in the US, N4

calculates the average selling price of items for each auction category, N5 outputs the

64

S1a
0 M

20 M

40 M

S1b
0 M

2 M

4 M

S1c
0 M

2 M

4 M

S2a
0 M

20 M

40 M

S2b
0 M

2 M

4 M

S2c
0 M

2 M

4 M

S3a
0 M

20 M

40 M

S3b
0 M

2 M

4 M

S3c
0 M

2 M

4 M

S4a
0 M

20 M

40 M

S4b
0 M

2 M

4 M

S4c
0 M

2 M

4 M

N1
0 M

10 M

20 M

N2
0 M

100 M

200 M

N3
0 M

100 M

200 M

N4
0 M

20 M

N5
0 M

2 M

4 M

N6
0 M

100 M

200 M

N7
0 M

10 M

N8
0 M

100 M

StreamQL
RxJava
Reactor
Siddhi

T1
0 M

10 M

20 M

T2
0 M

10 M

20 M

T3
0 M

10 M

20 M

T4
0 M

10 M

20 M

T5
0 M

10 M

20 M

T6
0 M

10 M

20 M

T7
0 M

10 M

20 M

T8
0 M

5 M

10 M

T9
0 M

10 M

20 M

T10
0 M

5 M

10 M

Figure 3.13 : Throughput (# items/sec) of StreamQL, RxJava, Reactor, and Siddhi
(left to right) in the stock benchmark (S1a-S4c), NEXMark (N1-N8), and TAQMark
(T1-10).

item with the most bids in the last 10 minutes, N6 computes the average selling price

per seller for their last 10 closed auctions, N7 finds the highest bid every 1 minute,

and N8 calculates, every 12 hours, the number of new user registrations . Figure 3.13

shows the experimental results: StreamQL is 1.1–3 times faster than RxJava, 1.5–15

times faster than Reactor, and 5–50 times faster than Siddhi.

3.7.6 TAQ Benchmark

In the TAQ benchmark, we used data from the NYSE TAQ database [80], which

collects real-time trades and quotes reported on the U.S. Consolidated Tape (where

billions of entries are recorded per day). We implemented the following queries: T1

filters out events that are outside normal NYSE hours, T2 computes the running

average price for each stock, T3 computes the average price for each stock over a

tumbling window, T4 (T5) computes the sequence of trading intervals (durations

between consecutive transactions) for a specific (each) stock, T6 counts the number

of odd lots (trades with less than 100 shares) for each stock, T7 (T8) computes the

65

(a)

(b)

(c)

Figure 3.14 : Examples of (a) raw ABP signal with onset labels, (b) low-pass filtered
signal, and (c) SSF signal.

best bid and offer for a specific (each) stock over a tumbling window, and T9 (T10)

calculates the true value estimate for a specific (each) stock over a tumbling window.

Figure 3.13 shows the results: StreamQL is 1.2–2 times faster than RxJava, 2–10

times faster than Reactor, and 8–100 times faster than Siddhi.

3.8 Case Study: Arterial Blood Pressure Monitoring

We will use StreamQL to specify a streaming algorithm for Arterial Blood Pressure

(ABP) pulse detection [222, 81]. This is a complex streaming computation and is

difficult to express with existing languages for stream processing. The use of a

streaming query language for medical monitoring applications has been considered in

[223, 224]. StreamQL, with its design for expressing high-level specifications, makes it

an ideal choice for this task.

The ABP signal is collected from the MIT-BIH Polysomnographic database [4].

The signal measurements are of type VT = {val : V, ts : T}, where val is the value of

the signal and ts is the timestamp. The signal is uniformly sampled at a frequency of

250 Hz. Figure 3.14 shows a snippet of an ABP signal containing 3 ABP pulses (around

3 seconds). The ABP waveform contains rich information about the cardiovascular

system (e.g., heart rate, systolic, mean, and diastolic arterial pressures). Reliable

66

ABP pulse detection is crucial for extracting this information.

First, the algorithm preprocesses the signal stream using a low-pass IIR filter and

a slope sum function (SSF), and then it performs the detection of the pulse onset.

low-pass (IIR) SSF detect
x(n) y(n) z(n)

The low-pass filter suppresses high frequency noise, and is defined by y(n) = 2y(n−

1) − y(n − 2) + x(n) − 2x(n − 5) + x(n − 10). The SSF is defined by z(n) =∑
0≤i≤31max(0, d(n − i)), where d(n) = y(n) − y(n − 1). It enhances the up-slope

of the ABP pulse and restrains the remainder of the pressure waveform. The query

getVTP : Q(VT, VTP) annotates each item {val, ts} of the input stream with an

additional component pval, which is the result of the preprocessing. The type

VTP = {val : V, ts : T, pval : V} extends VT with this additional component. These

preprocessed values have a phase shift of 20 ms (5 samples), which is introduced by

low-pass filtering.

The detection of ABP onset is described by the following rules: R1. In intervals

where the SSF value exceeds a threshold Thred (i.e. a tentative pulse), the algorithm

selects the first and the maximum SSF values. R2. The pulse detection is accepted

only if the difference between the first and the maximum SSF values exceeds 100. R3.

When the pulse is accepted, the algorithm chooses the first sample that crosses the

threshold as the onset point. The detected onset is adjusted by 20 ms (5 samples) to

compensate for the phase shift of low-pass filtering. R4. After an onset is detected,

to avoid double detection of the same pulse, the detection falls silent for 300 ms.

Figure 3.15 shows the StreamQL implementation of the detection algorithm.

67

preprocess the signal

lowPass = IIR({−1, 2}, {1, 0, 0, 0, 0,−2, 0, 0, 0, 0, 1})
diff = sWindow(2, 1, (x, y) -> y− x)

sum = sWindow(32, 1, reduce((x, y) -> (y > 0) ? (x+ y) : x))

ssf = diff≫ sum

preProc = map(x -> x.val)≫ lowPass≫ ssf

getVTP = annotate(preProc, (x, y) -> ⟨x.val, x.ts, y⟩)
select signal interval containing a peak (R1)

pulse = takeWhen(x -> x.pval > Thred, x -> x.pval < Thred)

select the first element in interval as the onset sample

find the measurement with the maximum preprocessed value,

and store them as a pair ⟨first, max⟩
select = reduce(x -> ⟨x, x⟩, (⟨f, m⟩, x) -> ⟨f, (x.pval > m.pval) ? x : m⟩)
examine the detected pulse (R2) and project the onset

getOnset = filterMap(⟨f, m⟩ -> m.pval− f.pval > 100, ⟨f, m⟩ -> f)
detect1 = getVTP≫ pulse≫ select≫ check≫ getOnset

rft = skip(75) # after detecting the ABP onset, apply R4

detectAll = seq(detect1, iter(rft≫ detect1))

subShift = map(x -> x.ts− 5) # compensate for phase shift

ABPDetection = detectAll≫ subShift

Figure 3.15 : StreamQL program for ABP pulse detection.

3.9 Chapter Summary

We have introduced StreamQL, a language that specifies complex streaming compu-

tations as combinations of stream transformations. StreamQL integrates relational,

dataflow, and temporal language constructs to provide an expressive and modular

high-level approach for programming streaming analyses. We have implemented

StreamQL as a Java library, and we have compared its performance against three

popular streaming engines (RxJava, Reactor, and Siddhi) using four benchmarks. In

benchmarking with real-world applications, the throughput of the StreamQL library

is consistently higher: 1.1–10 times higher than RxJava, 1.2–20 times higher than

Reactor, and 5–100 times higher than Siddhi. We have used StreamQL to easily

prototype a streaming algorithm for ABP (Arterial Blood Pressure) pulse detection, a

complex computation that is difficult to express in other streaming languages.

68

Chapter 4

Recognition of Regular Patterns

4.1 Motivation

Regular pattern matching, where the patterns are expressed with finite-state automata

or regular expressions, has numerous applications in text search and analysis [151],

network security [43], bioinformatics [65, 66], and runtime verification [44, 67]. Various

techniques have been developed for matching regular patterns, many of which are

based on the execution of deterministic finite automata (DFAs) or nondeterministic

finite automata (NFAs). DFA-based techniques are generally faster, as the processing

of an input element requires a single memory lookup, while NFA-based techniques are

slower, as they involve extending several execution paths when processing one element.

The advantage of NFAs over DFAs is that they are typically more memory-efficient,

and there are cases where an equivalent DFA would unavoidably be exponentially

larger [69].

Many applications require the processing of large and complex NFAs on real-time

streams of data collected from sensors, networks, and various system traces. Energy

efficiency and memory efficiency (in terms of the memory capacity or chip footprint

needed for a given NFA) are highly desirable for both high-performance computing

and battery-powered embedded applications. NFA processing requires frequent, yet

irregular and unpredictable, memory accesses on general-purpose processors, leading

to limited throughput and high power on CPU and GPU architectures [70, 71, 72].

69

Field Programmable Gate Arrays (FPGAs) offer high speed through hardware-level

parallelism, but are often bottlenecked by routing congestion [73, 74] and their high

power, area and cost prevent their use in mobile and embedded devices. Even with

digital application-specific integrated circuit (ASIC) accelerators, the memory access

bandwidth restricts the parallelism [75, 76]. The latest hardware technology that

addresses these challenges is in-memory architecture. This architecture processes

the NFA transitions directly inside memories with massive parallelism and provides

high throughput. For instance, the Automata Processor (AP) from Micron [54, 77]

outperforms x86 CPUs by 256 times and general purpose GPUs by 32 times in the

ANMLZoo benchmark suite [70, 225].

Classical regular expressions (regexes) involve operators for concatenation ·, nonde-

terministic choice +, and iteration (Kleene’s star) ∗ (see more details in Section 2.2.1).

They can be translated into NFAs whose size is linear in the size of the regex [78, 79].

However, the regexes used in practice have several additional features that make them

more succinct. One such feature is counting, written as r{m,n}, which is also called

bounded repetition. The pattern r{m,n} expresses that the subpattern r is repeated

anywhere from m to n times. This bounded repetition is ubiquitous in practical

use cases of regexes. For instance, in our analysis of various datasets pertaining to

network intrusion detection, such as Snort [133] and Suricata [134], as well as motif

searches in biological sequences like Protomata [135, 65], we found the occurrence of

bounded repetitions in the majority of the patterns. The näıve approach for dealing

with counting operators is to rewrite them by unfolding. For example, r{n, n} is

unfolded into r · r · · · r (n-fold concatenation) and results in an NFA of size linear in

n (and therefore can produce a DFA of size exponential in n). Given that n can scale

significantly, handling counting emerges as one of the main technical hurdles for the

70

effective implementation of hardware-based approaches in executing practical regular

patterns.

Existing in-memory NFA architectures use this näıve unfolding method to handle

bounded repetition. This leads to the use of a large number of STEs∗ to support

counting. In AP [54] and CA (Cache Automaton) [225], each STE uses 256 memory

bits for 8-bit symbols. In the latest Impala [226] and CAMA† [53] designs, each STE

requires 16 to 32 memory bits. Even with this improvement, a modest counting

operator with an upper limit 1024 requires at least 16384 memory bits, while the

information required for implementing the operator may be only 10 bits in some cases.

Therefore, the unfolding solution results in large memory and energy cost.

4.2 Contributions

We explored software and hardware co-design for integrating counter and bit vector

modules into a state-of-the-art in-memory NFA architecture. Our design is inspired by

an extension of NFAs with counter registers called nondeterministic counter automata

(NCAs). In an NCA, a computation path involves not only transitions between

control states, but also the use of a finite number of registers that hold nonnegative

integers. Such automata are a natural execution model for regexes with counting, as

the counters can track the number of repetitions of subpatterns. When the counters

are bounded, NCAs are expressively equivalent to NFAs, but they can be exponentially

more succinct [69, 227]. Similar to how an NFA is executed by maintaining the set of

active states, an NCA is executed by maintaining a set of pairs, which we call tokens,

∗STE stands for State Transition Element [54]. It is a hardware element that roughly corresponds
to the state of a homogeneous NFA. It contains a state bit (to indicate whether the state is active or
not) and a memory array that represents a character class.

†CAMA abbreviates Content Addressable Memory (CAM) enabled Automata accelerator.

71

where the first component is the control state and the second component specifies the

values of the counters. A key idea of our approach is that we can statically analyze an

NCA to determine which states can carry a large number of tokens during execution.

We call a control state counter-unambiguous if it can only carry at most one token and

counter-ambiguous if it can carry more than one. In the case of counter-unambiguity

for a state q with counter x, we know that we only need to record one counter value,

which means that we need only one memory location whose size (in bits) is logarithmic

in the range M of possible counter values. In the case of counter-ambiguity for q

with counter x, we may have to record a large number of counter values (as large as

M), and our insight is to use a bit vector v of size M , where v[i] = 1 (resp., v[i] = 0)

indicates the presence (resp., absence) of a token at q with counter value i. Therefore,

identifying a state as counter-unambiguous enables a massive memory reduction for

this state from O(M) to O(logM).

We designed a static analysis algorithm for checking the counter-ambiguity of

NCAs and regexes by performing a systematic exploration of the space of reachable

tokens to identify the existence of some input string for which two different tokens are

placed on the same control state. This may lead to a large search space (exponential

in the size of the regex), and the worst case is not easy to avoid since the problem

is NP-hard. To handle difficult instances that involve large repetition bounds, we

also designed an over-approximate algorithm that gives an inconclusive output for

some instances, while still being able to identify cases of counter-unambiguity for most

cases in five real-world benchmarks. By combining the exact and over-approximate

algorithms, we can statically analyze within milliseconds the vast majority of regexes.

Using the insights about NCA execution mentioned earlier, we proposed a hardware

design that is based on existing in-memory NFA architectures (AP, CA, Impala,

72

CAMA) augmented with (1) counter modules for counter-unambiguous states, and

(2) bit vector modules for counter-ambiguous states. We also provided a compiler

that statically analyzes an input regex to determine counter-(un)ambiguity and then

creates a representation of an automaton with counters and bit vectors using the

MNRL format [228] that can be used to program the hardware. Several existing

architectures like AP provide a counter module in their design, but they typically do

not provide a compiler that translates regexes to hardware-recognizable programs.

Also, counter registers alone cannot deal with the challenging instances of counting.

Compared with prior works that do not provide a bit vector module, we proposed a

novel design that can systematically handle counting and ensure correct compilation

in both the easy (requiring counters) and difficult (requiring bit vectors) cases.

We modified the open-source simulator VASim [70] to simulate the hardware perfor-

mance of our counter- and bit-vector-augmented CAMA design. In microbenchmarks,

we evaluated the energy and area consumption of counters and bit vectors against

their unfolded counterparts. The results show that our counter- and bit-vector-based

design can reduce energy usage by orders of magnitude and the area by large margins.

Furthermore, we evaluated the performance of the augmented CAMA design using the

Snort [133], Suricata [134], Protomata [65], and SpamAssassin [229] benchmarks. For

applications involving regexes with large counting upper bounds‡, the results show

as large as 76% energy reduction and 58% area reduction. For regexes with small

counting upper bounds, the results show little to no overhead.

The main contributions are summarized below:

• We use the notion of counter-unambiguity to identify instances of bounded

‡For the patterns r{n} (which is the abbreviation for r{n, n}), r{m,n}, and r{n, } (which is
equivalent to r{n} · r∗), the value n is the upper bound of counting.

73

repetition that can be handled with a small amount of memory. We describe

both an exact and an over-approximate static analysis for counter-(un)ambiguity

which, when combined, allow us to efficiently analyze the regexes that arise in

several application domains.

• We provide a compiler that enables the high-level programming of the hardware

using POSIX-style regexes. The compiler first performs the static analysis for

counter-(un)ambiguity and then leverages the analysis results for producing a

low-level description of the automaton.

• We propose a hardware design that augments the prior NFA-based CAMA

architecture [53] with counter and bit vector modules, which are inspired from

the execution of NCAs and the classification of states as counter-(un)ambiguous.

This architecture achieves substantial energy and area reductions compared to

prior designs.

4.3 Nondeterministic Counter Automata

Nondeterministic counter automata (NCAs) is an extension of NFAs with counter

registers. In an NCA, a computation path involves not only transitions between

control states, but also the use of a finite number of registers that hold nonnegative

integers. Such automata are a natural execution model for regexes with counting, as

the counters can track the number of repetitions of subpatterns. When the counters

are bounded, NCAs are expressively equivalent to NFAs, but they can be exponentially

more succinct [69, 227].

We fix an infinite set CReg of counter registers or, simply, counters. We typically

write x, y, z, . . . to denote counter registers. For a subset V ⊆ CReg of counters, we

74

say that a function β : V → N, which assigns a value to each counter in V , is a

V -valuation.

Definition 4.3.1. Let Σ be a finite alphabet. A nondeterministic counter automaton

(NCA) with input alphabet Σ is a tuple A = (Q,R,∆, I, F), where

− Q is a finite set of states,

− R : Q→ P(CReg) is a function that maps each state to a finite set of counters,

− ∆ is the transition relation, which contains finitely many transitions of the form

(p, σ, φ, q, ϑ), where p is the source state, σ ⊆ Σ is a predicate over the alphabet,

φ ⊆ (R(p)→ N) is a predicate over R(p)-valuations, q is the destination state, and

ϑ : (R(p)→ N)→ (R(q)→ N),

− I is the initialization function, a partial function defined on the subset dom(I) ⊆ Q

of initial states that specifies an initial valuation I(q) : R(q)→ N for each initial

state q, and

− F is the finalization function, a partial function defined on the subset dom(F) ⊆ Q

of final states that specifies a predicate F (q) ⊆ R(q)→ N for each final state q.

We remark that the states in an NCA defined above do not necessarily have the

same counters. In fact, some states may not have any counter at all, and we say that

a state q ∈ Q is pure if R(q) = ∅, that is, it has no counter associated with it. In a

transition (p, σ, φ, q, ϑ), we will call the predicate φ a guard because it may restrict

a transition based on the values of the counters, and we will call the function ϑ an

action because it describes how to assign counter values to the destination state given

the counter values in the source state.

75

We convert regexes (with counting) to NCAs that recognize the same language

using a variant of the Glushkov construction [79, 230]. In contrast to Thompson’s

construction [78], Glushkov’s construction results in ε-free automata that are also

homogeneous, i.e., all incoming transitions of a state are labeled with the same predicate

over the alphabet.

Example 4.3.1. Consider the regex r1 = Σ∗σ1σ2{n} with n ≥ 1, where σ1, σ2 are

predicates over the alphabet. The following automaton recognizes the language of r1:

q1 q2 q3 : x

Σ

σ1 σ2 / x := 1

σ2, x < n / x++

x = n

The automaton above has three states: q1, q2, and q3. We write q3 : x to indicate

that R(q3) = {x}. Notice that q1 has no annotation with counters, which means that

R(q1) = ∅ (i.e., q1 is pure). We annotate each edge p→ q with an expression of the

form σ, φ / ϑ, where σ is a predicate over Σ, φ is a guard over the counters of p, and

ϑ is an assignment for the counters of q using the counters of p. If the guard φ is

omitted, then it is always true. The action ϑ is omitted only when R(q) ⊆ R(p), and

the omission indicates that the counters R(q) retain the values from the previous

state. We can also indicate this explicitly by writing “x := x”. We write “x = n”

for the guard that checks whether the value of counter x is equal to n, and we write

“x := n” to denote the assignment (action) of the value n to the counter x. We use

double circle notation to indicate that a state is final (see state q3 above). An arrow

emanating from a final state q is annotated with the predicate F (q) over counter

valuations (recall that F is the finalization function).

The regex r2 = Σ∗σ1(σ2σ3){m,n}σ4 with 1 ≤ m ≤ n is recognized by the following

76

automaton:

q1 q2 q3 : x q4 : x q5
Σ

σ1 σ2 / x := 1

σ3

σ2, x < n / x++
σ4,m ≤ x ≤ n

The regex r3 = σ1{m}Σ∗σ2{n} with m,n ≥ 1 is recognized by the automaton below:

q1 q2 q3 : x q4 : x
σ1 / x := 1

σ1, x < m / x++

Σ, x = m

σ2, x = m / x := 1

Σ

σ2 / x := 1

σ2, x < n / x++

x = n

Nondeterministic Semantics of NCA

Let A be an NCA. A token for A is a pair (q, β), where q is a state and β : R(q)→ N is

a counter valuation for q. The set of all tokens for A is denoted by Tk(A). For a letter

a ∈ Σ, we define the token transition relation →a on Tk(A) as follows: (p, β)→a (q, γ)

if there is a transition (p, σ, φ, q, ϑ) ∈ ∆ with a ∈ σ such that β ∈ φ and γ = ϑ(β). A

token (q, β) is initial if the state q is initial. A token (q, β) is final if the state q is

final and β ∈ F (q). A run of A on a string a1a2 . . . an ∈ Σ∗ is a sequence

(q0, β0)
a1−−→ (q1, β1)

a2−−→ (q2, β2)
a3−−→ · · · an−−→ (qn, βn),

where each (qi, βi) is a token, q0 is an initial state and β0 = I(q0), and (qi−1, βi−1)→a

(qi, βi) for every i = 1, . . . , n. A run is accepting if it ends with a final token. The

NCA A accepts a string if there is an accepting run on it. We write JAK ⊆ Σ∗ for the

set of strings that A accepts.

77

Notice that, for a NCA A, the set of tokens Tk(A) together with the transition

relations →a forms a labeled transition system. The family of transition relations

(→a)a∈Σ can be represented as a ternary relation → ⊆ Tk(A)× Σ×Tk(A).

For a pure state q (i.e., a state with no counter, see Definition 4.3.1), there is only

one valuation, denoted 0N : ∅ → N, which carries no information. So, we will often

abuse notation and simply write q for the token (q, 0N). Similarly, for a state q with

one counter, i.e., R(q) = {x} for some x ∈ CReg , a valuation β (of type {x} → N) for

q specifies only one value c = β(x) for the unique variable x for q. For this reason, we

will sometimes write (q, c) for a token for the state q.

Semantics Using NCA Configurations

Let A be an NCA. A configuration for A is a set of tokens for A. We write C(A)

for the set of all configurations for A. Define the configuration transition function

δ : C(A)× Σ→ C(A) as follows:

δ(S, a) = {(q, γ) | (p, β)→a (q, γ) for some (p, β) ∈ S}.

We extend the transition function to δ : C(A) × Σ∗ → C(A) by δ(S, ε) = S and

δ(S, xa) = δ(δ(S, x), a) for every x ∈ Σ∗ and a ∈ Σ. Let S0 be the set of all initial

tokens, which we call the initial configuration, and define [A] : Σ∗ → C(A) by

[A](x) = δ(S0, x). This semantics coincides with JAK in the following sense: for every

x ∈ Σ∗, x ∈ JAK iff [A](x) contains some final token.

Example 4.3.2. Fig. 4.1 shows the execution of the NCA for the regex Σ∗aΣ{5},

where a is a predicate that returns true if the input item is character a. In this figure,

q1 (resp., q2) is the abbreviation for the token (q1, 0N) (resp., (q2, 0N)), i.e., q1 (resp.,

78

NCA : q1 q2 q3 : x

Σ

a Σ / x := 1

Σ, x < 5 / x++

x = 5

input NCA configuration output
q1 0

b q1 0
a q1, q2 0
b q1, (q3, 1) 0
a q1, q2, (q3, 2) 0
a q1, q2, (q3, 1), (q3, 3) 0
b q1, (q3, 1), (q3, 2), (q3, 4) 0
a q1, q2, (q3, 2), (q3, 3), (q3, 5) 1
a q1, q2, (q3, 1), (q3, 3), (q3, 4) 0
a q1, q2, (q3, 1), (q3, 2), (q3, 4), (q3, 5) 1
a q1, q2, (q3, 1), (q3, 2), (q3, 3), (q3, 5) 1
b q1, (q3, 1), (q3, 2), (q3, 3), (q3, 4) 0

Figure 4.1 : Execution of the NCA for the regular expression Σ∗aΣ{5}.

q2) is a pure state. The notation (qi, n) is the abbreviation for the token (qi, x 7→ n)

(the counter assignment maps x to n).

4.4 Static Analysis over Regular Expressions

In this section, we will see how to perform a static analysis over regexes to check

counter-(un)ambiguity. It is well-known that the presence of counting in regexes

can cause a blow-up in the amount of memory that is needed for the streaming

membership problem (checking if a string matches the regex in a single left-to-right

pass) [69, 231, 227]. There are, however, many cases that do not exhibit this worst-

case behavior. In this section, we will describe a static analysis for identifying

occurrences of bounded repetition {m,n} which can be implemented using memory

that is logarithmic in n. This enables a significant reduction in the memory that

79

needs to be reserved for the membership problem. In order to identify the easier cases

of bounded repetition, we use the concept of counter-unambiguity, which informally

says that the nondeterminism of the automaton is constrained. We then develop two

algorithms for deciding counter-unambiguity (one exact and one approximate), and

we provide experimental results showing that they are effective in practice.

Let A = (Q,R,∆, I, F) be an NCA. For a state q ∈ Q and a subset T ⊆ Tk(A) of

tokens for the automaton, define T |q = T ∩ ({q}× (R(q)→ N)). That is, T |q contains

exactly those tokens of T whose first component is the state q. The operational

intuition is that [A](x)|q is the set of tokens that we get at state q when we execute

the automaton A on input x. When it is possible to have more than two tokens

on the same state q after consuming an input string, we say that the state exhibits

counter-ambiguity. We will now define this concept and other related notions more

formally.

Definition 4.4.1 (Counter-Ambiguity). Let A be an NCA with bounded counters

and q be a state. The counter-ambiguity degree of q is defined as

degree(q) = supx∈Σ∗
(
size of [A](x)|q

)
.

We say that q is counter-unambiguous when degree(q) ≤ 1, and that q is counter-

ambiguous when degree(q) ≥ 2.

4.4.1 Deciding Counter-Ambiguity

According to Definition 4.4.1, the degree of counter-ambiguity of a state q is the

maximum number of different tokens that can end up at q during a computation. A

state q is counter-ambiguous iff there is a string a1a2 . . . an ∈ Σ∗ and two different

80

runs on a1a2 . . . an

(q0, β0)
a1−−→ (q1, β1)

a2−−→ (q2, β2)
a3−−→ · · · an−−→ (qn, βn)

(q′0, β
′
0)

a1−−→ (q′1, β
′
1)

a2−−→ (q′2, β
′
2)

a3−−→ · · · an−−→ (q′n, β
′
n),

such that q = qn = q′n and βn ̸= β′
n.

Let G be the labeled transition system of tokens Tk(A) and token transitions of

the form t1 →a t2, where t1, t2 are tokens and a ∈ Σ. Define G2 = G×G to be the

product transition system with states Tk(A)×Tk(A), which contains a transition

⟨t1, t2⟩ →a ⟨t′1, t′2⟩ iff t1 →a t′1 and t2 →a t′2. A pair ⟨t1, t2⟩ is initial if both t1 and t2

are initial tokens. According to the characterization of the previous paragraph, a state

q of A is counter-ambiguous iff there exists a path in G2 that ends with some pair

⟨(q, β), (q, β′)⟩, where β ̸= β′. This idea can be extended to characterize the situation

where a state q has degree at least d ≥ 2: there exists a path in the d-fold Cartesian

product Gd that ends with some tuple ⟨(q, β1), . . . , (q, βd)⟩, where β1, . . . , βd are all

distinct.

Algorithm for Determining Counter-Ambiguity

When the product transition system Gd is finite, we can decide whether the counter-

ambiguity degree of a state is ≥ d with a straightforward reachability algorithm. For

deciding counter-ambiguity, we check whether the degree is ≥ 2, and therefore it

suffices to consider only G2. Notice that for the bounded counter automata that

we consider, Gd is always finite. We just need to exercise care to avoid a blowup

in the number of transitions. In our automata, the transitions are annotated with

predicates over the alphabet, not symbols of the alphabet. This is a succinct way to

81

represent transitions, and we want to maintain such a representation in the graphs

Gd (assuming that we also use such a representation for G). This can be done by

considering the intersections of predicates and checking whether they are empty. More

specifically, for every pair of transitions t1 →σ1 t′1 and t2 →σ2 t′2, we add the transition

⟨t1, t2⟩ →σ1∩σ2 ⟨t′1, t′2⟩ in G2 when σ1 ∩ σ2 is nonempty.

Example 4.4.1. We will discuss here how to check counter-(un)ambiguity for the

regex Σ∗σ{2}. First, we construct the NCA for this regex, which is seen below:

q1 q2 : x

Σ

σ / x := 1

σ, x < 2 / x++

x = 2

Based on this NCA, we construct the transition system of tokens seen below:

q1 (q2, 1) (q2, 2)

Σ

σ σ

The token transition system is essentially an NFA, where the final state (token) is

indicated with a double circle.

To check the counter-ambiguity of a state q, we build the product transition system

and check whether there exists a path that ends in a pair of tokens ⟨(q, β), (q, β′)⟩

82

with β ̸= β′. The figure below shows the product transition system:

⟨q1, q1⟩ ⟨q1, (q2, 1)⟩ ⟨q1, (q2, 2)⟩

⟨(q2, 1), q1⟩ ⟨(q2, 1), (q2, 1)⟩ ⟨(q2, 1), (q2, 2)⟩

⟨(q2, 2), q1⟩ ⟨(q2, 2), (q2, 1)⟩ ⟨(q2, 2), (q2, 2)⟩

Σ

σ

σ
σ

σ

σ

σ
σ σ

In the figure above, the presence of the pair ⟨(q2, 1), (q2, 2)⟩ or ⟨(q2, 2), (q2, 1)⟩ (colored

in green) witnesses the counter-ambiguity. Because of symmetry, some states and

transitions can be safely removed from the product automaton. Notice, for example,

that we do not need to explore both ⟨(q2, 1), q1⟩ and ⟨q1, (q2, 1)⟩. Therefore, in future

examples, we will omit part of the product automaton.

The exact analysis halts as soon as it finds a token pair that witnesses counter-

ambiguity. So, not all pairs are generated during the static analysis, unless the regex

is counter-unambiguous.

Consider a regex r that contains an occurrence of counting of the form (abcd){m,n}.

When the repetition bounds are sufficiently large, in the automaton A for r, the four

states that correspond to abcd are either all counter-unambiguous or they are all

counter-ambiguous. For this reason, the notion of counter-(un)ambiguity can be

defined with respect to instances of bounded repetition in regexes. We will also call a

regex counter-ambiguous if it contains at least one occurrence of bounded repetition

that is counter-ambiguous (equivalently, the NCA for the expression has at least one

counter-ambiguous state).

83

Lemma 4.4.1 (Checking Counter-Ambiguity Is Hard). Let CAmbiguity be the

following problem: Given a regex r as input, is r counter-ambiguous? CAmbiguity

is NP-hard.

Proof. Consider the alphabet Σ = {a, b,#}. We will give a polynomial-time reduction

from the subset sum problem to CAmbiguity. Let S = {n1, n2, . . . nm} be a set of

natural numbers and T be a natural number. Recall that the subset sum problem

asks whether there is a subset S ′ ⊆ S of numbers whose sum is equal to T . Consider

the regex

(((a{n1}+ ε) · · · (a{nm}+ ε)#b) + (a{T}#bb))b{2}.

We focus on the rightmost occurrence of bounded repetition (i.e., b{2}). We claim

that this occurrence is counter-ambiguous if and only if there is a subset S ′ ⊆ S whose

sum is T . Consider the corresponding Glushkov automaton and the state q which

leads to the final state at the end that recognizes the b{2}. A word witnessing a path

to q would have to be of the form ax#by for some natural numbers x, y. If x ̸= T ,

then the word has no path through the branch (a{T}#bb). So, the only value it can

induce on the counter at the end is (y − 2). If x = T , and there exists a subset S ′ of

S such that
∑

S ′ = T , then a{T}#bbb could either take the path (a{T}#bb) and set

the counter to 1, or it could take the other path and set the counter to 2. If x = T

and there is no such subset S ′, then the only path the word can take is through the

branch (a{T}#bb) which would set the counter to (y − 2).

4.4.2 Over-Approximate Analysis

In Section 4.4.1, we presented an (exact) algorithm for deciding the counter-(un)ambiguity

of regexes and NCAs. The algorithm operates on the transition system of tokens

84

of an NCA, whose size can be exponential in the size of the regex, because of the

counter valuations. For example, the regex Σ∗ · a · Σ{n} has size Θ(log n) (because

the repetition bound n is represented succinctly in binary or decimal notation) and

the corresponding token transition system has size Θ(n). From this it follows that

the exact algorithm may need exponential time in the worst case. Unfortunately,

this worst-case behavior is not easy to avoid given the NP-hardness of the problem

(Lemma 4.4.1). For this reason, we propose here a heuristic algorithm that performs an

“over-approximate” analysis, which can give two outputs: it either declares that a state

is counter-unambiguous, or it says that the analysis is inconclusive. In other words,

there are cases where the algorithm may suspect that a state is counter-ambiguous,

but it cannot conclusively declare it so.

The idea is to over-approximate all occurrences of {m,n} (constrained repetition)

with ∗ (unconstrained repetition), except for the one that we are analyzing. If we

think of this transformation in terms of NCAs, we see that it adds more paths to the

token transition graph, because more transitions are now enabled. A consequence of

this is that if the over-approximate automaton is counter-unambiguous, then surely

the original automaton (which has less paths) is also counter-unambiguous. On the

other hand, if the over-approximate automaton is counter-ambiguous, then we cannot

infer that the original automaton is counter-ambiguous.

Example 4.4.2. We show the static analysis for a counter-unambiguous regex r =

Σ∗(σ̄1σ1{n}+ σ̄2σ2{n}), where n is a constant. For this regex, the over-approximate

analysis is more efficient than the exact analysis. To illustrate this, we first construct

85

the following NCA:

q1 q2

q3

q4 : x

q5 : x

Σ

σ̄1

σ̄2

σ1 / x := 1

σ1, x < n / x++

σ2 / x := 1

σ2, x < n / x++

x = n

x = n

The exact analysis constructs the token transition system:

q1 q2

q3

(q4, 1)

(q5, 1)

...

...

(q4, n)

(q5, n)

Σ

σ̄1

σ̄2

σ1

σ2

σ1

σ2

σ1

σ2

To determine whether the regex is counter-unambiguous, the exact analysis explores

all possible token pairs in the product transition system. In this example, the number

of explored pairs is Θ(n2). Below is a part of the product transition system, in which

all token pairs ⟨(q5, i), (q4, j)⟩ with 1 ≤ i < j ≤ n (colored in green) will be explored.

⟨q1, q1⟩ ⟨q1, q2⟩

⟨q3, (q4, 1)⟩

⟨q1, (q4, 1)⟩

⟨(q5, 1), (q4, 2)⟩

⟨q3, (q4, 2)⟩ ⟨(q5, 1), (q4, 3)⟩

⟨(q5, 2), (q4, 3)⟩

...

...

...

Σ

σ̄1

σ̄2 ∩ σ1

σ1

σ2 ∩ σ1

σ̄2 ∩ σ1

σ2 ∩ σ1

σ2 ∩ σ1

86

We observe that regexes of the form r = Σ∗(σ̄1σ1{n}+ σ̄2σ2{n}), where n is a large

number, can be found in the Snort and Suricata benchmarks. For these regexes, the

exact analysis may require a long computation. Fortunately, the over-approximate

analysis is substantially faster. We approximate the regex as r′ = Σ∗(σ̄1σ1{n}+ σ̄2σ
∗
2)

and r′′ = Σ∗(σ̄1σ
∗
1 + σ̄2σ2{n}) and check the counter-ambiguity of r′ and r′′ using the

exact analysis. The regex r is determined to be counter-unambiguous if both r′ and

r′′ are counter-unambiguous. Below, we construct the token transition system G for

r′. Only Θ(n) token pairs are explored in the product transition system G2.

q1 q2

q3

(q4, 1) ... (q4, n)

Σ

σ̄1

σ̄2 σ2

σ1 σ1 σ1

The over-approximate analysis checks the counter-ambiguity of r′, r′′. So, it reduces

the complexity from Θ(n2) to Θ(n).

NCA Execution with Bit Vectors

If the static analysis determines that an NCA state q is counter-ambiguous, then this

implies that the execution of the automaton may require several memory locations

to store tokens of the form (q, β). Assuming that q has only one counter register x

(i.e., R(q) = {x}) and that q is n-bounded, we know that there are at most n different

possible tokens. In order to compactly represent a set of tokens, the idea is to use

a bit vector that indicates the presence or the absence of a specific token on q. So,

a bit vector v encodes a set of tokens on q as follows: v[i] = 1 iff the token (q, i) is

active. We can also think of a bit vector as a representation for part of the automaton

87

configuration (recall the configuration semantics from Section4.3).

It remains to see how the execution of the automaton can be described using these

bit vectors to represent the configuration. Example 4.3.1 shows the NCA for the

regex Σ∗σ1(σ2σ3){m,n}σ4. This NCA is general enough to illustrate the main ways

in which we manipulate bit vectors:

(1) Consider a transition p → q, annotated with “σ / x := c”, where p is pure and

R(q) = {x}. A token on p is transformed into a bit vector v for q that is everywhere

0 except that v[c] = 1.

(2) Let p→ q be a transition, annotated with σ, where R(p) = R(q) = {x}. Since the

transition does not change the counter valuations, a bit vector v on p is passed

along unchanged to q.

(3) We will deal now with a transition p→ q, annotated with “σ, x < n/x++”, where

R(p) = R(q) = {x}. Assume further that both p and q are n-bounded, which

means that each state carries a bit vector of size n. This transition corresponds to

performing a shift operation to the bit vector v of p, resulting in a new bit vector

v′ for q. We have: v′[1] = 0 and v′[i+ 1] = v[i] for ever i = 2, . . . , n− 1.

(4) Finally, let us consider a transition p→ q, annotated with “σ,m ≤ x ≤ n”, where

R(p) = {x} and q is pure. If v is the current bit vector for p, then taking this

transition produces a token for q if and only if one of v[m], v[m+1], . . . , v[n−1], v[n]

is equal to 1. In other words, we have to compute the disjunction v[m]∨ · · · ∨ v[n].

The above cases involve the main operations that we use for bit vectors: setting the

least significant bit (case 1), shifting left by one position (case 3), and computing the

disjunction of some of the most significant bits (case 4).

The way bit vectors are used (setting the lowest-order bit, shifting, and reading

high-order bits) is similar to how queues and sliding windows are used for runtime

88

verification with metric temporal logic (MTL) [67, 211, 38, 232, 233]. We note that

MTL involves constructs that specify time durations with intervals of the form [m,n],

which are akin to the bounded repetition construct {m,n} of regexes. This explains

the similarity in the implementation.

4.5 Experimental Evaluation of Static Analysis

We have implemented a Java program§ that statically analyzes regexes to determine

if they are counter-(un)ambiguous. We will call this program the counter-ambiguity

checker. The implementation includes both the exact and the over-approximate

analyses. As the approximate analysis may be unable to verify the counter-ambiguity

of some instances, our checker implements a hybrid analysis. First, it checks the

counter-(un)ambiguity of each instance of bounded repetition in the regex using the

over-approximate analysis. If it finds a potentially counter-ambiguous instance, then

it halts the over-approximate analysis and uses the exact algorithm to check the regex.

Otherwise, it determines that the regex is counter-unambiguous.

The checker not only determines if a regex is counter-ambiguous but also provides

a counter-ambiguity witness, which is a string over the alphabet. If the NCA is

executed on the witness, then at least two tokens with different counter valuations

will end up on some state of the NCA. The checker supports the analysis of counter-

ambiguity for each instance of bounded repetition inside a regex. For example,

given a regex σ1{m}Σ∗σ2{n}, it can check the first instance (i.e., {m}), which is

counter-unambiguous, and the second instance (i.e., {n}), which is counter-ambiguous.

We evaluate the performance of our counter-ambiguity checker using five bench-

marks, which contain regexes collected from real applications. These benchmarks

§Link to the Java checker: https://ohyoukillkenny.github.io/source/regexchecker.html

https://ohyoukillkenny.github.io/source/regexchecker.html

89

avg

2.03 ms

avg

0.05 ms

avg

0.62 ms

avg

0.93 ms

avg

0.70 ms

avg

2.38 ms

avg

0.04 ms

avg

198.32 ms

avg

0.65 ms

avg

256.60 ms

avg

3.09 ms

avg

0.07 ms

avg

0.62 ms

avg

1.11 ms

avg

0.71 ms

Suricata Approx Suricata Exact Suricata Hybrid

SpamAssassin Approx SpamAssassin Exact SpamAssassin Hybrid

Snort Approx Snort Exact Snort Hybrid

Protomata Approx Protomata Exact Protomata Hybrid

ClamAV Approx ClamAV Exact ClamAV Hybrid

1e−01 1e+01 1e+03 1e+05 1e−01 1e+01 1e+03 1e+05 1e−01 1e+01 1e+03 1e+05

1

10

100

1

10

100

1

10

100

1

10

100

1

10

100

running time (ms)

re

ge
xe

s

(a) running time

avg

778 pairs

avg

29 pairs

avg

402 pairs

avg

746 pairs

avg

400 pairs

avg

738 pairs

avg

30 pairs

avg

25217 pairs

avg

574 pairs

avg

31956 pairs

avg

757 pairs

avg

30 pairs

avg

404 pairs

avg

577 pairs

avg

399 pairs

Suricata Approx Suricata Exact Suricata Hybrid

SpamAssassin Approx SpamAssassin Exact SpamAssassin Hybrid

Snort Approx Snort Exact Snort Hybrid

Protomata Approx Protomata Exact Protomata Hybrid

ClamAV Approx ClamAV Exact ClamAV Hybrid

1e+01 1e+03 1e+05 1e+07 1e+01 1e+03 1e+05 1e+07 1e+01 1e+03 1e+05 1e+07

1

10

100

1

10

100

1

10

100

1

10

100

1

10

100

created token pairs

re

ge
xe

s

(b) # of created token pairs

Figure 4.2 : The (a) running time and the (b) # of created token pairs of static
analysis for regexes. Exact means exact analysis, Approx means approximate analysis,
and Hybrid means hybrid analysis. E.g., “ClamAV Exact” means the exact analysis
in the ClamAV benchmark.

are: (1) the Snort [133] and (2) Suricata benchmarks [134] that contain patterns

for network traffic, (3) the Protomata benchmark that includes protein motifs from

the PROSITE database [135, 65], (4) the ClamAV benchmark [234] that contains

patterns that indicate the presence of viruses, and (5) the SpamAssassin benchmark

[229] that includes patterns for detecting spam email.

90

avg = 197.89 ms

avg = 0.62 ms

avg = 256.60 ms

avg = 0.71 ms

Snort Suricata

1e−03 1e+00 1e+03 1e+06 1e−03 1e+00 1e+03 1e+06

1e−03

1e+00

1e+03

1e+06

time (ms) for exact analysis

tim
e

(m
s)

 fo
r

hy
br

id
 a

na
ly

si
s

Figure 4.3 : Running time (ms) comparison of exact and hybrid analyses on the Snort
and Suricata benchmarks.

Experimental Setup. The experiments were executed in Ubuntu 20.04 on a desktop

computer equipped with an Intel Xeon(R) E3-1241 v3 CPU (4 cores) with 16 GB of

memory (DDR3 at 1600 MHz). We used OpenJDK 17 and set the maximum heap

size to 4 GB. For each regex, we executed 20 trials and selected the mean runtime as

the value used in the reported results (excluding the first 10 “warm-up” trials).

4.5.1 Performance: Running Time

We evaluate the performance of the static analysis over regexes that have non-nested

instances of constrained repetition. Figure 4.2(a) shows the distribution of the running

time of the static analysis. The results are shown in 15 plots, which are organized in

a 5× 3 grid. There are 5 rows, one for each benchmark: ClamAV, Protomata, Snort,

SpamAssassin, and Suricata. There are 3 columns, one for each variant of the static

91

analyzer: approximate, exact, and hybrid. The horizontal axis of each plot represents

the time (in milliseconds) that our checker uses for analyzing regexes, and the vertical

axis represents the number of regexes that need a certain amount of time for a variant

of static analysis.

In the Snort and Suricata benchmarks, the checker takes more than 1 second to

perform the exact analysis for several counter-unambiguous regexes. See the right

outliers in the plots labeled “Snort Exact” and “Suricata Exact” in Figure 4.2(a).

This information is seen more prominently in Figure 4.3, where the exact and hybrid

analyses are compared on the Snort and Suricata benchmarks. The points with

horizontal coordinate >1000 (msec) are noteworthy. They are substantially below the

diagonal, which means that the hybrid analysis offers significant improvement in terms

of running time. Some of these regexes are of the form Σ∗(σ̄1σ1{m}+ σ̄2σ2{n}+ · · ·),

where m,n, . . . are large numbers. When performing exact analysis on these regexes,

the checker needs to explore a large number of token pairs, which makes the analysis

time-consuming. However, as discussed in Example 4.4.2, the over-approximate

analysis can greatly reduce the cost of the computation. We observe that the over-

approximate analysis reduces the running time of expensive regexes by over 100

times in both the Snort and Suricata benchmarks. Moreover, as these regexes are

counter-unambiguous, the result of their over-approximate analysis is accurate. This

explains why the hybrid analysis also reduces the running time of these challenging

regexes.

4.5.2 Performance: Memory Footprint

The checker analyzes the counter-ambiguity of a regex by exploring token pairs in a

product transition system. These token pairs are created on the fly, as the transition

92

system is being explored. We estimate the memory footprint of the static analysis by

measuring the number of token pairs that the checker creates. Figure 4.2(b) shows

the results for five benchmarks and three different variants of the static analysis.

Similarly to the case of running time, the over-approximate analysis greatly reduces

the worst-case cost of analyzing several counter-unambiguous regexes in the Snort and

Suricata benchmarks.

4.6 Hardware Design for Efficiently Executing NCAs

In collaboration with researchers from SIMS Lab¶ at Rice University, we augmented

a state-of-the-art in-memory NFA acceleration architecture called CAMA [53] with

counter and bit vector modules. In this section, we will present our hardware design

for efficiently executing NCAs.

Existing in-memory automata accelerators adopt a two-phase architecture: a state

matching phase that finds the current active states, and a state transition phase that

calculates the available states in the next cycle. AP-style accelerators, such as AP

[54], CA [225], and eAP‖ [235], perform state matching by reading from read-access

memories (RAMs) that store bit vector representations of states in memory columns.

Each column in the RAM represents one state, which is called a State Transition

Element (STE). Using 8-bit symbols as an example, each RAM entry is 256-bit and the

i-th position has value 1 iff the symbol i is associated with the state∗∗. Additionally,

the connections between states are programmed into a switch network where existing

¶https://vlsi.rice.edu/
‖eAP stands for embedded Automata Processor.

∗∗Recall from Section4.3 that we consider homogeneous automata, which means that all transitions
leading to a state q are labeled with the same predicate σ over the alphabet. The RAM entry is a
representation of the predicate σ.

https://vlsi.rice.edu/

93

state transitions are realized as physical connections.

Each processing cycle begins in the state matching phase, where an input symbol

is encoded as a one-hot representation†† and used as the address to read from the

state matching memory. The columns that read out ‘1’s indicate successful matches

between the input symbol and the STEs. With a logical AND operation between

the available states reported from the last cycle and the matched states reported by

the memory in the current cycle, matching results of the active states in the current

cycle are determined. Next, in the state transition phase, the current active states

pass through the programmed switch network to create the next vector which stores

available states for the next cycle.

However, AP-style accelerators severely under-utilize the state matching memories

in realistic NFAs across common benchmarks, because this approach is optimal

only for the worst case of purely random NFAs. Impala [226] and CAMA [53]

made critical improvements by proposing special encoding schemes to reduce the

state matching memory requirements. CAMA further employs specialized content-

addressable memories (CAM) to perform state matching with lower energy and

memory footprints than all other designs using RAM. Moreover, CAMA optimizes a

reduced-crossbar switch network that was first proposed by eAP, which largely reduces

the area and energy costs of state transitions. Compared with prior NFA in-memory

architectures, CAMA achieves leading throughput, energy, and area efficiency. The

throughput of CAMA is 2.14GBps, which is 1.18 times better than CA, 9.5 times

better than FPGA-based Grapefruit [73], and 2-4 orders better than CPU/GPU

solutions. The energy efficiency of CAMA is 4.91nJ/Byte, which is over 10 times

††The one-hot representation of an 8-bit symbol i consists of 28 = 256 bits, where the i-th bit has
value 1 and the others are 0.

94

q0 qa qb : x qc : x qd
a b / x := 1 c

b, x < 3 / x++

d, 1 ≤ x ≤ 3

(a) Glushkov NCA for regex a(bc){1, 3}d

a b c d
x := 1

x < 3 / x++

1 ≤ x ≤ 3

(b) NCA with STEs for regex a(bc){1, 3}d

Figure 4.4 : The (a) Glushkov NCA for regex a(bc){1, 3}d and the (b) corresponding
NCA with STEs.

better than most efficient alternatives, i.e. Grapefruit (FPGA) and AP. We use the

latest memory- and energy-efficient CAMA architecture as the baseline and augment

it with our proposed counter and bit vector modules.

Figure 4.4 shows the Glushkov NCA for the counter-unambiguous regex a(bc){1, 3}c.

The Glushkov construction ensures that the NCA is homogeneous (all transitions

entering a state are labeled with the same predicate over the alphabet). This property

allows us to convert the NCA to a hardware-friendly representation by omitting the

initial state and pushing the predicates from the edges to the states, thus transforming

NCA states into STEs. For example, we push the predicate a into state qa so that in

Figure 4.4(b) we have a state labeled with the predicate a, which becomes an STE

that is activated to fire signals only when the input satisfies the predicate a.

The original CAMA design, as shown in Figure 4.5(a), only supports NCAs by

fully unfolding bounded repetitions. In our augmented CAMA, two types of hardware

modules, counters and bit vectors, are added to accelerate the execution of NCAs.

As shown in Figure 4.5(b), both modules take input from STEs related to counting

and produce output signals to the switch network. Counters are inserted to support

counter-unambiguous repetitions, while bit vectors are reserved for counter-ambiguous

95

(a) (b)

Figure 4.5 : (a) shows the CAMA design with the unfolding of regexes. (b) shows our
augmented design with the counter or the bit vector.

repetitions. Compared to CAMA, the additional counters and bit vectors retain all

necessary processing information while avoiding the cost of unfolding (which results

in additional STEs). In Section 4.7, we will further explain the design and the

input/output ports of the counter and bit vector modules.

It is worth mentioning that our proposed counters and bit vectors are not only

suitable for the CAMA architecture. Other in-memory automata architectures, like

CA, can also be augmented for NCAs with minor hardware design changes. Specifically,

these changes are: (1) counters and bit vectors need to be allowed to connect to

elements that represent states, and (2) the routing network needs to be extended to

store the transitions from counters and bit vectors.

The initial motivation for our hardware design came from the observation that

several instances of bounded repetition require significantly less memory than what is

96

suggested by a näıve unfolding. This led to the formalization of counter-(un)ambiguity

in NCAs and the corresponding static analysis. For the counter-unambiguous case, it

suffices to use simple counter modules that keep track of the number of repetitions.

For the counter-ambiguous case, the use of bit vectors is a very natural choice for a

hardware representation of sets of tokens. These considerations led to the design of

the counter and bit vector modules. Physical constraints imposed by the hardware

call for minimizing the connections between STEs and the counting modules. For

this reason, we have chosen to use bit vectors for counter-ambiguous repetitions of

the form σ{m,n} and use (partial) unfolding for other cases. The vast majority

of counter-ambiguous repetitions in real-world benchmarks are of this form, so this

approach offers efficiency (due to an optimized hardware implementation) without

sacrificing generality (since the remaining cases can be handled at the level of the

software/compiler).

4.7 Compilation from Regular Expressions to MNRL Files

To program the hardware, we provide a description of the automata in the MNRL

language [228]. Our compiler takes a source regex and produces the MNRL file with

the following steps: (1) First, the compiler parses the regex and simplifies it with

certain rewrite rules, including the unfolding of repetitions with upper bound < 2 and

the merging of character classes inside simple alternations (e.g., [a]|[b] is rewritten to

[ab]). (2) Then, the compiler performs the static analysis (as described in Section 4.4)

and annotates the regex with the counter-(un)ambiguity result for each occurrence of

repetition. (3) Finally, the compiler generates the MNRL file using these annotations,

distinguishing cases where a counter suffices (counter-unambiguous) from cases where

a bit vector is necessary (counter-ambiguous).

97

Figure 4.6 : Use of counter module to implement a(bc){m,n}d.

MNRL provides an element called upCounter for representing simple counters

[54, 228]. However, there is no distinction between counter-ambiguous and counter-

unambiguous repetition. We have therefore extended the MNRL format by adding

syntax for counters and bit vectors.

Figure 4.6 presents an abstraction of the counter module (enclosed by a dashed line)

by showing how it is used to implement the counter-unambiguous regex a(bc){m,n}d

in hardware. A counter has three incoming ports pre, fst, and lst, and two outgoing

ports en fst and en out, where ports are labeled with red dots in Figure 4.6. The

input port pre (i.e., pre-counting) is connected to the STE (labeled with a) located

right before the repetition, fst (i.e., first) is connected to the first STE (labeled with

b) in the repetition, and lst (i.e., last) is linked to the last STE (labeled with c) in

the repetition. The output port en out (i.e., enable output STE) activates the STE

(labeled with d) located right after the repetition, and en fst (i.e., enable first STE)

activates the first STE (labeled with b) in the repetition. The counter module consists

of a synchronous counting unit using D flip-flop and two digital comparators. The

module is designed to meet four constraints: (1) The counter value is reset to 0 when

98

Figure 4.7 : Use of bit vector to implement [ab]∗a[ab]{m,n}b.

pre was active in the previous cycle and fst is currently active. This corresponds to

the initialization of the repetition. (2) The counter value is incremented by 1 when

fst is active but pre was not active in the previous cycle. This corresponds to one

complete cycle. (3) en out fires if lst is active and the counter value is within the

expected range (i.e., [m,n]). (4) en fst fires if lst is active and the counter value is

≤ n.

Figure 4.7 presents an abstraction of the bit vector module by showing how the

regex [ab]∗a[ab]{m,n}b is implemented in hardware. The core component of the bit

vector is a serial-in-parallel-out shift register. It supports four primary operations: (1)

reset, which resets all bits in the vector to 0, (2) setFirst, which sets the first bit

of the vector to 1, (3) shift, which shifts the vector by one bit, and (4) disjunct,

which computes the disjunction of a sub-array of bits from index m to n (if one of the

bits in the sub-array is 1, the output signal fires).

99

10−3

10−2

10−1

En
er

gy
 (n

J/B
yt

e)

Counter
Unfold

BitVector
Unfold

101 102 103

Cnt Upper bound

10−4

10−3

10−2

Ar
ea

 (m
m

2)

Counter
Unfold

101 102 103

Cnt Upper bound

BitVector
Unfold

Figure 4.8 : Energy (upper two figures) and area (bottom two) trade-off of unfolding
vs using counter (left two figures) and bit vector (right two), where axis is log-scaled.

4.8 Evaluation of Hardware Performance

We modified the open-source simulator VASim [70] to simulate the hardware perfor-

mance of our augmented CAMA. We include 17-bit counters for supporting unam-

biguous counting, and 2000-bit vectors for supporting ambiguous counting.

4.8.1 Micro-benchmarks

Figure 4.8 shows the trade-off of unfolding vs. using counter and bit vector modules.

In the left two sub-figures, we consider regexes a{n} with different values of n. These

regexes are counter-unambiguous – the hardware implementation only needs a single

counter module to perform the matching, while unfolding creates n STEs. The upper-

left (resp., bottom-left) sub-figure shows the energy (resp., area) cost of using a counter

100

module compared with unfolding, where we always use a 17-bit counter module to

represent counter values regardless of their different repetition bounds. In the right

two sub-figures, we consider regexes Σ∗a{n}. These regexes are counter-ambiguous, so

the hardware needs to use a bit vector to perform matching, while unfolding creates n

STEs. In this comparison, we set the length of the bit vector to be equal to n for each

data point (this implies that bits are wasted). The upper-right (resp., bottom-right)

sub-figure shows the energy (resp., area) cost of using a bit vector compared with

unfolding. From the results shown in Figure 4.8, we observe that using a counter/bit

vector provides better performance compared to unfolding even for repetitions with

small upper bounds. It consistently reduces energy usage by orders of magnitude and

areas by large margins.

4.8.2 Real-world Benchmarks

We use the same benchmarks as described in Section 4.5 (except for ClamAV).

Figure 4.9 shows the number of MNRL nodes (which is linear in the number of

STEs) for different unfolding thresholds. For each benchmark and each point in the

corresponding curve, the horizontal axis shows the unfolding threshold k and the

vertical axis shows the number of MNRL nodes that are obtained from compiling

the entire benchmark after bounded repetitions up to k have been unfolded. The

rightmost point on each benchmark curve shows the unfolding threshold that results

in full unfolding for all regexes of the benchmark and the resulting number of MNRL

nodes.

We have simulated the area and the energy consumption of our augmented CAMA

by feeding compiled MNRL files with different unfolding thresholds to the modified

VASim using Protomata, SpamAssassin, Snort, and Suricata benchmarks. Figure 4.10

101

3e+04

5e+04

1e+05

10 100 1000 10000
unfolding threshold

M

N
R

L
no

de
s benchmark

Protomata

Snort

SpamAssassin

Suricata

Figure 4.9 : Total number of MNRL nodes with different unfolding thresholds (both
axes are log-scaled).

shows the per-input-byte energy consumption and the total area cost of the augmented

CAMA. The results show up to 76% energy reduction and 58% area reduction

in benchmarks with an abundance of instances of bounded repetition with large

upper bounds (i.e., Snort and Suricata). In benchmarks that generally include

bounded repetitions with small upper bounds (i.e., Protomata and SpamAssassin), the

augmented CAMA hardware still outperforms pure CAMA with little to no overhead.

We observe that for the Protomata and SpamAssassin benchmarks, our hardware

implementation provides less energy and area reduction compared with Snort and

Suricata. This is because, in general, the regexes in Protomata and SpamAssassin

have small repetition upper bounds. The wasted area in Figure 4.10 corresponds to

unused bits in the bit vector modules.

102

Protomata SpamAssassin Snort Suricata0

10

20

30

40

En
er

gy
 (n

J/B
yt

e)

Protomata SpamAssassin Snort Suricata0

1

2

3

4

5

6

7

Ar
ea

 (m
m

2)

waste
unfold 5
unfold 10
unfold 25
unfold 50
unfold 100
unfold all

Figure 4.10 : Per-input-byte energy consumption (left) and total area cost (right) of
the augmented CAMA hardware.

4.9 Chapter Summary

We have investigated hardware acceleration for regular pattern matching, where the

patterns are specified by regexes with an extended syntax that involves bounded

repetitions of the form r{m,n}. We have developed a design that integrates counter

and bit vector modules into an in-memory NFA-based hardware architecture. This

design is inspired from the theoretical model of nondeterministic counter automata

(NCAs) and the observation that some instances of bounded repetitions require only

a small amount of memory. We formalize this idea using the notion of counter-

unambiguity. We have implemented a regex-to-hardware compiler that performs a

static analysis for counter-(un)ambiguity over a regex and then creates a representation

of an automaton with counters and bit vectors that can be deployed on the hardware.

Our experiments show that using counters and bit vectors outperforms unfolding

solutions by orders of magnitude. Moreover, in experiments with real-world workloads,

we have observed that our design can provide up to 76% energy reduction and 58%

area reduction in comparison to CAMA, a state-of-the-art in-memory NFA processor.

103

Chapter 5

Semantics-preserving Parallel Stream Processing

5.1 Motivation

Applications that handle massive streaming data have scalability requirements and

would benefit from a multicore implementation of the streaming language/engine.

For example, in the application related to high-frequency stock trading, billions of

quotes and transactions occur per day [80]. The non-trivial analysis applied to these

data, which have such high volume and velocity, requires a multicore implementation

that meets the throughput requirement. Additionally, applications that deal with

streaming data typically have strict correctness requirements regarding the in-order

processing of input items. For various workloads such as the analysis of price patterns

in the stock market [26] and the detection of arterial blood pressure pulses over sensor

measurements [81], a safe parallel implementation, as emphasized in [1], should process

items strictly based on their input order and produce the same result as the sequential

implementation.

In this dissertation, we focus on the parallel processing of streaming data on a

multicore CPU. The communication between different threads in this scenario is more

reliable than in a distributed system as messages/data items are delivered with lower

latency and are less likely to be lost compared to network communication. To parallelize

the processing of data items, programmers typically describe the computation as a

dataflow graph, where each node corresponds to a stage of the overall computation.

104

During compilation and deployment, this dataflow graph is mapped to physical cores

and processes to achieve parallelism, which is used to accelerate the overall streaming

computation as multiple nodes can perform the computation simultaneously.

There is a variety of tools developed for exposing parallelism to stream processing

based on the dataflow graph. However, they often fail to provide sufficient support for

processing streaming data with the guarantee of safety in our context – the output of the

parallel computation should be the same as the sequential computation. For example,

systems for distributed stream processing [82, 22, 20, 83, 84, 236] such as Storm [20]

cannot provide support for preserving the sequential order of outputs, and others

such as Flink [83] utilize external APIs to reorder the timestamps of the input items.

Synchronous dataflow (SDF) languages and models [85, 30, 86, 31, 55] of computation

are useful for implementing the parallelism present in streaming computations in

the embedded software domain. However, SDF languages typically assume fixed

item rates, meaning that given an input item, a fixed number of output items will be

generated in the computation. This property is used for efficient scheduling determined

at compile-time, but the downside is that SDF languages cannot natively express

computations that involve dynamic item rates, where given an input item, an arbitrary

number of output items may be generated. A recent study from IBM [1] proposes

a framework to ensure safe data parallelism even if the streaming computation has

dynamic item rates. It provides multiple ordering strategies to preserve the sequential

semantics by assigning a sequence number to each data item and reordering items by

their sequence numbers. However, these strategies, in certain cases, are not sufficient

to maintain the sequential semantics when the computation is implemented with non-

linear task parallelism (“non-linear” indicates tasks cannot simply fit in a pipeline).

Timely Dataflow [82, 237] is a powerful framework for efficiently implementing data

105

parallelism in streaming data processing. However, when the preservation of sequential

semantics is required, the throughput speedup may not be optimal. This is because

the timely dataflow engine needs to wait for the advancement of timestamps in the

processing of each data item, which can limit the potential for parallelism and hinder

overall throughput improvements.

5.2 Contributions

We proposed a novel ordering strategy for data items that diverges from traditional

methods by utilizing signatures. A signature is as a series of sequence numbers that

unambiguously indicates the processing order of the data. We have developed a general

framework that is built on this signature-based approach and is able to preserve the

sequential semantics. This framework is able to handle data items with duplicate

timestamps, adapt to dynamic item rates of operations, and accommodate non-linear

forms of task parallelism.

We have developed a lightweight Rust library called ParaStream, which safely

parallelizes the processing of data streams. Rust was chosen as it provides a user-

friendly environment for safe and efficient concurrent programming, known as “fearless

concurrency” [238]. ParaStream includes a comprehensive set of operators for de-

scribing streaming computations performed by a node in the dataflow graph, such as

primitives for transforming, filtering, and aggregating streams, a group-by combinator

for key-based partitioning and independent computation over disjoint sub-streams,

and tumbling/sliding windowing combinators for computations that operate on finite

spans of an unbounded data stream. Our algorithm for preserving sequential semantics

is implemented on top of each node, allowing users to program their computations

with safe parallelism without the need for low-level item reordering algorithms. We

106

have compared ParaStream to popular lightweight libraries for efficient processing of

streaming data: StreamQL [87], RxJava [205], Reactor [128], and Timely Dataflow

[239] in single-threaded execution. The results show that ParaStream is 1.2-6 times

faster than StreamQL, 2–20 times faster than Timely Dataflow, 3-25 times faster than

RxJava, and 8-50 times faster than Reactor. Additionally, we have evaluated the

throughput scalability of ParaStream and observed that ParaStream offers superior

scalability compared to RxJava, Reactor, and Timely Dataflow. Furthermore, we

have observed near-linear throughput speedups of ParaStream in several real-world

benchmarks as the degree of parallelism increases.

As the summary of our contributions:

1. We present a novel framework for the parallel processing of streaming data that

preserves sequential semantics, where our framework handles challenges not fully

addressed in prior works.

2. We provide the ParaStream library, which offers high-level operators for pro-

gramming streaming computations, and supports safe parallelism with the

implementation of our semantics-preserving algorithms.

3. We provide a high-throughput library for supporting parallel streaming compu-

tations. The benchmarking results show that ParaStream consistently provides

higher throughput than state-of-the-art tools in single-threaded settings and sub-

stantial speedups with increasing degrees of parallelism, despite the additional

overhead of preserving sequential semantics.

107

input Map LI OD output

Figure 5.1 : The three-stage pipeline of the outlier detection algorithm.

5.3 Challenges in Preserving Sequential Semantics

In this section, we will use concrete examples to describe parallel patterns commonly

used in real-world applications and discuss the challenges of implementing these

patterns while preserving sequential semantics. We will focus on the processing of a

stream of sensor measurements collected from different sensors, which is a time series

with non-decreasing timestamps. It is important to note that multiple data items

may have the same timestamps as they are detected by different sensors, and the time

series may have missing data points due to sensor failures.

We will demonstrate the use of a three-step outlier detection algorithm for measure-

ments collected by each sensor. This algorithm will first (1) detect measurements that

match a specific pattern (e.g., peak detection), then (2) update the temporal summary

of measurements (e.g., 1-hour average), and (3) compare the values of measurements

detected in the first step to the temporal summary obtained in the second step to

identify outliers. The stream processing pipeline, as shown in Figure 5.1, includes

three stages: (1) the Map stage deserializes incoming measurements from sensors

and retains only the scalar value, sensor identifier, and timestamp (discarding other

metadata), (2) the LI stage performs linear interpolation to fill in missing data points

for measurements collected by each sensor, and (3) the OD stage detects outliers from

measurements from every sensor.

Such a pipeline can be conveniently implemented as a dataflow graph by providing

the code for each node and using FIFO channels to pass data items between these

108

input
Map

Map
LI OD output

Figure 5.2 : Dataflow graph with parallel transformation I.

nodes. The implementation described above exposes pipeline parallelism and therefore

suggests a multi-process execution, where each stage of the pipeline runs as an

independent process.

5.3.1 Parallel Transformations and Corresponding Challenges

To further improve the performance of the streaming computation, we apply three

parallel transformations to this implementation. These parallel transformations

introduce additional nodes to the dataflow graph, providing more opportunities for

parallelization to enhance the speed of computation. For each parallel transformation,

we will also discuss the challenges related to preserving the sequential semantics of

the original pipeline.

Parallel Transformation I

When sensors produce measurements at a very high rate, the deserialization stage

Map, which is computationally expensive, becomes a bottleneck. To alleviate this,

we can create several parallel instances of Map and enhance the throughput. The

implementation splits and balances the input stream across multiple Map instances,

and it then merges the output streams of the Map instances. The merged stream is

then sent to the LI stage for further processing. Figure 5.2 shows the dataflow graph

after this parallel transformation is performed.

The linear interpolation stage LI relies on receiving data items in increasing order

109

of timestamps. However, if an algorithm directly merges the output streams of the

multiple Map instances, it can introduce arbitrary interleaving that may violate this

precondition. This can lead to non-determinism in the system, making the outputs

unpredictable and non-reproducible.

Parallel Transformation II

The computationally expensive processing applied to measurements collected from

each sensor (i.e., LI + OD) also causes a bottleneck. To address this, we split the output

from Map into multiple sub-streams, where each sub-stream contains measurements

from a unique sensor. We then create multiple parallel instances of the LI and OD

nodes, with each pair of LI and OD processing a set of these sub-streams. Figure 5.3

shows the dataflow graph after performing the second parallel transformation.

input
Map

Map

LI

LI

OD

OD

output

Figure 5.3 : Dataflow graph with parallel transformation II.

Similar to the first parallel transformation, the issue with the second parallel

transformation is that if we directly merge the results produced by multiple OD

instances, the interleaved output stream can contain out-of-order data items (i.e., with

decreasing timestamps).

Parallel Transformation III

Finally, we can enhance the throughput of the computation performed in each OD

node by introducing non-linear task parallelism to the execution. We split the

110

input
Map

Map

LI

LI

PD

TS

PD

TS

CMP

CMP

output

Figure 5.4 : Dataflow graph with parallel transformation III.

computation performed on each OD node into three tasks as previously discussed:

pattern detection (performed on PD), temporal summarization (TS), and comparison

(CMP). The implementation below splits each OD node into three nodes, where PD and

TS are executed in parallel and their results are merged by CMP. Figure 5.4 shows the

corresponding dataflow graph.

We use CMP to collect the results produced by PD and TS. If the computation of PD

and TS is performed on different threads, CMP, without a reordering approach, may

fail to process the results from PD and TS based on their order of generation, thereby

breaking the sequential semantics.

5.3.2 Limitations in Prior Proposals

Functional reactive programming (FRP) related libraries like Rx [127, 39], Reac-

tor [128], and Akka Streams [129] are widely used to process the streaming data,

particularly for event-driven and interactive applications such as GUIs. These li-

braries address concurrency and support parallelism by describing the computa-

tion performed on different nodes as the transformation of reactives (signals and

events) [40, 124, 42, 125] and using a scheduler to perform the transformation using

different threads. However, when using these libraries, if we assign multiple threads to

perform a single step of the transformation simultaneously and merge the results from

these threads (e.g., the first parallel transformation), we cannot preserve the order of

111

the outputs as the same as the sequential program.

The synchronous dataflow (SDF) languages and models of computation are useful

for expressing parallelism present in streaming computations [30, 86, 31, 55]. In

particular, StreamIt [55] provides a general framework for streaming signal processing

with efficient execution on multicore architectures. StreamIt assumes fixed item rates

(i.e., number of output items generated per input item) – a property used by SDF for

efficient scheduling determined at compile-time. Therefore, while it can preserve the

sequential semantics for the first parallel transformation since the item rate of MAP is

always 1, StreamIt cannot directly be used to program parallel transformations such

as the second transformation, where LI has dynamic item rates.

There are language-based approaches that enforce semantics-preserving paral-

lelization for processing data streams [200, 1, 202, 199, 201]. In particular, [1] has

presented a runtime system that can preserve the sequential semantics in the presence

of operators with dynamic item rates. This system generates sequence numbers and

attaches them to data items to later recover their order (if they get out of order).

However, such an order-restoration scheme with sequence numbers is not sufficient

to preserve the semantics in the presence of deep nesting of order-dependent parallel

computations. For example, in the third parallel transformation, let us consider the

input items of LI are assigned with unique sequence numbers, i.e., in Figure 5.5, a1,

b2, and c3 respectively have sequence numbers 1, 2, and 3. If LI produces multiple

outputs for an input item (e.g., f and g are generated by b), it will, based on the

order-restoration schemes described in [1], assign the same sequence number (e.g.,

2) to these outputs. After the output of LI is processed by PD and TS, the sequence

number shared by multiple items (e.g., 2) may be propagated and sent to CMP. In

this case, CMP can process items in a non-deterministic order (e.g., ...m2 l2 j2 i2...,

112

input LI

PD

TS

CMP output
c3 b2 a1

h3 g2 f2 e1

h3 g2 f2 e1

... j2 i2 ...

... m2 l2 ...

Figure 5.5 : The use of sequence number to preserve the sequential semantics.

input
LI

LI

OD

OD

output

3, 1

2

3, 2, 1

2

..., 2, ...

..., 2, ...

Figure 5.6 : The use of timestamp to preserve the sequential semantics.

...j2 m2 l2 i2..., etc.), thus generating a different result compared to the sequential

program.

Trill [106] is a high-performance streaming library that employs a batched-columnar

data representation and dynamic compilation. Trill supports parallel stream processing

by providing streaming generalizations of the classic MapReduce operations with

temporal support, and it does not natively support parallel patterns which involve task

parallelism such as the third parallel transformation. Trill preserves the semantics by

reordering data items using their timestamps. However, this schema is not sufficient

when multiple items carry the same timestamp. For example, in the second parallel

transformation, let us consider two LI instances that receive data items with integer

timestamps “1, 3” and “2” respectively (see Figure 5.6). Suppose LI fills in the missing

data items for each time unit, the LI instance on the top will generate output data

items with timestamps “1, 2, 3”, where the interpolated data item shares the same

timestamp with data item sent to the LI instance on the bottom. After OD propagates

the output of LI instances, the sink of the pipeline may encounter two data items

with the same timestamp (e.g., 2), which introduces non-determinism.

113

Based on the previous discussion, we have identified several challenges to be

addressed for the preservation of sequential semantics in the processing of streaming

data. These challenges include handling computation that generates data items that

share the same timestamp, operations with dynamic item rates, and non-linear task

parallelism. To the best of our knowledge, no prior work has fully addressed these

challenges. As a result, users are left with two unsatisfying solutions: (1) they can

either accept these shortcomings and execute their computations with restricted

parallelism, which may introduce a throughput bottleneck, or (2) they can manually

preserve the semantics by implementing low-level item reordering algorithms for each

node in the dataflow graph, which is arduous and error-prone.

5.4 Solution from ParaStream

We propose a framework, called ParaStream, to support the parallel processing of

streaming data while preserving the sequential semantics. Our solution is based on

the use of signatures. A signature is a sequence of natural numbers that indicates

the expected processing order of each data item. By comparing the signature of each

data item in a lexicographic order, we can ensure data items always exit nodes in the

dataflow graph in the same order as they would without parallelization, thus preserving

the sequential semantics. In this section, we will first present the construction of

signatures for each data item. Then, we will show how we use signatures to handle

all aforementioned challenges, such as data with the same timestamps, computations

that have dynamic item rates, and the occurrence of non-linear task parallelism.

ParaStream uses a directed acyclic graph (DAG) to describe a streaming com-

putation that is performed on multiple threads. Each node of the DAG, for each

input item, monotonically generates outputs, where the monotonicity captures a key

114

splitter
LI

LI

OD

OD

merger

c3 a1

b2

c3 d3 a1

b2

... d3 ...

... b2 ...

c b a ... d b ...

parallel region

Figure 5.7 : Dataflow graph with the use of signatures.

feature of the streaming computation: an output item cannot be retracted after it has

been emitted. Each edge of the DAG is a concurrent FIFO channel that transmits

data from one node to another. A ParaStream DAG is constructed by three kinds of

nodes: splitter, worker, and merger, where a splitter receives data items from a single

input channel and sends output items into multiple output channels, a merger collects

input items from multiple input channels and provides outputs using a single output

channel, and a worker gets inputs from a single input channel and delivers output

to a single output channel. Additionally, each merger corresponds to a splitter such

that the merger collects the sub-streams originating from the partition performed

by the splitter and merges them as its output stream. Figure 5.7 shows a DAG for

PT2, where a splitter splits an input stream “a, b, c” and sends the sub-streams to

workers that perform linear interpolation and outlier detection, and a merger collects

the results from OD workers. We call the subgraph of a DAG that contains a splitter,

its corresponding merger, and all involved workers a parallel region.

The splitter propagates a data item that enters a parallel region using the following

algorithm: it counts the number of emitted outputs as n, and for each input item

with signature u, it assigns u ·n as the signature of the output generated by this input

item. Inside a parallel region, each worker assigns the same signature of each input

item to the outputs that are generated by it. Finally, the merger always first processes

115

the input with the smallest signature received from all of its input channels. Then,

for each output generated by this input, the merger assigns a new signature to it by

removing the rightmost integer from the signature of the input.

ParaStream reorders the data based on their signatures, which indicate the occur-

rence order of each data item. Therefore, in cases where several data items have the

same timestamp, ParaStream can determine which item to process first since their

order of occurrence is unique. For example, in the previous figure, after “a, b, c” enter

the parallel region, a splitter assigns a signature to each input item (e.g., the signature

of a1 is 1). LI and OD workers in the parallel region copy the signature of each input

and assign it to the output generated by this input. For example, for the LI node

on the top, d is a data item generated during the linear interpolation. This item,

generated by c3, inherits the signature carried by c3, i.e., 3. When the merger merges

the results generated by OD workers, it can provide outputs in a deterministic order

such that b is always emitted before d since 2 < 3.

ParaStream preserves the sequential semantics even when the computation per-

formed on a node in the DAG has a dynamic item rate, where an arbitrary number of

outputs are generated by an input. If such a node is a worker or a merger, the order of

outputs is preserved automatically by the FIFO implementation of the output channel

since both worker and merger have only a single output channel. If such a node is a

splitter, we distinguish the order of its output items by assigning different signatures

to them. For example, for an input item carries signature u, if a splitter generates

two output items, it will assign these output items signatures u · n and u · (n + 1)

respectively, n is the current count of output items, based on their order of generation.

Furthermore, we can also use signatures to preserve the semantics in terms of

the execution of non-linear task parallelism. For example, in PT3 (see Figure 5.8),

116

input LI copy
PD

TS

CMP output
... au ... cu bu

... cu2 bu0

... cu3 bu1

... du0

... eu1

Figure 5.8 : The use of signature for dataflow graph with non-linear task parallelism.

Table 5.1 : Parallel patterns supported with the preservation of sequential semantics
in ParaStream, StreamIt, Rx, [1], Trill, and Timely Dataflow (✓/✣/✗ indicates
whether the pattern is supported, conditionally supported, or not supported, ✓/✣/✗

indicates whether the sequential semantics is preserved, conditionally preserved, or
not preserved).

ParaStream StreamIt Rx [1] Trill Timely
pipeline parallelism ✓/✓ ✓/✓ ✓/✓ ✓/✓ ✗/— ✓/✓
data parallelism ✓/✓ ✣/✓ ✓/✗ ✓/✓ ✓/✣ ✓/✣
MapReduce ✓/✓ ✗/— ✓/✗ ✓/✓ ✓/✣ ✓/✣
non-linear task parallelism ✓/✓ ✣/✓ ✗/— ✓/✣ ✗/— ✓/✣
mixed data/task parallelism ✓/✓ ✣/✓ ✗/— ✓/✣ ✗/— ✓/✣

suppose LI generates two outputs (i.e., b and c) for an input item a. LI, as a worker,

will directly assign the signature of the input to the output. Therefore, a, b, c carry

the same signature (i.e., u). The splitter that copies the data item will extend the

signature by a sequence number, and it will send items bu0 and cu2 (resp., bu1 and cu3)

to PD (resp., TS). We suppose PD (resp., TS) generates an output d (resp., e) for the

input item b. As PD and TS are workers, the output d from PD carries signature u0,

and e from TS carries signature u1. Therefore, we know d should be handled before e

because u0 < u1.

Table 5.1 lists parallel patterns supported with the preservation of the sequential

semantics in different tools. Pipeline parallelism involves breaking a task into a

sequence of processing stages that are executed concurrently, with each stage taking

the output of the previous stage as input and immediately passing its own output

downstream. Data parallelism refers to the parallel execution of the same task on

117

disjoint parts of the data, such as the example shown in PT1 using parallel instances

of the task Map. MapReduce is a widely used pattern consisting of three stages:

map, shuffle, and reduce. This pattern typically partitions data streams by key, with

partitioned sub-streams processed concurrently. Task parallelism involves concurrent

execution of different tasks on multiple cores, and non-linear task parallelism refers to

tasks that have non-linear dependencies, making them unable to be expressed as a

simple pipeline. For example, PT3 contains non-linear task parallelism as CMP relies

on outputs from both PD and TS.

StreamIt [55] restricts the language to a synchronous subset: it has copy and round-

robin splitters but disallows value-based stream splitting. As a result, it is not able to

support all forms of data parallelism and non-linear task parallelism. Additionally,

StreamIt does not have native support for the MapReduce pattern, as the key-based

partitioning can introduce dynamic item rates. Rx [127] does not have native support

for non-linear task parallelism, and it is unable to preserve the data order when

merging outputs from multiple workers. The paper [1] addresses the parallelization of

tasks with dynamic item rates, however, it may not be able to support non-linear task

parallelism as its order-restoration scheme using sequence numbers is not sufficient to

distinguish the order of data items. Trill [106] supports parallelism through streaming

generalizations of MapReduce operations, but it cannot handle pipeline parallelism

with many stages or non-linear task parallelism. Furthermore, Trill’s preservation of

semantics for data parallelism and MapReduce is conditional as it assumes a total

ordering of timestamps carried by data items. Timely Dataflow [82, 237] supports

various forms of parallelism, and it allows the preservation of sequential semantics by

emitting a synchronization timestamp for each data item. However, a limitation arises

as the Timely Dataflow engine needs to wait for the advancement of timestamps for

118

each data item it processes. This mandatory waiting period can greatly restrict the

scalability of the parallelization.

5.5 Preserve Semantics with Signatures

In this section, we will give a formal definition of the signature. We will then present

the algorithms for different kinds of nodes to preserve the sequential semantics and

analyze their complexity.

A stream is typically viewed as an unbounded sequence of data items; While there

are certain streams that indeed terminate (e.g., when reading lines from a text file).

We further generalize this notion of a stream (i.e., unbounded sequence) by allowing

the occurrence of a distinguished symbol □, called end-of-stream marker, that signals

the termination of the stream. Languages like StreamQRE [115] and StreamQL [87]

also provide such generalization as it naturally enables the temporal composition

of streaming operators. We use a signature to represent the semantics-preserving

processing order of each data item, which is a sequence of natural numbers assigned

to each streaming data element. We define the type of signatures as Sig. We use ε to

represent an empty signature and describe the concatenation of two signatures u and

v as u · v (later we omit · for simplicity). The signature follows a lexicographic order

(e.g., ε < 0 < 01 < 1), which we describe with a function cmp : Sig× Sig→ {−1, 0, 1}:

cmp(u, v) = 0, if u = v = ε,

cmp(u, v) = −1, if (u = ε and v ̸= ε) or h(u) < h(v),

cmp(u, v) = 1, if (v = ε and u ̸= ε) or h(u) > h(v),

cmp(u, v) = cmp(r(u), r(v)), if h(u) = h(v),

119

where h : Sig → Nat returns the head of a non-empty signature, and r : Sig → Sig

returns the remainder. For signatures u and v, we say u < v if cmp(u, v) = −1, u = v

if cmp(u, v) = 0, and u > v if cmp(u, v) = 1.

We describe streaming computations using dataflow graphs constructed by three

kinds of nodes: splitter, worker, and merger. These nodes are connected by FIFO

channels, and each kind performs a specific algorithm to manipulate the signature of

each data item. We have described the rough idea of these algorithms in Section 5.4.

We will now present the details.

Execution of Worker

Algorithm 1 presents the execution of the worker node and specifies the manipulation

of the signature in the worker. The worker receives inputs from input ch. For each

input item, the worker uses gen vals to generate the output values and combine to

assign the signature to each output value.

Algorithm 1: The execution of the worker node.
Data: Input channel input ch

while input stream is not terminated do
in = input ch.get() ; /* Get an input with signature */

vals = gen vals(in) ; /* Generate output values */

forall val in vals do
out = combine(val, in.sig);
emit(out) ; /* Emit out to the output channel */

For example, as shown in Figure 5.9, we consider a graph that is a 3-stage pipeline

of workers as shown below, where a, b, c are values of input data items, □ is the

end-of-stream marker, and subscripts u, v, w, x are signatures carried by input items.

Worker w1 in the pipeline echoes its input item to its output. Worker w2 also echoes

the input while halts early upon the arrival of cw. Therefore, the end-of-stream marker

120

w1 w2 w3
□xcwbvau □xcwbvau □wbvau □wbvbvauau

halts upon cw

Figure 5.9 : Example of the execution of workers.

produced by w2 carries the same signature as cw. Worker w3 echoes each input data

item twice, where its output items, generated by the same input, have the same

signature.

Execution of Splitter

Algorithm 2 shows the execution of the splitter node, and it presents how splitters

assign signatures to each of its emitted outputs. The splitter will count the number of

emitted outputs as n and extend the signature of each incoming input item by this

number (i.e., extend(in.sig, n)). This extended signature will be assigned to the

output item.

Algorithm 2: The execution of the splitter node.
Data: Input channel input ch

n← 0;
while input stream is not terminated do

in = input ch.get();
vals = gen vals(in);
forall val in vals do

new sig = extend(in.sig, n);
out = combine(val, new sig);
emit(out);
n = n+ 1;

For example, let us consider three kinds of common splitting strategies: round-

robin, hashing, and data-copying, where the first two strategies are usually used in data

parallelism, while the third one is typically used in task parallelism. Figure 5.10(a)

121

(a)

Srr

□ydxcwbvau

□y4cw2au0

□y5dx3bv1 (b)

Shs

□yd
l
xc

l
wb

k
va

k
u

□y4b
k
v1a

k
u0

□y5d
l
x3b

l
w2

(c)

Scp

□wbvau

□w4bv2au0

□w5bv3au1

Figure 5.10 : Example of the execution of splitters.

shows a round-robin splitter srr that distributes input items in a round-robin way.

Figure 5.10(b) shows a hashing splitter shs that splits input items based on their key

identifiers, where the key identifier of item aku (resp., clw) is k (resp., l). Figure 5.10(c)

presents a data-copy splitter scp that duplicates each input item and sends out copies

through two output channels. If the splitter observes an end-of-stream marker, it

will send it to all of its output channels to notify all of the connected nodes of the

termination of the data stream.

Execution of Merger

A merger selects the item with the smallest signature from input items received

from multiple input channels. Suppose this item has a signature u. The merger will

drop the rightmost integer of u and assign it to each output generated by this item.

Algorithm 3 presents how a merger manipulates the signatures of data items. For

each input channel, we use a FIFO buffer to store received items, which is considered

inactive if there is an end-of-stream marker at its head. A minimum heap, denoted as

hp, is used to maintain the head of each buffer. The top of the heap tracks the data

item with the smallest signature. When an input item arrives, the heap is updated

by function update. Once an item is ready for processing (i.e., known to have the

smallest signature), it is removed from the heap, and the function trim is used to

122

Algorithm 3: The execution of the merger node.
Data: Input channels input chs[N]
rr← 0 ; /* round-robin index for reading inputs */

num eos← 0 ; /* number of collected □s */

bufs← Queue[N] ; /* buffers for all input channels */

/* MinHeap stores (k, v) pairs -- k is the head of an input channel, v is the

index of this channel in input chs. */

hp← MinHeap() ; /* MinHeap is sorted by k.sig */

has eos = bool[N] ; /* track if an input channel terminates */

num active = N ; /* number of active buffers */

while true do
if has eos[rr] then

rr = (rr+ 1) mod N ;
continue;

in = input chs[rr].get();
if in is □ then

has eos[rr] = true;
num eos = num eos+ 1;
if bufs[rr].size() == 0 then

num active = num active− 1;
update(hp, bufs, has eos, num active);
if num eos == N then

new sig = in.sig.trim();
vals = gen vals(in);
forall val in vals do

emit(combine(val, new sig)) ; /* emit item */

emit(Eos(new sig)) ; /* emit eos with new signature */

break;

else
buf = bufs[rr];
buf.add(in) ; /* now in is a data item */

if in is at the head of buf then
hp.add(in, rr);
update(hp, bufs, has eos, num active);

Function update(hp, bufs, has eos, num active)
while hp.size() != 0 and hp.size() == num active do

(top, index) = hp.poll();
buf = bufs[index];
buf.pop();
new sig = top.sig.trim();
vals = gen vals(data);
forall val in vals do

emit(combine(val, new sig));
if buf.size() > 0 then

hp.add((buf.head(), index));
else if has eos[index] then

num active = num active− 1;

123

obtain a new signature by removing the rightmost integer of the source signature.

This new signature is then assigned to each output item generated by the input item.

Let us consider an example. Figure 5.11(a) presents the sequential execution of a

computation id that echoes the input. Figure 5.11(b) shows a DAG that computes id

with data parallelism, which includes a round-robin splitter srr, workers w1 and w2,

and a merger m, where w1 and w2 concurrently computes id. The merger m collects

output items from w1 and w2, reorders them by their signatures, and emits them once

they are ready to be sent. Suppose m receives a0 as the first input item, it can outputs

a0 immediately once seeing b1 produced by w2 that has a greater signature (i.e., a0

is ready to be sent); Otherwise, a0 will be buffered. Finally, if m receives □, it will

emit an □ only if it collects □s from all of its input channels. The output of m in

Figure 5.11(b) is the same as the output as shown in Figure 5.11(a) – the sequential

semantics is preserved.

As another example, Figure 5.11(c) shows the sequential computation, where we

group input items by their keys, and we then duplicate each item into two copies and

perform computations id and last respectively to each copy (last selects the last

item in the stream). We use f // g to specify a computation: for each input item, we

respectively perform computation f and g to the input and always emit the output of

f before g. Therefore, in this example, the output produced by id should be handled

before the output of last, e.g., clid (i.e., cl produced by id) is handled before cllast.

Finally, the outputs are aggregated by a binary function (the combinator is denoted

by ◦). Figure 5.11(d) presents the parallel execution of this computation, which has

the same output as shown in Figure 5.11(c).

124

(a)
id

□cba □cba

(b)

Srr

w1

w2

m
□cba

□3c2a0

□4b1

□3c2a0

□4b1

□cba

(c)

groupByKey id // last reduceByKey
□clblak

□ak

□clbl

□aklasta
k
id

□cllastc
l
idb

l
id

□(b ◦ c ◦ c)l(a ◦ a)k

(d)

Shs

Scp

Scp

id

last

id

last

m

m

reduce
□clblak

□3a
k
0

□4c
l
2b

l
1

□32a
k
00

□33a
k
01

□44c
l
22b

l
10

□45c
l
23b

l
11

□32a
k
00

□33a
k
01

□44c
l
20b

l
10

□45c
l
23

□3a
k
0a

k
0

□4c
l
2c

l
2b

l
1

□(b ◦ c ◦ c)l(a ◦ a)k

Figure 5.11 : Example of execution related to data parallelism.

125

5.5.1 Complexity of Signature Manipulation

The process of assigning a signature is relatively inexpensive in terms of complexity.

For workers, the signature of the input item is directly copied as the signature of the

corresponding output item(s). For splitters, a simple counter is used to count the

number of emitted output items and the signature of the input is extended by this

counter. In the case of mergers, the rightmost integer is dropped from the signature

of the input, and the resulting value is assigned as the signature of the outputs. The

time complexity of signature assignment is O(1) per item and a constant amount of

memory is used to store the signature of the input item and a counter if necessary.

However, merging signatures can be more computationally expensive as the merger

needs to track the smallest signature received from all input channels. While the FIFO

nature of the channels ensures the correct order of signatures inside each input channel,

the merger must still compare the signatures of data items at the head of each input

channel. The cost of the merging operation is non-deterministic as some items may

arrive later to the input channel. In the worst-case scenario, if an input item never

arrives at an input channel, the merger will buffer the entire data stream into memory

and the output will never be emitted. To address this issue, we implement heartbeats

in § 5.5.2 which ensures that an output can be emitted in a constant amount of time

even in the absence of input items from certain input channels.

We define the dimension of signature to analyze the complexity of the merging

algorithm. Each edge (data channel) of the DAG contains data items whose signatures

are of the same length. We call such a length the dimension of the edge. For a splitter,

if its input channel is of dimension d, all of its output edges will be of dimension d+ 1

since the signature is extended by an integer. For a worker, the input edge and output

edge share the same dimension as the signature of the input item is assigned to the

126

Table 5.2 : Time and space complexity of the signature manipulation per data item
(k is the number of input edges, d is the dimension of the signature).

splitter worker merger
time O(1) O(1) O(d · log k)
space O(1) O(1) O(k)

generated output items. For a merger, if its input edge is of dimension d, all its output

edges will have a dimension of d− 1. The time complexity of the lexicographic-order-

based comparison between two signatures of dimension d is O(d). Therefore, for a

merger with k input edges, using brute force to compute the smallest signature would

have a time complexity of O(dk) per output item and a space complexity of O(1). We

use the minimum heap in Algorithm 3 to reduce the time complexity to O(d · log k).

The space complexity of the minimum heap is O(k) as it stores the signature of the

first item from each input channel.

Table 5.2 summarizes the complexity of signature manipulation per data item for

different types of DAG nodes. It shows that assuming a constant number of input

edges, typical for the limited number of computing cores on a machine, the memory

usage for manipulating signatures is O(1) per data item. The time complexity is close

to O(dmax) per data item, where dmax is the maximum length of the signature, which

is usually a small number.

5.5.2 Heartbeats

When merging inputs from multiple channels, we process an input item immediately

upon determining that it has the smallest signature. Otherwise, we temporarily store

it in a buffer. However, this approach can result in high latency and memory usage if

an input item never arrives at a particular channel.

127

(a)
Scp

id

sum

m
□n...b1a0

□n·2n...b12a00

□n·(2n+1)...b13a01

□n·2n...b12a00

□n·(2n+1)sn·(2n+1)

□nsn...b1a0

(b)
Scp

id

sum

m
□n...#d3c2#b1a0

□n·2n...#...#b12a00

□n·(2n+1)...#...#b13a01

□n·2n...#...#b12a00

□n·(2n+1)sn·(2n+1)#...#

□nsn...#b1a0

epoch

Figure 5.12 : Example of execution without and with heartbeats.

To address this problem, we incorporate a mechanism called heartbeats (denoted

by #) into the data stream at regular intervals. Heartbeats act as special data items

that represent the absence of items on a stream, similar mechanisms are often used in

other systems under various names such as punctuation [240], watermarks [100], or

pulses [1]. Each node propagates heartbeats by emitting them to each of its output

channels once it has collected a heartbeat from all of its input channels. We call

the duration between the insertion of heartbeats an epoch. Figure 5.12(a) and (b)

respectively show the DAG for the computation id//sum without and with heartbeats,

where the epoch is 2 and sum emits the sum of input items, denoted by s, upon the

termination of the input stream. The use of heartbeats guarantees that the merger

will receive data items on all input channels at least once per epoch. Therefore, a

merger can emit buffered data once it has collected a heartbeat from each of its input

channels, this ensures a low latency and memory usage.

128

5.6 Experimental Evaluation

We have implemented ParaStream as a Rust library to support semantics-preserving

parallelism with our proposed algorithm. In this section, we will compare ParaStream

against StreamQL [87], RxJava [205], Reactor [128], and Timely Dataflow [239], which

are all lightweight high-performance libraries that can be used to process streaming

data. StreamQL is designed for single-threaded processing, while RxJava, Reactor,

and Timely Dataflow can be used in a multi-threaded setting. Notice that RxJava

and Reactor lack support for non-linear task parallelism.

The experiments were executed in Ubuntu 20.04 on a desktop computer equipped

with an Intel(R) Xeon(R) W-2295 CPU (18 cores) and 128 GB of RAM. We used

OpenJDK 17 for Java programs and Rust 1.66-nightly for Rust programs. All data

points represent the average of at least five runs, with error bars showing the standard

deviation.

5.6.1 Evaluation of Sequential Implementation

We have evaluated the performance of the single-threaded implementation of ParaS-

tream against StreamQL, RxJava, Reactor, and Timely Dataflow. We create an input

stream of timestamped integers of the form {ts, val} as “{1, 1}, {2, 2}, ..., {n, n}”,

where both the timestamp ts and the data value val are integers, and n is set to be

10 million. We run several basic streaming computations over such an input stream,

and the queries are: map selects the value of each input item, filter removes items

with odd integer values, and sum calculates the sum of the values. The qualifiers

twnd, swnd, and grp refer to aggregation over tumbling windows, sliding windows,

and key-based partitions respectively. The qualifier gtw(gsw) refers to tumbling (slid-

ing) window aggregation over key-based partitions. For computations that involve

129

key-based partitioning, we set key(x) = x.val mod 100, and for windows, we always

fix the window size to be 100 and the sliding interval to be 1 (if it is a sliding window).

0e+00

2e+08

4e+08

6e+08

filter grp(sum) gsw(sum) gtw(sum) map sum swnd(sum) twnd(sum)
query

th
ro

ug
hp

ut
 (

ite

m
s

/ s
ec

)

engine

ParaStream

Reactor

RxJava

StreamQL

Timely Dataflow

Figure 5.13 : Throughput (# items/sec, vertical axis) of ParaStream, Reactor, RxJava,
StreamQL, and Timely Dataflow in single-threaded settings.

Figure 5.13 illustrates the throughput of ParaStream, Reactor, RxJava, StreamQL,

and Timely Dataflow in single-threaded settings. ParaStream, adopting the technique

introduced by StreamQL, avoids the overheads brought by the construction of nested

stream objects, which makes it significantly faster than RxJava (3-25 times), Reactor

(8-50 times), and Timely Dataflow (2-20 times). Moreover, ParaStream is 1.2-6 times

faster than StreamQL.

5.6.2 Evaluation of Parallel Implementation

We have also evaluated the throughput performance of ParaStream in multi-threaded

settings. We assigned one thread for each worker, as well as two threads for the stream

splitter and merger. We used a function f , parameterized by n, which is defined as

fn(x) = 3n · x. This function allows us to evaluate the scalability of the throughput as

the primitive operation f becomes increasingly compute-intensive (by increasing the

parameter n).

130

source map(fn/m)(stage1) map(fn/m)(stage2) · · · map(fn/m)(stagem) sink

Figure 5.14 : The dataflow graph for evaluating the throughput of pipeline parallelism.

Evaluation of the Throughput of Pipeline Parallelism

We consider using a pipeline of m stages to perform the computation map(fn), where

map(fn), for each input value x, computes the output value as fn(x). The computational

workload is partitioned uniformly across the pipeline stages – each stage performs

the computation map(fn/m). In the experiment, as n may not be exactly divisible by

m, each of the first m− 1 pipeline stages performs map(fa), where a = floor(n/m),

and the last stage computes map(fb), where b = n − (m − 1) · a. Figure 5.14 shows

the dataflow graph used for evaluating the throughput of pipeline parallelism. In the

ParaStream implementation, we created a worker thread to execute the computation

for each pipeline stage. We evaluated the performance of ParaStream using the

näıve algorithm without introducing signatures (i.e., preserve semantics by the FIFO

property of data channels) and the general semantics-preserving algorithm (assign

and copy signatures).

Figure 5.15(a) and (b) show the scalability of throughput in ParaStream without

and with the use of signature respectively. The baseline in these figures represents the

performance of the sequential implementation, with a speedup of 1. We also measured

the overhead caused by the propagation of signatures as the throughput reduction per

worker, as shown in Figure 5.15(c). Suppose the throughput of the implementation

without (resp., with) the use of signature is t1 (resp., t2). The throughput reduction

α is computed as: α = (t1 − t2)/t1. The results indicate that the overhead is less than

2% for each worker. Additionally, Figure 5.15(d), (e), and (f) present the throughput

131

0

5

10

15

5 10 15
workers

pa
ra

lle
l s

pe
ed

up

computational cost of
 mapping function

8

10

12

14

16

18

20

(a) ParaStream (no signature)

0

5

10

15

5 10 15
workers

pa
ra

lle
l s

pe
ed

up

computational cost of
 mapping function

8

10

12

14

16

18

20

(b) ParaStream (with signature)

−2

0

2

4

8 10 12 14 16 18 20
computational cost of mapping function

th
ro

ug
hp

ut
 r

ed
uc

tio
n

(%
) (c) Overhead per worker from adding signature

0

5

10

15

5 10 15
workers

pa
ra

lle
l s

pe
ed

up

computational cost of
 mapping function

8

10

12

14

16

18

20

(d) RxJava

0

5

10

15

5 10 15
workers

pa
ra

lle
l s

pe
ed

up

computational cost of
 mapping function

8

10

12

14

16

18

20

(e) Reactor

0

5

10

15

5 10 15
workers

pa
ra

lle
l s

pe
ed

up

computational cost of
 mapping function

8

10

12

14

16

18

20

(f) Timely Dataflow

Figure 5.15 : The throughput scalability of the pipeline parallelism implemented in
ParaStream, RxJava, Reactor, and Timely Dataflow.

132

source splitterhash

sumn(stage1)

sumn(stage2)

· · ·

sumn(stagem)

merger sink

Figure 5.16 : The dataflow graph for evaluating the throughput of data parallelism.

scalability of implementations in RxJava, Reactor, and Timely Dataflow. We observe

that ParaStream provides better scalability in terms of throughput.

Evaluation of the Throughput of Data Parallelism

We have also evaluated the scalability of throughput in terms of data parallelism – the

input stream is partitioned into multiple sub-streams, and each worker handles a sub-

stream of the input. We used query groupBy(sumn) to describe the computation of key-

based aggregation, where sumn is a binary function given by sumn(agg, x) = agg+fn(x)

that updates the aggregate. Recall that the parameter n controls the computational

cost of fn and hence sumn. To evaluate the parallel implementation of this query, we

used a splitter thread to partition the input stream equally with the key-extraction

function key(x) = x mod 256 for each input integer x. We sent send items with the

same key to the same worker thread and used the worker thread to perform sumn for

each key. The results are then collected by a merger thread. Figure 5.16 shows the

data flow graph for implementing such a pattern. We have evaluated the performance

of three implementations: (I) one that allows the worker threads to output items as

they become available (i.e., no order), (II) one that preserves the sequential semantics

by directly reordering aggregation results based on values of their keys (i.e., efficient

algorithm), and (III) one that using the general semantics-preserving algorithm (i.e.,

133

general algorithm). Furthermore, we compared the performance of ParaStream against

RxJava and Reactor, which do not preserve the semantics.

Figure 5.17(a), (b), and (c) show the scalability of implementation (I), (II), and (III)

respectively, and Figure 5.17(d) presents the overheads (ratio of throughput slowdown

per worker compared to implementation (I)) brought by the preservation of semantics.

As seen in Figure 5.17(d), our reordering algorithm adds negligible overhead (< 2%)

to the throughput of each worker. Figure 5.17(e), (f), and (g) show the scalability

of throughput for RxJava, Reactor, and Timely Dataflow, which do not preserve the

sequential semantics. By comparing Figure 5.17(c), (e), (f), and (g), we can observe

that ParaStream provides better throughput scalability in terms of the implementation

of data parallelism compared to RxJava, Reactor, and Timely Dataflow, even though

it incurs additional overheads to preserve the sequential semantics.

Evaluation of the Throughput of Task Parallelism

We considered a computation that collects the results of 120 tasks for each input,

where each task computes map(fn) over the input value. In this computation, given

a stream that contains l input items, an output stream with 120 · l items will be

produced. To parallelize this computation, we used a splitter to send a copy of each

input item to multiple workers, with the number of tasks uniformly partitioned across

workers. Figure 5.18 shows the corresponding dataflow graph. Suppose the number

of workers is m, each worker will handle 120/m tasks. Finally, we used a merger to

collect outputs from these workers. We have evaluated three implementations: (I)

one that allows the worker threads to output items as they become available (i.e., the

no-order implementation), (II) one that preserves the sequential semantics by buffering

outputs until each worker generates 120/m outputs (i.e., the efficient implementation),

134

0

5

10

15

5 10 15
workers

pa
ra

lle
l s

pe
ed

up

computational cost of
 aggregation function

8

10

12

14

16

18

20

(a) ParaStream (no order)

0

5

10

15

5 10 15
workers

pa
ra

lle
l s

pe
ed

up

computational cost of
 aggregation function

8

10

12

14

16

18

20

(b) ParaStream (efficient)

0

5

10

15

5 10 15
workers

pa
ra

lle
l s

pe
ed

up

computational cost of
 aggregation function

8

10

12

14

16

18

20

(c) ParaStream (general)

−3

0

3

6

8 10 12 14 16 18 20
computational cost of aggregation function

th
ro

ug
hp

ut
 r

ed
uc

tio
n

(%
)

algorithm

general

efficient

(d) Overhead per worker with reordering

0

5

10

15

5 10 15
workers

pa
ra

lle
l s

pe
ed

up

computational cost of
 aggregation function

8

10

12

14

16

18

20

(e) RxJava

0

5

10

15

5 10 15
workers

pa
ra

lle
l s

pe
ed

up

computational cost of
 aggregation function

8

10

12

14

16

18

20

(f) Reactor

0

5

10

15

5 10 15
workers

pa
ra

lle
l s

pe
ed

up

computational cost of
 aggregation function

8

10

12

14

16

18

20

(g) Timely Dataflow

Figure 5.17 : The throughput scalability of the data parallelism implemented in
ParaStream, RxJava, Reactor, and Timely Dataflow.

135

source splittercopy

map(fn) map(fn) · · · map(fn)

map(fn) map(fn) · · · map(fn)

· · ·

map(fn) map(fn) · · · map(fn)

merger sink

Figure 5.18 : The dataflow graph for evaluating the throughput of task parallelism.

and (III) one that uses the general semantics-preserving algorithm as described in

Section 5.5 (i.e., the general implementation).

Figure 5.19(a), (b), and (c) show the throughput scalability of implementation (I),

(II), and (III) respectively, and Figure 5.19(d) presents the overheads caused by the

preservation of semantics – we observe the efficient algorithm introduces negligible

throughput slowdown, while the general algorithm brings small overheads (< 5%

slowdown per worker). Figure 5.19(e) shows the scalability of the implementation

in Timely Dataflow, where the implementation does not preserve the sequential

semantics. In the comparison between Figure 5.19(c) and Figure 5.19(e), we observe

our ParaStream implementation provides better throughput scalability against Timely

Dataflow even paying additional overheads to preserve the semantics. Notice we do

not evaluate the throughput of RxJava and Reactor for implementing task parallelism

because they do not natively support such a pattern.

Impact of Heartbeat

In reference to Section 5.5.2, an epoch is defined as the number of data items on

each channel between two consecutive heartbeats. We have evaluated the impact of

increasing the epoch on the speedup of throughput for the parallel computation of

map(fn). We utilized a splitter to divide the input stream into several sub-streams,

136

0

5

10

15

5 10 15
workers

pa
ra

lle
l s

pe
ed

up

computational cost of
 mapping function

8

10

12

14

(a) ParaStream (no order)

0

5

10

15

5 10 15
workers

pa
ra

lle
l s

pe
ed

up

computational cost of
 mapping function

8

10

12

14

(b) ParaStream (efficient)

0

5

10

15

5 10 15
workers

pa
ra

lle
l s

pe
ed

up

computational cost of
 mapping function

8

10

12

14

(c) ParaStream (general)

−5
0
5

10
15
20

8 9 10 11 12 13 14
computational cost of mapping function

th
ro

ug
hp

ut
 r

ed
uc

tio
n

(%
)

algorithm

efficient

general

(d) Overhead per worker with reordering

0

5

10

15

5 10 15
workers

pa
ra

lle
l s

pe
ed

up

computational cost of
 mapping function

8

10

12

14

(e) Timely Dataflow

Figure 5.19 : The throughput scalability of the task parallelism implemented in
ParaStream and Timely Dataflow.

source splitterrr

map(fn)

· · ·

map(fn)

map(fn)

merger sink

· · ·#
a2#

a1

· · ·#b2#b1

· · ·#c2#c1

· · ·#fn(a2)#fn(a1)

· · ·#fn(b2)#fn(b1)

· · ·#
fn(c2

)#fn(c1
)

Figure 5.20 : Example of the dataflow graph for evaluating the impact of heartbeats
(epoch = 1).

137

each of which was assigned to a worker for computation. The results were then

collected by a merger in a way that preserved the semantics. For an epoch of e, the

splitter would send ew items to each worker before sending a heartbeat, where w is the

number of workers. Figure 5.20 shows an example of the dataflow graph for examining

the impact of the insertion of heartbeats. We examined epochs of e = 1, 4, 16, 64, 256.

The scalability of the throughput for parallelizing map(fn) with different epochs

can be seen in Figure 5.21(a), (b), (c), (d), and (e), and the overhead caused by adding

heartbeats is illustrated in Figure 5.21(f). As the value of the epoch increases, the

overhead decreases due to the reduction in the frequency of heartbeat synchronization.

Real-world Benchmarks

We have also evaluated the throughput scalability of ParaStream on the following

real-world workloads:

regex. The regex matching benchmark involves counting the occurrences of patterns

described by regular expressions in an input text. We iterated a 2 MB English

book as the input source, which was fed over a 10-sec sliding window with a

1-sec interval.

urlcnt. The URL counting benchmark [241] requires the parsing of network packets

and the counting of unique URL identifiers inside the packets. We used the

Yandex dataset [242] with 70M unique URLs and a 30-sec tumbling window.

pattern. The stock pattern detection benchmark [221, 58, 57] involves the detection

of five consecutive quotes whose prices fluctuate in a V-pattern (down, down, up,

up) for each stock in the market. We used the dataset from [220] and considered

a 1-min tumbling window.

138

0

5

10

15

5 10 15
workers

pa
ra

lle
l s

pe
ed

up
computational cost of
 mapping function

8

10

12

14

16

18

20

(a) epoch = 1

0

5

10

15

5 10 15
workers

pa
ra

lle
l s

pe
ed

up

computational cost of
 mapping function

8

10

12

14

16

18

20

(b) epoch = 4

0

5

10

15

5 10 15
workers

pa
ra

lle
l s

pe
ed

up

computational cost of
 mapping function

8

10

12

14

16

18

20

(c) epoch = 16

0

5

10

15

5 10 15
workers

pa
ra

lle
l s

pe
ed

up

computational cost of
 mapping function

8

10

12

14

16

18

20

(d) epoch = 64

0

5

10

15

5 10 15
workers

pa
ra

lle
l s

pe
ed

up

computational cost of
 mapping function

8

10

12

14

16

18

20

(e) epoch = 256

−5
0
5

10
15
20

8 10 12 14 16 18 20
computational cost of mapping function

th
ro

ug
hp

ut
 r

ed
uc

tio
n

(%
)

epoch

1

4

16

64

256

(f) Overhead per worker with heartbeats

Figure 5.21 : The throughput scalability for parallelizing map(fn) with different epochs
in ParaStream.

139

netmon. The network latency monitoring benchmark [241, 191] requires the par-

titioning of network latency records by IP pairs (i.e., source-destination) and

the computation of the average latency per partition. We used the dataset

introduced in [243] and a 10-sec tumbling window.

loadpred. The load prediction benchmark involves the computation of the median

value of the load measurement (in Watts) in a 30-min sliding window for each

household, which is a variant of the benchmark used for the “Smart Homes”

competition of the DEBS 2014 conference [244].

bbo. The best bid and offer matching [87] benchmark searches for the best bid and

offer from high-frequency stock transactions for each stock. We used data from

the NYSE TAQ dataset [80], which collects real-time trades and quotes reported

on the U.S. Consolidated Tape and fed the data over a 100-ms tumbling window.

rsi. This benchmark involves the computation of the relative strength index (RSI) for

each stock. RSI [245] is a technical indicator used in financial markets to measure

the price momentum of a stock or other security. The RSI calculation [246]

involves comparing the average fluctuation of trading prices and volumes over a

certain number of periods. We also used NYSE TAQ dataset [80] to compute

RSI.

pagerank. The PageRank benchmark [82] involves the iterative ranking of pages

in a web graph using a feedback loop. We multiplied the rank vector with the

web graph adjacency matrix in each iteration, where each worker multiplies the

previous rank vector with some rows of the adjacency matrix. and their results

will be later assembled by a merger.

140

kmeans. The K-Means benchmark involves iterative computation for unsupervised

clustering using the K-Means algorithm [247]. In each iteration, a splitter will

assign samples and initial centroids to workers. Each worker will update the

local centroids based on the samples it receives. At the end of each iteration,

workers send their local centroids to a merger, which will summarize the results

and sends them back to the splitter. We used a synthesized dataset containing

10,000 samples in 10 clusters, where each sample consists of 100 features.

har. The Human activity recognition benchmark involves the streaming classification

of human motions (standing, sitting, laying down, walking, etc.) by convolutional

neural networks (CNN) [248] inference. We used data from a dataset [249] that

contains signals collected from smartphones. To perform the CNN inference, we

used sliding windows of size 2.65 seconds as suggested in [249].

vibration. The vibration monitoring benchmark involves monitoring the vibration

signals of ball bearings to predict their failure rates. These sensors generate

data streams at a very high frequency, often as much as 40 KHz [250]. To

accurately predict failures, statistical analysis tools such as kurtosis [251] and

crest factor [252] can be computed on the signal measurements, where kurtosis

is a measure of whether the data are heavy-tailed or light-tailed relative to a

normal distribution, and crest factor is a parameter of a waveform, such as

alternating current or sound, showing how extreme the peaks are in a waveform.

We used a real-world dataset [253] collected from bearings with different health

conditions. We performed analysis over a 100-msec tumbling window.

fraud. The fraud detection benchmark involves the identification of fraudulent

activities from the financial transaction data of their customers. The strategy

141

0.0

2.5

5.0

7.5

2 4 6 8
degree of parallelism

th
ro

ug
hp

ut
 s

pe
ed

up

benchmark

bbo
fraud
har
kmeans
loadpred
netmon
pagerank
pattern
regex
rsi
urlcnt
vibration

Figure 5.22 : Throughput speedup for real-world benchmarks with different degrees of
parallelism.

we used is to look for small payment transactions with quantity ps, followed

by large payment transactions with quantity pl, occurring within a short time

interval t [254]. We computed the moving average (µ) and standard deviation

(σ) of the transaction amounts for each customer over a 10-day sliding window.

The threshold for large (resp., small) quantity is set as µ + 3σ (resp., µ - 3σ).

The scalability of throughput for the ParaStream implementations that handle

the aforementioned real-world workloads while preserving semantics can be seen

in Figure 5.22. The horizontal axis represents the degree of parallelism, which is

the number of threads used to perform the computation on workers. It can be

observed that there is a near-linear increase in throughput compared to the sequential

implementation for different real-world workloads.

142

5.7 Chapter Summary

In this chapter, we present a programming system for safely parallelizing the processing

of streaming data on a multicore CPU. Our system is based on the use of signature,

allowing the preservation of sequential semantics in the implementation of complex

patterns of parallelism. We have developed a Rust library called ParaStream to

support semantics-preserving parallelism in the processing of data streams. Our

experimental results show that ParaStream, in terms of single-threaded throughput,

consistently outperforms state-of-the-art tools. ParaStream is 1.2 to 6 times faster

than StreamQL, 2 to 20 times faster than Timely Dataflow, 3 to 25 times faster

than RxJava, and 8 to 50 times faster than Reactor. Additionally, ParaStream offers

superior throughput scalability compared to RxJava, Reactor, and Timely Dataflow.

Furthermore, ParaStream provides substantial performance gains with increasing

degree of parallelism in real-world benchmarks.

143

Chapter 6

Conclusion

6.1 Summary

This thesis discusses the language support for real-time data processing. The technical

sections of this thesis can be divided into three parts.

In Chapter 3, we introduced StreamQL, a language for specifying complex streaming

computations as compositions of stream transformations. StreamQL merges relational,

dataflow, and temporal constructs, offering a high-level approach for programming

streaming analyses. StreamQL consistently outperforms popular streaming engines

like RxJava, Reactor, and Siddhi across various real-world benchmarks, proving its

efficacy.

In Chapter 4, we focused on hardware acceleration for regular pattern matching

with regexes that include bounded repetitions. We formulated a design that integrates

counter and bit vector modules into an in-memory NFA-based hardware architecture,

inspired by the theoretical model of nondeterministic counter automata. Our regex-

to-hardware compiler analyzes counter-(un)ambiguity over regexes and then generates

an automaton representation that can be deployed on the hardware. This approach

surpasses unfolding solutions significantly. In experiments with real-world benchmarks,

we have observed significant energy and area reductions provided by our design

compared to a state-of-the-art processor for in-memory regex matching.

In Chapter 5, we presented a novel programming system to parallelize the processing

144

of streaming data with the preservation of sequential semantics. Our algorithms

utilize signatures to preserve the sequential semantics of the computations. We have

implemented the programming system as a Rust library, ParaStream, which offers

superior throughput and scalability to the existing tools.

6.2 Future Directions

Moving forward, there are several areas that I believe require further exploration.

Firstly, refining the existing scope of case studies is crucial for advancing the

development of Domain-Specific Languages (DSLs) for stream processing. A recent

study [255] has exposed flaws in current time series processing benchmarks, where

those flawed benchmarks are often used to motivate the development of DSLs for

stream processing. By examining streaming computations in real-world applications

more closely, we can enhance the utility and effectiveness of stream processing DSLs.

Secondly, there is a lack of implementations of DSLs in low-level programming

languages such as C/C++, Rust, etc. Such implementations are particularly beneficial

for devices with limited computing resources, which are common in IoT systems.

While existing high-level tools like Trill [106, 111], StreamQL [87] and LifeStream [132]

offer substantial functionality, their requirement for memory-intensive installations

of virtual machines like CLR in .NET or JVM in Java makes them less suitable for

devices with memory constraints. There are some solutions implemented in C++ like

RaftLib [256] and StreamBox [191]. However, they are not focused on such constrained

devices. In this thesis, we have initiated the development of a lightweight Rust library.

Future work will involve further investigation into its application on embedded devices,

including FPGA for IoT use cases.

Last but not least, we can delve deeper into hardware-software co-design for efficient

145

regex matching. This thesis discusses the hardware-software codesign for efficient regex

matching, which is inspired by the theoretical model of NCAs. In another work, we

have developed a software regex matcher called BVA-Scan [89], inspired by the model

of nondeterministic bit vector automata (NBVAs), where NBVAs are expressively

equivalent to the NCAs if the counter is bounded. Following the development of BVA-

Scan, we see the potential for a corresponding hardware architecture for regex matching

based on the model of NBVAs. This could potentially bring further reductions in

energy and memory usage.

146

Bibliography

[1] S. Schneider, M. Hirzel, B. Gedik, and K.-L. Wu, “Safe data parallelism for

general streaming,” IEEE Transactions on Computers, vol. 64, no. 2, pp. 504–517,

2015.

[2] J. Lu, D. Birru, and K. Whitehouse, “Using simple light sensors to achieve smart

daylight harvesting,” in Proceedings of the 2nd ACM Workshop on Embedded

Sensing Systems for Energy-Efficiency in Building, BuildSys ’10, (New York,

NY, USA), p. 73–78, Association for Computing Machinery, 2010.

[3] M. Jia, A. Komeily, Y. Wang, and R. S. Srinivasan, “Adopting Internet of Things

for the development of smart buildings: A review of enabling technologies and

applications,” Automation in Construction, vol. 101, pp. 111–126, 2019.

[4] Y. Ichimaru and G. B. Moody, “Development of the polysomnographic database

on CD-ROM,” Psychiatry and Clinical Neurosciences, vol. 53, no. 2, pp. 175–177,

1999.

[5] J. Kim, A. S. Campbell, B. E.-F. de Ávila, and J. Wang, “Wearable biosensors

for healthcare monitoring,” Nature biotechnology, vol. 37, no. 4, pp. 389–406,

2019.

[6] A. Biem, E. Bouillet, H. Feng, A. Ranganathan, A. Riabov, O. Verscheure,

H. Koutsopoulos, and C. Moran, “IBM Infosphere Streams for scalable, real-

time, intelligent transportation services,” in Proceedings of the 2010 ACM

147

SIGMOD International Conference on Management of Data, SIGMOD ’10,

(New York, NY, USA), pp. 1093–1104, ACM, 2010.

[7] D. Oladimeji, K. Gupta, N. A. Kose, K. Gundogan, L. Ge, and F. Liang, “Smart

transportation: An overview of technologies and applications,” Sensors, vol. 23,

no. 8, 2023.

[8] P. D. Diamantoulakis, V. M. Kapinas, and G. K. Karagiannidis, “Big data

analytics for dynamic energy management in smart grids,” Big Data Research,

vol. 2, no. 3, pp. 94–101, 2015. Big Data, Analytics, and High-Performance

Computing.

[9] M. N. Nafees, N. Saxena, A. Cardenas, S. Grijalva, and P. Burnap, “Smart grid

cyber-physical situational awareness of complex operational technology attacks:

A review,” ACM Comput. Surv., vol. 55, feb 2023.

[10] Y. Park, R. King, S. Nathan, W. Most, and H. Andrade, “Evaluation of a

high-volume, low-latency market data processing system implemented with IBM

middleware,” Software: Practice and Experience, vol. 42, no. 1, pp. 37–56, 2012.

[11] D. Shah, H. Isah, and F. Zulkernine, “Stock market analysis: A review and

taxonomy of prediction techniques,” International Journal of Financial Studies,

vol. 7, no. 2, 2019.

[12] C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk, “Gigascope: A

stream database for network applications,” in Proceedings of the 2003 ACM

SIGMOD International Conference on Management of Data, SIGMOD ’03, (New

York, NY, USA), pp. 647–651, ACM, 2003.

148

[13] A. D’Alconzo, I. Drago, A. Morichetta, M. Mellia, and P. Casas, “A survey on

big data for network traffic monitoring and analysis,” IEEE Transactions on

Network and Service Management, vol. 16, no. 3, pp. 800–813, 2019.

[14] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models and issues

in data stream systems,” in Proceedings of the Twenty-first ACM SIGMOD-

SIGACT-SIGART Symposium on Principles of Database Systems, PODS ’02,

(New York, NY, USA), pp. 1–16, ACM, 2002.

[15] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar, G. Manku,

C. Olston, J. Rosenstein, and R. Varma, “Query processing, approximation, and

resource management in a data stream management system,” in Proceedings

of the First Biennial Conference on Innovative Data Systems Research (CIDR

’03), www.cidrdb.org, 2003.

[16] D. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, C. Erwin,

E. Galvez, M. Hatoun, A. Maskey, A. Rasin, A. Singer, M. Stonebraker, N. Tat-

bul, Y. Xing, R. Yan, and S. Zdonik, “Aurora: A data stream management

system,” in Proceedings of the 2003 ACM SIGMOD International Conference

on Management of Data, SIGMOD ’03, (New York, NY, USA), pp. 666–666,

ACM, 2003.

[17] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein,

W. Hong, S. Krishnamurthy, S. Madden, V. Raman, F. Reiss, and M. Shah,

“TelegraphCQ: Continuous dataflow processing for an uncertain world,” in Pro-

ceedings of the First Biennial Conference on Innovative Data Systems Research

(CIDR ’03), 2003.

149

[18] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack, J.-H.

Hwang, W. Lindner, A. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and

S. Zdonik, “The design of the Borealis stream processing engine,” in Proceedings

of the 2nd Biennial Conference on Innovative Data Systems Research (CIDR

’05), pp. 277–289, 2005.

[19] A. Arasu, S. Babu, and J. Widom, “The CQL continuous query language:

Semantic foundations and query execution,” The VLDB Journal, vol. 15, no. 2,

pp. 121–142, 2006.

[20] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulkarni,

J. Jackson, K. Gade, M. Fu, J. Donham, N. Bhagat, S. Mittal, and D. Ryaboy,

“Storm @ Twitter,” in Proceedings of the 2014 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’14, (New York, NY, USA),

pp. 147–156, ACM, 2014.

[21] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal, J. M.

Patel, K. Ramasamy, and S. Taneja, “Twitter Heron: Stream processing at

scale,” in Proceedings of the 2015 ACM SIGMOD International Conference on

Management of Data, SIGMOD ’15, (New York, NY, USA), pp. 239–250, ACM,

2015.

[22] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica, “Discretized

streams: Fault-tolerant streaming computation at scale,” in Proceedings of the

Twenty-Fourth ACM Symposium on Operating Systems Principles, SOSP ’13,

(New York, NY, USA), pp. 423–438, ACM, 2013.

[23] E. Wu, Y. Diao, and S. Rizvi, “High-performance complex event processing over

150

streams,” in Proceedings of the 2006 ACM SIGMOD International Conference

on Management of Data, SIGMOD ’06, (New York, NY, USA), p. 407–418,

Association for Computing Machinery, 2006.

[24] L. Brenna, A. Demers, J. Gehrke, M. Hong, J. Ossher, B. Panda, M. Riedewald,

M. Thatte, and W. White, “Cayuga: A high-performance event processing

engine,” in Proceedings of the 2007 ACM SIGMOD International Conference

on Management of Data, SIGMOD ’07, (New York, NY, USA), p. 1100–1102,

Association for Computing Machinery, 2007.

[25] F. Zemke, A. Witkowski, M. Cherniack, and L. Colby, “Pattern matching in

sequences of rows,” tech. rep., IBM, 2007. ANSI Standard Proposal.

[26] M. Hirzel, “Partition and compose: Parallel complex event processing,” in

Proceedings of the 6th ACM International Conference on Distributed Event-

Based Systems, DEBS ’12, (New York, NY, USA), pp. 191–200, ACM, 2012.

[27] M. Bucchi, A. Grez, A. Quintana, C. Riveros, and S. Vansummeren, “CORE: A

complex event recognition engine,” Proc. VLDB Endow., vol. 15, p. 1951–1964,

may 2022.

[28] “FlinkCEP - complex event processing for Flink.” Available at

https://nightlies.apache.org/flink/flink-docs-release-1.17/docs/

libs/cep/, 2023. [Online; Accessed 1 July, 2023].

[29] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” Proceedings of

the IEEE, vol. 75, no. 9, pp. 1235–1245, 1987.

[30] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice, “LUSTRE: A declarative

language for real-time programming,” in Proceedings of the 14th ACM SIGACT-

https://nightlies.apache.org/flink/flink-docs-release-1.17/docs/libs/cep/
https://nightlies.apache.org/flink/flink-docs-release-1.17/docs/libs/cep/

151

SIGPLAN Symposium on Principles of Programming Languages, POPL ’87,

(New York, NY, USA), pp. 178–188, ACM, 1987.

[31] G. Berry and G. Gonthier, “The Esterel synchronous programming language:

Design, semantics, implementation,” Science of Computer Programming, vol. 19,

no. 2, pp. 87–152, 1992.

[32] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. L. Guernic, and

R. Simone, “The synchronous languages 12 years later,” Proceedings of the

IEEE, vol. 91, no. 1, pp. 64–83, 2003.

[33] K. Havelund and G. Roşu, “Efficient monitoring of safety properties,” In-

ternational Journal on Software Tools for Technology Transfer, vol. 6, no. 2,

pp. 158–173, 2004.

[34] B. D’Angelo, S. Sankaranarayanan, C. Sanchez, W. Robinson, B. Finkbeiner,

H. B. Sipma, S. Mehrotra, and Z. Manna, “LOLA: Runtime monitoring of

synchronous systems,” in Proceedings of the 12th International Symposium on

Temporal Representation and Reasoning (TIME’05), (New York, NY, USA),

pp. 166–174, IEEE, June 2005.

[35] P. Thati and G. Roşu, “Monitoring algorithms for metric temporal logic specifica-

tions,” Electronic Notes in Theoretical Computer Science, vol. 113, pp. 145–162,

2005. Proceedings of the Fourth Workshop on Runtime Verification (RV 2004).

[36] M. Leucker and C. Schallhart, “A brief account of runtime verification,” The

Journal of Logic and Algebraic Programming, vol. 78, no. 5, pp. 293–303, 2009.

The 1st Workshop on Formal Languages and Analysis of Contract-Oriented

Software (FLACOS’07).

152

[37] J. V. Deshmukh, A. Donzé, S. Ghosh, X. Jin, G. Juniwal, and S. A. Seshia,

“Robust online monitoring of signal temporal logic,” Formal Methods in System

Design, vol. 51, pp. 5–30, Aug 2017.

[38] A. Chattopadhyay and K. Mamouras, “A verified online monitor for metric

temporal logic with quantitative semantics,” in RV 2020 (J. Deshmukh and

D. Ničković, eds.), vol. 12399 of Lecture Notes in Computer Science, (Cham),

pp. 383–403, Springer, 2020.

[39] E. Meijer, “Your mouse is a database,” Commun. ACM, vol. 55, p. 66–73, May

2012.

[40] C. Elliott and P. Hudak, “Functional reactive animation,” in Proceedings of the

Second ACM SIGPLAN International Conference on Functional Programming,

ICFP ’97, (New York, NY, USA), pp. 263–273, ACM, 1997.

[41] A. Courtney, “Frappé: Functional reactive programming in Java,” in Proceedings

of the 3rd International Symposium on Practical Aspects of Declarative Languages

(PADL ’01) (I. V. Ramakrishnan, ed.), (Berlin, Heidelberg), pp. 29–44, Springer

Berlin Heidelberg, 2001.

[42] I. Maier and M. Odersky, “Deprecating the observer pattern with Scala.React,”

tech. rep., EPFL, 2012.

[43] F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, and R. H. Katz, “Fast and memory-

efficient regular expression matching for deep packet inspection,” in Proceedings

of the 2006 ACM/IEEE Symposium on Architecture for Networking and Com-

munications Systems, ANCS ’06, (New York, NY, USA), pp. 93–102, ACM,

2006.

153

[44] H. Barringer, A. Goldberg, K. Havelund, and K. Sen, “Rule-based runtime

verification,” in VMCAI 2004, vol. 2937 of Lecture Notes in Computer Science,

(Heidelberg), pp. 44–57, Springer, 2004.

[45] RE2, “RE2: Google’s regular expression library.” Available at https://github.

com/google/re2, 2023. [Online; Accessed 30 June, 2023].

[46] P. Hazel and Z. Herczeg, “PCRE2: Perl compatible regular expressions v2.”

Available at https://www.pcre.org/, 2023. [Online; Accessed 30 June, 2023].

[47] X. Wang, Y. Hong, H. Chang, K. Park, G. Langdale, J. Hu, and H. Zhu,

“Hyperscan: A fast multi-pattern regex matcher for modern CPUs,” in 16th

USENIX Symposium on Networked Systems Design and Implementation (NSDI

’19), (Boston, MA), pp. 631–648, USENIX Association, 2019.

[48] H. Liu, S. Pai, and A. Jog, “Why GPUs are slow at executing NFAs and how to

make them faster,” in Proceedings of the Twenty-Fifth International Conference

on Architectural Support for Programming Languages and Operating Systems,

ASPLOS ’20, (New York, NY, USA), pp. 251–265, ACM, 2020.

[49] R. Sidhu and V. K. Prasanna, “Fast regular expression matching using FPGAs,”

in The 9th Annual IEEE Symposium on Field-Programmable Custom Computing

Machines (FCCM ’01), (New York, NY, USA), pp. 227–238, IEEE, 2001.

[50] Z. K. Baker and V. K. Prasanna, “Time and area efficient pattern matching on

FPGAs,” in Proceedings of the 2004 ACM/SIGDA 12th International Sympo-

sium on Field Programmable Gate Arrays, FPGA ’04, (New York, NY, USA),

p. 223–232, ACM, 2004.

https://github.com/google/re2
https://github.com/google/re2
https://www.pcre.org/

154

[51] N. Tuck, T. Sherwood, B. Calder, and G. Varghese, “Deterministic memory-

efficient string matching algorithms for intrusion detection,” in IEEE INFOCOM

2004, vol. 4, (New York, NY, USA), pp. 2628–2639 vol.4, IEEE, 2004.

[52] B. C. Brodie, D. E. Taylor, and R. K. Cytron, “A scalable architecture for high-

throughput regular-expression pattern matching,” ACM SIGARCH computer

architecture news, vol. 34, no. 2, pp. 191–202, 2006.

[53] Y. Huang, Z. Chen, D. Li, and K. Yang, “CAMA: Energy and memory efficient

automata processing in content-addressable memories,” in 2022 IEEE Interna-

tional Symposium on High-Performance Computer Architecture (HPCA), (New

York, NY, USA), pp. 25–37, IEEE, 2022.

[54] P. Dlugosch, D. Brown, P. Glendenning, M. Leventhal, and H. Noyes, “An

efficient and scalable semiconductor architecture for parallel automata process-

ing,” IEEE Transactions on Parallel and Distributed Systems, vol. 25, no. 12,

pp. 3088–3098, 2014.

[55] W. Thies, M. Karczmarek, and S. Amarasinghe, “StreamIt: A language for

streaming applications,” in Proceedings of the 11th International Conference

on Compiler Construction (CC ’02) (R. N. Horspool, ed.), vol. 2304 of Lecture

Notes in Computer Science, (Berlin, Heidelberg), pp. 179–196, Springer, 2002.

[56] E. Bouillet, R. Kothari, V. Kumar, L. Mignet, S. Nathan, A. Ranganathan, D. S.

Turaga, O. Udrea, and O. Verscheure, “Processing 6 billion CDRs/day: From

research to production (experience report),” in Proceedings of the 6th ACM

International Conference on Distributed Event-Based Systems, DEBS ’12, (New

York, NY, USA), pp. 264–267, ACM, 2012.

155

[57] B. Chandramouli, J. Goldstein, and D. Maier, “High-performance dynamic

pattern matching over disordered streams,” Proceedings of the VLDB Endowment,

vol. 3, no. 1-2, pp. 220–231, 2010.

[58] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman, “Efficient pattern

matching over event streams,” in Proceedings of the 2008 ACM SIGMOD

International Conference on Management of Data, SIGMOD ’08, (New York,

NY, USA), pp. 147–160, ACM, 2008.

[59] G. Cugola and A. Margara, “TESLA: A formally defined event specification

language,” in Proceedings of the Fourth ACM International Conference on

Distributed Event-Based Systems, DEBS ’10, (New York, NY, USA), p. 50–61,

Association for Computing Machinery, 2010.

[60] H. Zhang, Y. Diao, and N. Immerman, “On complexity and optimization of

expensive queries in complex event processing,” in Proceedings of the 2014 ACM

SIGMOD International Conference on Management of Data, SIGMOD ’14, (New

York, NY, USA), p. 217–228, Association for Computing Machinery, 2014.

[61] B. Zhao, H. van der Aa, T. T. Nguyen, Q. V. H. Nguyen, and M. Weidlich,

“EIRES: Efficient integration of remote data in event stream processing,” in

Proceedings of the 2021 International Conference on Management of Data,

SIGMOD ’21, (New York, NY, USA), p. 2128–2141, Association for Computing

Machinery, 2021.

[62] A. V. Aho and M. J. Corasick, “Efficient string matching: An aid to bibliographic

search,” Communications of the ACM, vol. 18, no. 6, pp. 333–340, 1975.

156

[63] “GNU grep - Global Regular Expression Print.” Available at https://www.gnu.

org/software/grep/, 2022. [Online; Accessed 30 June, 2023].

[64] “GNU Awk.” Available at https://www.gnu.org/software/gawk/, 2023. [On-

line; Accessed 30 June, 2023].

[65] I. Roy and S. Aluru, “Discovering motifs in biological sequences using the Micron

Automata Processor,” IEEE/ACM Transactions on Computational Biology and

Bioinformatics, vol. 13, no. 1, pp. 99–111, 2016.

[66] C. Bo, V. Dang, E. Sadredini, and K. Skadron, “Searching for potential gRNA

off-target sites for CRISPR/Cas9 using automata processing across different plat-

forms,” in 2018 IEEE International Symposium on High Performance Computer

Architecture (HPCA), (USA), pp. 737–748, IEEE, 2018.

[67] E. Bartocci, J. Deshmukh, A. Donzé, G. Fainekos, O. Maler, D. Ničković, and

S. Sankaranarayanan, “Specification-based monitoring of cyber-physical systems:

A survey on theory, tools and applications,” in Lectures on Runtime Verification:

Introductory and Advanced Topics (E. Bartocci and Y. Falcone, eds.), vol. 10457

of Lecture Notes in Computer Science, pp. 135–175, Cham: Springer, 2018.

[68] J. C. Davis, “Rethinking regex engines to address ReDoS,” in Proceedings of the

2019 27th ACM Joint Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software Engineering, ESEC/FSE 2019,

(New York, NY, USA), pp. 1256–1258, ACM, 2019.

[69] A. R. Meyer and M. J. Fischer, “Economy of description by automata, grammars,

and formal systems,” in 2013 IEEE 54th Annual Symposium on Foundations

https://www.gnu.org/software/grep/
https://www.gnu.org/software/grep/
https://www.gnu.org/software/gawk/

157

of Computer Science, (Los Alamitos, CA, USA), pp. 188–191, IEEE Computer

Society, 1971.

[70] J. Wadden, V. Dang, N. Brunelle, T. Tracy II, D. Guo, E. Sadredini, K. Wang,

C. Bo, G. Robins, M. Stan, and K. Skadron, “ANMLZoo: A benchmark suite

for exploring bottlenecks in automata processing engines and architectures,” in

2016 IEEE International Symposium on Workload Characterization (IISWC),

pp. 1–12, IEEE, 2016.

[71] M. Lenjani and M. R. Hashemi, “Tree-based scheme for reducing shared cache

miss rate leveraging regional, statistical and temporal similarities,” IET Com-

puters & Digital Techniques, vol. 8, no. 1, pp. 30–48, 2014.

[72] T. Liu, Y. Yang, Y. Liu, Y. Sun, and L. Guo, “An efficient regular expressions

compression algorithm from a new perspective,” in 2011 Proceedings IEEE

INFOCOM, (New York, NY, USA), pp. 2129–2137, IEEE, Apr. 2011.

[73] R. Rahimi, E. Sadredini, M. Stan, and K. Skadron, “Grapefruit: An Open-

Source, Full-Stack, and Customizable Automata Processing on FPGAs,” in 2020

IEEE 28th Annual International Symposium on Field-Programmable Custom

Computing Machines (FCCM), (New York, NY, USA), pp. 138–147, IEEE, May

2020.

[74] T. Xie, V. Dang, J. Wadden, K. Skadron, and M. Stan, “REAPR: Reconfigurable

engine for automata processing,” in 2017 27th International Conference on Field

Programmable Logic and Applications (FPL), (New York, NY, USA), pp. 1–8,

IEEE, 2017.

158

[75] P. Tandon, F. M. Sleiman, M. J. Cafarella, and T. F. Wenisch, “HAWK: Hard-

ware support for unstructured log processing,” in 2016 IEEE 32nd International

Conference on Data Engineering (ICDE), (New York, NY, USA), pp. 469–480,

IEEE, 2016.

[76] J. V. Lunteren, C. Hagleitner, T. Heil, G. Biran, U. Shvadron, and K. Atasu,

“Designing a programmable wire-speed regular-expression matching accelerator,”

in 2012 45th Annual IEEE/ACM International Symposium on Microarchitecture,

(New York, NY, USA), pp. 461–472, IEEE, 2012.

[77] K. Wang, K. Angstadt, C. Bo, N. Brunelle, E. Sadredini, T. Tracy, J. Wadden,

M. Stan, and K. Skadron, “An overview of Micron’s automata processor,” in

Proceedings of the Eleventh IEEE/ACM/IFIP International Conference on

Hardware/Software Codesign and System Synthesis, CODES ’16, (New York,

NY, USA), ACM, 2016.

[78] K. Thompson, “Programming techniques: Regular expression search algorithm,”

Communications of the ACM, vol. 11, no. 6, pp. 419–422, 1968.

[79] V. M. Glushkov, “The abstract theory of automata,” Russian Math. Surveys,

vol. 16, no. 5, pp. 1–53, 1961.

[80] “TAQ database.” Available at https://www.nyse.com/, 2023. [Online; Ac-

cessed 30 June, 2023].

[81] W. Zong, T. Heldt, G. B. Moody, and R. G. Mark, “An open-source algorithm

to detect onset of arterial blood pressure pulses,” in Computers in Cardiology,

2003, (New York, NY, USA), pp. 259–262, IEEE, Sep. 2003.

https://www.nyse.com/

159

[82] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi,

“Naiad: A timely dataflow system,” in Proceedings of the Twenty-Fourth ACM

Symposium on Operating Systems Principles, SOSP ’13, (New York, NY, USA),

pp. 439–455, ACM, 2013.

[83] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K. Tzoumas,

“Apache Flink: Stream and batch processing in a single engine,” Bulletin of

the IEEE Computer Society Technical Committee on Data Engineering, vol. 36,

no. 4, pp. 28–38, 2015.

[84] “Apache Beam: An advanced unified programming model.” Available at https:

//beam.apache.org/, 2023. [Online; Accessed 29 June 2023].

[85] E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous data

flow programs for digital signal processing,” IEEE Transactions on Computers,

vol. C-36, pp. 24–35, Jan 1987.

[86] A. Benveniste, P. Le Guernic, and C. Jacquemot, “Synchronous programming

with events and relations: The SIGNAL language and its semantics,” Science

of Computer Programming, vol. 16, no. 2, pp. 103–149, 1991.

[87] L. Kong and K. Mamouras, “StreamQL: A query language for processing

streaming time series,” in Proceedings of the ACM SIGPLAN Conference on

Object Oriented Programming Systems Languages and Applications, OOPSLA ’20,

(New York, NY, USA), pp. 183:1–183:32, Association for Computing Machinery,

2020.

[88] L. Kong, Q. Yu, A. Chattopadhyay, A. Le Glaunec, Y. Huang, K. Mamouras, and

K. Yang, “Software-hardware codesign for efficient in-memory regular pattern

https://beam.apache.org/
https://beam.apache.org/

160

matching,” in Proceedings of the 43rd ACM SIGPLAN International Conference

on Programming Language Design and Implementation, PLDI 2022, (New York,

NY, USA), pp. 733–748, ACM, 2022.

[89] A. Le Glaunec, L. Kong, and K. Mamouras, “Regular expression matching using

bit vector automata,” Proc. ACM Program. Lang., vol. 7, apr 2023.

[90] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito, R. Motwani,

U. Srivastava, and J. Widom, “STREAM: The Stanford data stream management

system,” in Data Stream Management: Processing High-Speed Data Streams

(M. Garofalakis, J. Gehrke, and R. Rastogi, eds.), pp. 317–336, Berlin, Heidelberg:

Springer, 2016.

[91] S. Madden, M. Shah, J. M. Hellerstein, and V. Raman, “Continuously adaptive

continuous queries over streams,” in Proceedings of the 2002 ACM SIGMOD

International Conference on Management of Data, SIGMOD ’02, (New York,

NY, USA), pp. 49–60, ACM, 2002.

[92] J. F. Naughton, D. J. DeWitt, D. Maier, A. Aboulnaga, J. Chen, L. Galanis,

J. Kang, R. Krishnamurthy, Q. Luo, N. Prakash, et al., “The Niagara Internet

query system,” IEEE Data Engineering Bulletin, 2001.

[93] M. A. Hammad, M. F. Mokbel, M. H. Ali, W. G. Aref, A. C. Catlin, A. K.

Elmagarmid, M. Eltabakh, M. G. Elfeky, T. M. Ghanem, R. Gwadera, I. F. Ilyas,

M. Marzouk, and X. Xiong, “Nile: A query processing engine for data streams,”

in Proceedings of the 20th International Conference on Data Engineering, ICDE

’04, (New York, NY, USA), pp. 851–851, IEEE, April 2004.

[94] R. S. Barga, J. Goldstein, M. H. Ali, and M. Hong, “Consistent streaming

161

through time: A vision for event stream processing,” in CIDR 2007, Third

Biennial Conference on Innovative Data Systems Research, Asilomar, CA, USA,

January 7-10, 2007, Online Proceedings, (Asilomar, CA, USA), pp. 363–374,

www.cidrdb.org, 2007.

[95] M. H. Ali, C. Gerea, B. S. Raman, B. Sezgin, T. Tarnavski, T. Verona, P. Wang,

P. Zabback, A. Ananthanarayan, A. Kirilov, M. Lu, A. Raizman, R. Krishnan,

R. Schindlauer, T. Grabs, S. Bjeletich, B. Chandramouli, J. Goldstein, S. Bhat,

Y. Li, V. Di Nicola, X. Wang, D. Maier, S. Grell, O. Nano, and I. Santos,

“Microsoft CEP Server and online behavioral targeting,” Proceedings of the

VLDB Endowment, vol. 2, no. 2, pp. 1558–1561, 2009.

[96] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4: Distributed stream

computing platform,” in Proceedings of the 2010 IEEE International Conference

on Data Mining Workshops, (New York, NY, USA), pp. 170–177, IEEE, 2010.

[97] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy, and R. Sears,

“MapReduce online,” in Proceedings of the 7th USENIX Conference on Net-

worked Systems Design and Implementation, NSDI’10, (USA), p. 21, USENIX

Association, 2010.

[98] O. Boykin, S. Ritchie, I. O’Connell, and J. Lin, “Summingbird: A framework

for integrating batch and online MapReduce computations,” Proceedings of the

VLDB Endowment, vol. 7, pp. 1441–1451, Aug. 2014.

[99] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J.

Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: A fault-

tolerant abstraction for in-memory cluster computing,” in Presented as part of

162

the 9th USENIX Symposium on Networked Systems Design and Implementation

(NSDI 12), (San Jose, CA), pp. 15–28, USENIX, 2012.

[100] T. Akidau, A. Balikov, K. Bekiroğlu, S. Chernyak, J. Haberman, R. Lax,

S. McVeety, D. Mills, P. Nordstrom, and S. Whittle, “MillWheel: Fault-tolerant

stream processing at Internet scale,” Proceedings of the VLDB Endowment,

vol. 6, no. 11, pp. 1033–1044, 2013.

[101] S. A. Noghabi, K. Paramasivam, Y. Pan, N. Ramesh, J. Bringhurst, I. Gupta,

and R. H. Campbell, “Samza: Stateful scalable stream processing at LinkedIn,”

Proceedings of the VLDB Endowment, vol. 10, no. 12, pp. 1634–1645, 2017.

[102] Y. Mei and S. Madden, “ZStream: A cost-based query processor for adaptively

detecting composite events,” in Proceedings of the 2009 ACM SIGMOD Inter-

national Conference on Management of Data, SIGMOD ’09, (New York, NY,

USA), pp. 193–206, ACM, 2009.

[103] A. Artikis, M. Sergot, and G. Paliouras, “An event calculus for event recognition,”

IEEE Transactions on Knowledge and Data Engineering, vol. 27, no. 4, pp. 895–

908, 2015.

[104] I. Kolchinsky and A. Schuster, “Efficient adaptive detection of complex event

patterns,” Proc. VLDB Endow., vol. 11, p. 1346–1359, jul 2018.

[105] M. Liu, E. Rundensteiner, K. Greenfield, C. Gupta, S. Wang, I. Ari, and

A. Mehta, “E-Cube: Multi-dimensional event sequence analysis using hierarchical

pattern query sharing,” in Proceedings of the 2011 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’11, (New York, NY, USA),

p. 889–900, Association for Computing Machinery, 2011.

163

[106] B. Chandramouli, J. Goldstein, M. Barnett, R. DeLine, D. Fisher, J. C. Platt,

J. F. Terwilliger, and J. Wernsing, “Trill: A high-performance incremental query

processor for diverse analytics,” Proceedings of the VLDB Endowment, vol. 8,

no. 4, pp. 401–412, 2014.

[107] EsperTech, “Esper.” Available at https://github.com/espertechinc/esper,

2023. [Online; Accessed 29 March, 2023].

[108] S. Suhothayan, K. Gajasinghe, I. Loku Narangoda, S. Chaturanga, S. Perera,

and V. Nanayakkara, “Siddhi: A second look at complex event processing archi-

tectures,” in Proceedings of the 2011 ACM Workshop on Gateway Computing

Environments, GCE ’11, (New York, NY, USA), pp. 43–50, ACM, 2011.

[109] Oracle, “Oracle stream analytics.” Available at https://www.oracle.com/

middleware/technologies/stream-processing.html, 2023. [Online; Ac-

cessed 30 June, 2023].

[110] B. Chandramouli, J. Goldstein, and Y. Li, “Impatience is a virtue: Revisiting

disorder in high-performance log analytics,” in Proceedings of the IEEE 34th

International Conference on Data Engineering, ICDE 2018, pp. 677–688, IEEE,

2018.

[111] M. Nikolic, B. Chandramouli, and J. Goldstein, “Enabling signal processing over

data streams,” in Proceedings of the 2017 ACM International Conference on

Management of Data, SIGMOD ’17, (New York, NY, USA), pp. 95–108, ACM,

2017.

[112] Oracle, “Java Stream.” Available at https://docs.oracle.com/javase/8/,

2023. [Online; Accessed 1 July, 2023].

https://github.com/espertechinc/esper
https://www.oracle.com/middleware/technologies/stream-processing.html
https://www.oracle.com/middleware/technologies/stream-processing.html
https://docs.oracle.com/javase/8/

164

[113] O. Kiselyov, A. Biboudis, N. Palladinos, and Y. Smaragdakis, “Stream fusion,

to completeness,” in Proceedings of the 44th ACM SIGPLAN Symposium on

Principles of Programming Languages, POPL 2017, (New York, NY, USA),

pp. 285–299, ACM, 2017.

[114] Y. Yuan, D. Lin, A. Mishra, S. Marwaha, R. Alur, and B. T. Loo, “Quantitative

network monitoring with NetQRE,” in Proceedings of the Conference of the

ACM Special Interest Group on Data Communication, SIGCOMM ’17, (New

York, NY, USA), p. 99–112, Association for Computing Machinery, 2017.

[115] K. Mamouras, M. Raghothaman, R. Alur, Z. G. Ives, and S. Khanna,

“StreamQRE: Modular specification and efficient evaluation of quantitative queries

over streaming data,” in Proceedings of the 38th ACM SIGPLAN Conference on

Programming Language Design and Implementation, PLDI ’17, (New York, NY,

USA), pp. 693–708, ACM, 2017.

[116] R. Alur and K. Mamouras, “An introduction to the StreamQRE language,”

Dependable Software Systems Engineering, vol. 50, pp. 1–24, 2017.

[117] R. Alur, K. Mamouras, and C. Stanford, “Modular quantitative monitoring,”

Proceedings of the ACM on Programming Languages, vol. 3, no. POPL, pp. 50:1–

50:31, 2019.

[118] R. Alur, D. Fisman, K. Mamouras, M. Raghothaman, and C. Stanford, “Stream-

able regular transductions,” Theoretical Computer Science, vol. 807, pp. 15–41,

2020.

[119] R. Alur, K. Mamouras, and C. Stanford, “Automata-based stream processing,”

in Proceedings of the 44th International Colloquium on Automata, Languages,

165

and Programming (ICALP ’17) (I. Chatzigiannakis, P. Indyk, F. Kuhn, and

A. Muscholl, eds.), vol. 80 of Leibniz International Proceedings in Informatics

(LIPIcs), (Dagstuhl, Germany), pp. 112:1–112:15, Schloss Dagstuhl–Leibniz-

Zentrum fuer Informatik, 2017.

[120] R. Alur, K. Mamouras, and D. Ulus, “Derivatives of quantitative regular ex-

pressions,” in Models, Algorithms, Logics and Tools: Essays Dedicated to Kim

Guldstrand Larsen on the Occasion of His 60th Birthday (L. Aceto, G. Bacci,

G. Bacci, A. Ingólfsdóttir, A. Legay, and R. Mardare, eds.), vol. 10460 of Lecture

Notes in Computer Science, pp. 75–95, Cham: Springer, 2017.

[121] “InfluxDB: The time series data platform where developers build IoT, analytics,

and cloud applications..” Available at https://www.influxdata.com/, 2023.

[Online; Accessed 29 June 2023].

[122] “Query and code together with Flux.” Available at https://www.influxdata.

com/products/flux/, 2023. [Online; Accessed 29 June 2023].

[123] E. Bainomugisha, A. L. Carreton, T. van Cutsem, S. Mostinckx, and

W. de Meuter, “A survey on reactive programming,” ACM Computing Surveys,

vol. 45, pp. 52:1–52:34, Aug. 2013.

[124] H. Nilsson, J. Peterson, and P. Hudak, “Functional hybrid modeling,” in Practical

Aspects of Declarative Languages, (Berlin, Heidelberg), pp. 376–390, Springer

Berlin Heidelberg, 2003.

[125] L. A. Meyerovich, A. Guha, J. Baskin, G. H. Cooper, M. Greenberg, A. Bromfield,

and S. Krishnamurthi, “Flapjax: A programming language for Ajax applications,”

in Proceedings of the 24th ACM SIGPLAN Conference on Object Oriented

https://www.influxdata.com/
https://www.influxdata.com/products/flux/
https://www.influxdata.com/products/flux/

166

Programming Systems Languages and Applications, OOPSLA ’09, (New York,

NY, USA), pp. 1–20, ACM, 2009.

[126] E. Czaplicki and S. Chong, “Asynchronous functional reactive programming for

GUIs,” in Proceedings of the 34th ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI ’13, (New York, NY, USA), pp. 411–

422, ACM, 2013.

[127] “Reactivex.” Available at http://reactivex.io/, 2023. [Online; Accessed 29

June, 2023].

[128] VMware, “Project Reactor: Create efficient reactive systems.” Available at

https://projectreactor.io/, 2023. [Online; Accessed 29 June 2023].

[129] Lightbend, “Akka streams.” Available at https://akka.io/, 2020. [Online;

Accessed 10 June, 2020].

[130] L. Girod, Y. Mei, R. Newton, S. Rost, A. Thiagarajan, H. Balakrishnan, and

S. Madden, “The case for a signal-oriented data stream management system,” in

Proceedings of the 3rd Biennial Conference on Innovative Data Systems Research

(CIDR ’07), pp. 397–406, 2007.

[131] L. Girod, Y. Mei, R. Newton, S. Rost, A. Thiagarajan, H. Balakrishnan, and

S. Madden, “XStream: a signal-oriented data stream management system,” in

2008 IEEE 24th International Conference on Data Engineering, (New York, NY,

USA), pp. 1180–1189, IEEE, April 2008.

[132] A. Jayarajan, K. Hau, A. Goodwin, and G. Pekhimenko, “LifeStream: A high-

performance stream processing engine for periodic streams,” in Proceedings of the

http://reactivex.io/
https://projectreactor.io/
https://akka.io/

167

26th ACM International Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS 2021, (New York, NY, USA),

p. 107–122, Association for Computing Machinery, 2021.

[133] Snort, “Snort - network intrusion detection & prevention system.” Available at

https://www.snort.org/, 2023. [Online; Accessed 30 June, 2023].

[134] Suricata, “Suricata - open source intrusion detection and prevention engine.”

Available at https://suricata.io/, 2023. [Online; Accessed 30 June, 2023].

[135] C. J. A. Sigrist, L. Cerutti, E. de Castro, P. S. Langendijk-Genevaux, V. Bulliard,

A. Bairoch, and N. Hulo, “PROSITE, a protein domain database for functional

characterization and annotation,” Nucleic Acids Research, vol. 38, no. suppl 1,

pp. D161–D166, 2009.

[136] “Look Around in PCRE.” Available at https://www.pcre.org/original/doc/

html/pcrepattern.html#SEC20, 2023. [Online; Accessed 30 June, 2023].

[137] “Back reference in PCRE.” Available at https://www.pcre.org/original/

doc/html/pcrepattern.html#SEC19, 2023. [Online; Accessed 30 June, 2023].

[138] J. Bispo, I. Sourdis, J. M. P. Cardoso, and S. Vassiliadis, “Regular expression

matching for reconfigurable packet inspection,” in 2006 IEEE International

Conference on Field Programmable Technology, (USA), pp. 119–126, IEEE, 2006.

[139] Y.-H. E. Yang, W. Jiang, and V. K. Prasanna, “Compact architecture for high-

throughput regular expression matching on FPGA,” in Proceedings of the 4th

ACM/IEEE Symposium on Architectures for Networking and Communications

Systems, ANCS ’08, (New York, NY, USA), p. 30–39, ACM, 2008.

https://www.snort.org/
https://suricata.io/
https://www.pcre.org/original/doc/html/pcrepattern.html#SEC20
https://www.pcre.org/original/doc/html/pcrepattern.html#SEC20
https://www.pcre.org/original/doc/html/pcrepattern.html#SEC19
https://www.pcre.org/original/doc/html/pcrepattern.html#SEC19

168

[140] I. Sourdis, J. Bispo, J. M. Cardoso, and S. Vassiliadis, “Regular expression

matching in reconfigurable hardware,” Journal of Signal Processing Systems,

vol. 51, no. 1, pp. 99–121, 2008.

[141] J. Chen, X. Zhang, T. Wang, Y. Zhang, T. Chen, J. Chen, M. Xie, and

Q. Liu, “Fidas: Fortifying the cloud via comprehensive FPGA-based offloading

for intrusion detection: Industrial product,” in Proceedings of the 49th Annual

International Symposium on Computer Architecture, ISCA ’22, (New York, NY,

USA), p. 1029–1041, Association for Computing Machinery, 2022.

[142] Z. Zhao, H. Sadok, N. Atre, J. C. Hoe, V. Sekar, and J. Sherry, “Achieving

100gbps intrusion prevention on a single server,” in 14th USENIX Symposium

on Operating Systems Design and Implementation (OSDI 20), pp. 1083–1100,

USENIX Association, Nov. 2020.

[143] M. Ceška, V. Havlena, L. Hoĺık, J. Korenek, O. Lengál, D. Matoušek, J. Ma-

toušek, J. Semric, and T. Vojnar, “Deep packet inspection in FPGAs via

approximate nondeterministic automata,” in 2019 IEEE 27th Annual Interna-

tional Symposium on Field-Programmable Custom Computing Machines (FCCM),

pp. 109–117, IEEE, 2019.

[144] M. Becchi and P. Crowley, “Extending finite automata to efficiently match

Perl-compatible regular expressions,” in Proceedings of the 2008 ACM CoNEXT

Conference, CoNEXT ’08, (New York, NY, USA), ACM, 2008.

[145] Y.-H. E. Yang and V. K. Prasanna, “Space-time tradeoff in regular expression

matching with semi-deterministic finite automata,” in 2011 Proceedings IEEE

INFOCOM, (New York, NY, USA), pp. 1853–1861, IEEE, 2011.

169

[146] H. Nakahara, T. Sasao, and M. Matsuura, “A regular expression matching circuit

based on a decomposed automaton,” in Reconfigurable Computing: Architectures,

Tools and Applications, (Heidelberg), pp. 16–28, Springer, 2011.

[147] R. A. Baeza-Yates and G. H. Gonnet, “Efficient text searching of regular

expressions,” in Automata, Languages and Programming (G. Ausiello, M. Dezani-

Ciancaglini, and S. R. Della Rocca, eds.), (Heidelberg), pp. 46–62, Springer,

1989.

[148] H. Liu, M. Ibrahim, O. Kayiran, S. Pai, and A. Jog, “Architectural support

for efficient large-scale automata processing,” in 2018 51st Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO), (New York, NY, USA),

pp. 908–920, IEEE, 2018.

[149] J. Wadden, T. Tracy, E. Sadredini, L. Wu, C. Bo, J. Du, Y. Wei, J. Udall,

M. Wallace, M. Stan, and K. Skadron, “AutomataZoo: A modern automata pro-

cessing benchmark suite,” in 2018 IEEE International Symposium on Workload

Characterization (IISWC), (New York, NY, USA), pp. 13–24, IEEE, 2018.

[150] I. Roy, A. Srivastava, M. Grimm, M. Nourian, M. Becchi, and S. Aluru, “Evalu-

ating high performance pattern matching on the automata processor,” IEEE

Transactions on Computers, vol. 68, no. 8, pp. 1201–1212, 2019.

[151] A. V. Aho and M. J. Corasick, “Efficient string matching: An aid to bibliographic

search,” Commun. ACM, vol. 18, p. 333–340, jun 1975.

[152] V. Gogte, A. Kolli, M. J. Cafarella, L. D’Antoni, and T. F. Wenisch, “HARE:

Hardware accelerator for regular expressions,” in 2016 49th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO), pp. 1–12, IEEE, 2016.

170

[153] N. Cascarano, P. Rolando, F. Risso, and R. Sisto, “iNFAnt: NFA pattern

matching on GPGPU devices,” ACM SIGCOMM Computer Communication

Review, vol. 40, no. 5, pp. 20–26, 2010.

[154] Y. Zu, M. Yang, Z. Xu, L. Wang, X. Tian, K. Peng, and Q. Dong, “GPU-

based NFA implementation for memory efficient high speed regular expression

matching,” in Proceedings of the 17th ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming, PPoPP ’12, (New York, NY, USA),

p. 129–140, ACM, 2012.

[155] H. Liu, S. Pai, and A. Jog, “Asynchronous automata processing on GPUs,” Proc.

ACM Meas. Anal. Comput. Syst., vol. 7, mar 2023.

[156] Y. Wang, R. Watling, J. Qiu, and Z. Wang, “GSpecPal: Speculation-centric

finite state machine parallelization on GPUs,” in 2022 IEEE International

Parallel and Distributed Processing Symposium (IPDPS), (New York, NY, USA),

pp. 481–491, IEEE, 2022.

[157] R. Smith, C. Estan, and S. Jha, “XFA: Faster signature matching with extended

automata,” in Proceedings of the 2008 IEEE Symposium on Security and Privacy,

SP ’08, (USA), p. 187–201, IEEE Computer Society, 2008.

[158] L. Hoĺık, O. Lengál, O. Saarikivi, L. Turoňová, M. Veanes, and T. Vojnar,

“Succinct determinisation of counting automata via sphere construction,” in

APLAS 2019 (A. W. Lin, ed.), vol. 11893 of Lecture Notes in Computer Science,

(Cham), pp. 468–489, Springer, 2019.

[159] L. Turoňová, L. Hoĺık, O. Lengál, O. Saarikivi, M. Veanes, and T. Vojnar, “Regex

matching with counting-set automata,” Proceedings of the ACM on Programming

171

Languages, vol. 4, no. OOPSLA, 2020.

[160] L. Dagum and R. Menon, “OpenMP: an industry standard api for shared-

memory programming,” IEEE Computational Science and Engineering, vol. 5,

no. 1, pp. 46–55, 1998.

[161] M. Frigo, P. Halpern, C. E. Leiserson, and S. Lewin-Berlin, “Reducers and other

Cilk++ hyperobjects,” in Proceedings of the Twenty-First Annual Symposium

on Parallelism in Algorithms and Architectures, SPAA ’09, (New York, NY,

USA), p. 79–90, Association for Computing Machinery, 2009.

[162] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall,

and Y. Zhou, “Cilk: An efficient multithreaded runtime system,” in Proceedings

of the Fifth ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, PPOPP ’95, (New York, NY, USA), p. 207–216, Association for

Computing Machinery, 1995.

[163] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von

Praun, and V. Sarkar, “X10: An object-oriented approach to non-uniform cluster

computing,” in Proceedings of the 20th Annual ACM SIGPLAN Conference on

Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA

’05, (New York, NY, USA), p. 519–538, Association for Computing Machinery,

2005.

[164] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A high-performance, portable

implementation of the MPI message passing interface standard,” Parallel Com-

puting, vol. 22, no. 6, pp. 789–828, 1996.

[165] J. L. Peterson, “Petri nets,” ACM Comput. Surv., vol. 9, p. 223–252, sep 1977.

172

[166] C. A. Petri, Kommunikation mit automaten. PhD thesis, University of Bonn,

West Germany, 1962.

[167] G. Estrin and R. Turn, “Automatic assignment of computations in a vari-

able structure computer system,” IEEE Transactions on Electronic Computers,

vol. EC-12, no. 6, pp. 755–773, 1963.

[168] R. M. Karp and R. E. Miller, “Properties of a model for parallel computations:

Determinacy, termination, queueing,” SIAM Journal on Applied Mathematics,

vol. 14, no. 6, pp. 1390–1411, 1966.

[169] G. Kahn, “The semantics of a simple language for parallel programming,” In-

formation Processing, vol. 74, pp. 471–475, 1974.

[170] T. Goubier, R. Sirdey, S. Louise, and V. David, “ΣC: A programming model and

language for embedded manycores,” in Algorithms and Architectures for Parallel

Processing, (Berlin, Heidelberg), pp. 385–394, Springer Berlin Heidelberg, 2011.

[171] G. Agha, Actors: a model of concurrent computation in distributed systems.

MIT press, 1986.

[172] F. D. Boer, V. Serbanescu, R. Hähnle, L. Henrio, J. Rochas, C. C. Din, E. B.

Johnsen, M. Sirjani, E. Khamespanah, K. Fernandez-Reyes, and A. M. Yang,

“A survey of active object languages,” ACM Comput. Surv., vol. 50, oct 2017.

[173] J. Armstrong, Programming Erlang: Software for a Concurrent World. Prag-

matic Bookshelf, 2013.

[174] M. Sirjani, A. Movaghar, A. Shali, and F. S. de Boer, “Modeling and verification

of reactive systems using Rebeca,” Fundamenta Informaticae, vol. vol. 63, no. 4,

173

pp. 385–410, 2004.

[175] M. Sirjani, “Rebeca: Theory, applications, and tools,” in Formal Methods for

Components and Objects, (Berlin, Heidelberg), pp. 102–126, Springer Berlin

Heidelberg, 2007.

[176] E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, and M. Steffen, “ABS: A

core language for abstract behavioral specification,” in Formal Methods for

Components and Objects, (Berlin, Heidelberg), pp. 142–164, Springer Berlin

Heidelberg, 2012.

[177] D. Caromel and L. Henrio, A Theory of Distributed Objects. Springer, 2005.

[178] S. Brandauer, E. Castegren, D. Clarke, K. Fernandez-Reyes, E. B. Johnsen,

K. I. Pun, S. L. T. Tarifa, T. Wrigstad, and A. M. Yang, Parallel Objects

for Multicores: A Glimpse at the Parallel Language Encore, pp. 1–56. Cham:

Springer International Publishing, 2015.

[179] S. Tasharofi, M. Pradel, Y. Lin, and R. Johnson, “Bita: Coverage-guided,

automatic testing of actor programs,” in 2013 28th IEEE/ACM International

Conference on Automated Software Engineering (ASE), pp. 114–124, 2013.

[180] K. Shibanai and T. Watanabe, “Actoverse: A reversible debugger for actors,” in

Proceedings of the 7th ACM SIGPLAN International Workshop on Programming

Based on Actors, Agents, and Decentralized Control, AGERE 2017, (New York,

NY, USA), p. 50–57, Association for Computing Machinery, 2017.

[181] A. S. Mathur, B. K. Ozkan, and R. Majumdar, “Idea: An immersive debugger for

actors,” in Proceedings of the 17th ACM SIGPLAN International Workshop on

174

Erlang, Erlang 2018, (New York, NY, USA), p. 1–12, Association for Computing

Machinery, 2018.

[182] C. T. Lopez, R. G. Singh, S. Marr, E. G. Boix, and C. Scholliers, “Multiverse

Debugging: Non-deterministic debugging for non-deterministic programs,” in

33rd European Conference on Object-Oriented Programming, Schloss Dagstuhl–

Leibniz-Zentrum fuer Informatik, April 2019.

[183] C. Menard, M. Lohstroh, S. Bateni, M. Chorlian, A. Deng, P. Donovan,

C. Fournier, S. Lin, F. Suchert, T. Tanneberger, H. Kim, J. Castrillon, and E. A.

Lee, “High-performance deterministic concurrency using Lingua Franca,” 2023.

[184] M. I. Cole, Algorithmic skeletons: structured management of parallel computation.

MIT Press, 1989.

[185] M. Vanneschi, “The programming model of assist, an environment for parallel

and distributed portable applications,” Parallel Computing, vol. 28, no. 12,

pp. 1709–1732, 2002.

[186] D. Caromel and M. Leyton, “Fine tuning algorithmic skeletons,” in Euro-

Par 2007 Parallel Processing, (Berlin, Heidelberg), pp. 72–81, Springer Berlin

Heidelberg, 2007.

[187] R. Loogen, Y. Ortega-Mallén, and R. Peña-Maŕı, “Parallel functional program-

ming in Eden,” Journal of Functional Programming, vol. 15, no. 3, pp. 431–475,

2005.

[188] M. Aldinucci, M. Danelutto, and P. Dazzi, “Muskel: an expandable skeleton

environment,” Scalable Computing: Practice and Experience, vol. 8, no. 4, 2007.

175

[189] B. Bacci, M. Danelutto, S. Orlando, S. Pelagatti, and M. Vanneschi, “p3l: A

structured high-level parallel language, and its structured support,” Concurrency:

Practice and Experience, vol. 7, no. 3, pp. 225–255, 1995.

[190] M. Leyton and J. M. Piquer, “Skandium: Multi-core programming with algo-

rithmic skeletons,” in 2010 18th Euromicro Conference on Parallel, Distributed

and Network-based Processing, pp. 289–296, 2010.

[191] H. Miao, H. Park, M. Jeon, G. Pekhimenko, K. S. McKinley, and F. X. Lin,

“StreamBox: Modern stream processing on a multicore machine,” in 2017

USENIX Annual Technical Conference (USENIX ATC 17), (Santa Clara, CA),

pp. 617–629, USENIX Association, July 2017.

[192] H. Miao, M. Jeon, G. Pekhimenko, K. S. McKinley, and F. X. Lin, “StreamBox-

HBM: Stream analytics on high bandwidth hybrid memory,” in Proceedings

of the Twenty-Fourth International Conference on Architectural Support for

Programming Languages and Operating Systems, ASPLOS ’19, (New York, NY,

USA), p. 167–181, Association for Computing Machinery, 2019.

[193] H. Park, S. Zhai, L. Lu, and F. X. Lin, “StreamBox-TZ: Secure stream analytics

at the edge with TrustZone,” in 2019 USENIX Annual Technical Conference

(USENIX ATC 19), (Renton, WA), pp. 537–554, USENIX Association, July

2019.

[194] Microsoft, “PLINQ: Parallel implementation of the Language-Integrated Query

(LINQ) pattern.” Available at https://docs.microsoft.com/en-us/dotnet/

standard/parallel-programming/introduction-to-plinq, 2023. [Online;

Accessed 30 June, 2023].

https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/introduction-to-plinq
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/introduction-to-plinq

176

[195] C. Csallner, L. Fegaras, and C. Li, “New ideas track: Testing Mapreduce-style

programs,” in Proceedings of the 19th ACM SIGSOFT Symposium and the 13th

European Conference on Foundations of Software Engineering, ESEC/FSE ’11,

(New York, NY, USA), p. 504–507, Association for Computing Machinery, 2011.

[196] Y.-F. Chen, L. Song, and Z. Wu, “The commutativity problem of the MapReduce

framework: A transducer-based approach,” in Computer Aided Verification,

(Cham), pp. 91–111, Springer International Publishing, 2016.

[197] Z. Xu, M. Hirzel, and G. Rothermel, “Semantic characterization of MapReduce

workloads,” in 2013 IEEE International Symposium on Workload Characteriza-

tion (IISWC), (New York, USA), pp. 87–97, IEEE, 2013.

[198] Z. Xu, M. Hirzel, G. Rothermel, and K. Wu, “Testing properties of dataflow

program operators,” in 2013 28th IEEE/ACM International Conference on

Automated Software Engineering (ASE), (New York, USA), pp. 103–113, IEEE,

2013.

[199] K. Kallas, F. Niksic, C. Stanford, and R. Alur, “DiffStream: Differential output

testing for stream processing programs,” Proc. ACM Program. Lang., vol. 4,

Nov. 2020.

[200] K. Mamouras, C. Stanford, R. Alur, Z. G. Ives, and V. Tannen, “Data-trace

types for distributed stream processing systems,” in Proceedings of the 40th ACM

SIGPLAN Conference on Programming Language Design and Implementation,

PLDI 2019, (New York, NY, USA), pp. 670–685, ACM, 2019.

[201] R. Alur, P. Hilliard, Z. G. Ives, K. Kallas, K. Mamouras, F. Niksic, C. Stanford,

V. Tannen, and A. Xue, “Synchronization schemas,” in Proceedings of the 40th

177

ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,

PODS 2021, (New York, NY, USA), pp. 1–18, ACM, 2021.

[202] K. Kallas, F. Niksic, C. Stanford, and R. Alur, “Stream processing with

dependency-guided synchronization,” in Proceedings of the 27th ACM SIG-

PLAN Symposium on Principles and Practice of Parallel Programming, PPoPP

’22, (New York, NY, USA), p. 1–16, Association for Computing Machinery, 2022.

[203] M. Frigo, C. E. Leiserson, and K. H. Randall, “The implementation of the

Cilk-5 multithreaded language,” in Proceedings of the ACM SIGPLAN 1998

Conference on Programming Language Design and Implementation, PLDI ’98,

(New York, NY, USA), p. 212–223, Association for Computing Machinery, 1998.

[204] D. Lea, “A Java fork/join framework,” in Proceedings of the ACM 2000 Confer-

ence on Java Grande, JAVA ’00, (New York, NY, USA), p. 36–43, Association

for Computing Machinery, 2000.

[205] “RxJava: Reactive extensions for the JVM.” Available at https://github.

com/ReactiveX/RxJava, 2023. [Online; Accessed 30 June, 2023].

[206] R. Alur and P. Černý, “Expressiveness of streaming string transducers,” in

IARCS Annual Conference on Foundations of Software Technology and The-

oretical Computer Science (FSTTCS 2010), vol. 8 of Leibniz International

Proceedings in Informatics (LIPIcs), (Dagstuhl, Germany), pp. 1–12, Schloss

Dagstuhl–Leibniz-Zentrum fuer Informatik, 2010.

[207] J. Pan and W. J. Tompkins, “A real-time QRS detection algorithm,” IEEE

Transactions on Biomedical Engineering, vol. BME-32, pp. 230–236, March 1985.

https://github.com/ReactiveX/RxJava
https://github.com/ReactiveX/RxJava

178

[208] R. O. Bert-Uwe Köhler, Carsten Hennig, “The principles of software QRS

detection,” IEEE Engineering in Medicine and Biology Magazine, vol. 21, pp. 42–

57, Jan 2002.

[209] G. B. Moody, “Single-channel QRS detector.” Available at https://www.

physionet.org/physiotools/wag/sqrs-1.htm, 2023. [Online; Accessed 29

June 2023].

[210] R. Alur, K. Mamouras, C. Stanford, and V. Tannen, “Interfaces for stream

processing systems,” in Principles of Modeling: Essays Dedicated to Edward

A. Lee on the Occasion of His 60th Birthday (M. Lohstroh, P. Derler, and

M. Sirjani, eds.), vol. 10760 of Lecture Notes in Computer Science, pp. 38–60,

Cham: Springer, 2018.

[211] K. Mamouras and Z. Wang, “Online signal monitoring with bounded lag,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems,

vol. 39, no. 11, pp. 3868–3880, 2020.

[212] K. Mamouras, “Semantic foundations for deterministic dataflow and stream

processing,” in Proceedings of the 29th European Symposium on Programming

(ESOP ’20) (P. Müller, ed.), vol. 12075 of Lecture Notes in Computer Science,

(Berlin, Heidelberg), pp. 394–427, Springer, 2020.

[213] P. Tucker, K. Tufte, V. Papadimos, and D. Maier, “A benchmark for queries over

data streams.” Available at http://datalab.cs.pdx.edu/niagara/NEXMark/,

2002. [Online; Accessed 30 June, 2023].

[214] “Trill Documentation: best practices for using Trill in real-time deploy-

ments.” Available at https://github.com/microsoft/Trill/blob/master/

https://www.physionet.org/physiotools/wag/sqrs-1.htm
https://www.physionet.org/physiotools/wag/sqrs-1.htm
http://datalab.cs.pdx.edu/niagara/NEXMark/
https://github.com/microsoft/Trill/blob/master/Documentation/BestPractices.pdf

179

Documentation/BestPractices.pdf, 2018. [Online; Accessed 30 June, 2023].

[215] J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker, “No pane, no gain:

Efficient evaluation of sliding-window aggregates over data streams,” SIGMOD

Rec., vol. 34, pp. 39–44, Mar. 2005.

[216] K. Tangwongsan, M. Hirzel, S. Schneider, and K.-L. Wu, “General incremental

sliding-window aggregation,” Proc. VLDB Endow., vol. 8, pp. 702–713, Feb.

2015.

[217] M. Hirzel, S. Schneider, and K. Tangwongsan, “Sliding-window aggregation

algorithms: Tutorial,” in Proceedings of the 11th ACM International Conference

on Distributed and Event-based Systems, DEBS ’17, (New York, NY, USA),

pp. 11–14, ACM, 2017.

[218] M. Datar, A. Gionis, P. Indyk, and R. Motwani, “Maintaining stream statistics

over sliding windows,” SIAM Journal on Computing, vol. 31, no. 6, pp. 1794–

1813, 2002.

[219] A. Arasu and J. Widom, “Resource sharing in continuous sliding-window aggre-

gates,” in Proceedings of the Thirtieth International Conference on Very Large

Data Bases - Volume 30, VLDB ’04, (Toronto, Canada), p. 336–347, VLDB

Endowment, 2004.

[220] “SASE: Open source system.” Available at https://github.com/haopeng/

sase, 2014. [Online; Accessed 30 June 2023].

[221] L. Brenna, A. Demers, J. Gehrke, M. Hong, J. Ossher, B. Panda, M. Riedewald,

M. Thatte, and W. White, “Cayuga: A high-performance event processing

https://github.com/microsoft/Trill/blob/master/Documentation/BestPractices.pdf
https://github.com/microsoft/Trill/blob/master/Documentation/BestPractices.pdf
https://github.com/microsoft/Trill/blob/master/Documentation/BestPractices.pdf
https://github.com/haopeng/sase
https://github.com/haopeng/sase

180

engine,” in Proceedings of the 2007 ACM SIGMOD International Conference

on Management of Data, SIGMOD ’07, (New York, NY, USA), p. 1100–1102,

Association for Computing Machinery, 2007.

[222] M. F. O’Rourke, “The arterial pulse in health and disease,” American Heart

Journal, vol. 82, no. 5, pp. 687 – 702, 1971.

[223] H. Abbas, A. Rodionova, K. Mamouras, E. Bartocci, S. A. Smolka, and R. Grosu,

“Quantitative regular expressions for arrhythmia detection,” IEEE/ACM Transac-

tions on Computational Biology and Bioinformatics, vol. 16, no. 5, pp. 1586–1597,

2019.

[224] H. Abbas, R. Alur, K. Mamouras, R. Mangharam, and A. Rodionova, “Real-

time decision policies with predictable performance,” Proceedings of the IEEE,

Special Issue on Design Automation for Cyber-Physical Systems, vol. 106, no. 9,

pp. 1593–1615, 2018.

[225] A. Subramaniyan, J. Wang, E. R. M. Balasubramanian, D. Blaauw, D. Sylvester,

and R. Das, “Cache automaton,” in Proceedings of the 50th Annual IEEE/ACM

International Symposium on Microarchitecture, MICRO-50 ’17, (New York, NY,

USA), p. 259–272, ACM, 2017.

[226] E. Sadredini, R. Rahimi, M. Lenjani, M. Stan, and K. Skadron, “Impala: Algo-

rithm/Architecture Co-Design for In-Memory Multi-Stride Pattern Matching,”

in 2020 IEEE International Symposium on High Performance Computer Archi-

tecture (HPCA), (New York, NY, USA), pp. 86–98, IEEE, Feb. 2020.

[227] L. J. Stockmeyer and A. R. Meyer, “Word problems requiring exponential time

(preliminary report),” in Proceedings of the Fifth Annual ACM Symposium on

181

Theory of Computing, STOC ’73, (New York, NY, USA), pp. 1–9, ACM, 1973.

[228] K. Angstadt, J. Wadden, W. Weimer, and K. Skadron, “MNRL and MNCaRT:

An open-source, multi-architecture state machine research and execution ecosys-

tem,” Tech. Rep. CS2017-01, University of Virginia, 2017.

[229] A. S. Foundation, “Apache SpamAssassin.” Available at https://

spamassassin.apache.org/, 2022. [Online; Accessed 30 June, 2023].

[230] W. Gelade, M. Gyssens, and W. Martens, “Regular expressions with counting:

Weak versus strong determinism,” in Mathematical Foundations of Computer

Science 2009, (Heidelberg), pp. 369–381, Springer, 2009.

[231] A. R. Meyer and L. J. Stockmeyer, “The equivalence problem for regular

expressions with squaring requires exponential space,” in 13th Annual Symposium

on Switching and Automata Theory (SWAT 1972), (Los Alamitos, CA, USA),

pp. 125–129, IEEE Computer Society, 1972.

[232] K. Mamouras, A. Chattopadhyay, and Z. Wang, “Algebraic quantitative seman-

tics for efficient online temporal monitoring,” in TACAS 2021 (J. F. Groote and

K. G. Larsen, eds.), vol. 12651 of Lecture Notes in Computer Science, (Cham),

pp. 330–348, Springer, 2021.

[233] K. Mamouras, A. Chattopadhyay, and Z. Wang, “A compositional framework

for quantitative online monitoring over continuous-time signals,” in RV 2021

(L. Feng and D. Fisman, eds.), vol. 12974 of Lecture Notes in Computer Science,

(Cham), pp. 142–163, Springer, 2021.

[234] ClamAV, “ClamAV - open source antivirus engine.” Available at https://www.

clamav.net/, 2023. [Online; Accessed 30 June, 2023].

https://spamassassin.apache.org/
https://spamassassin.apache.org/
https://www.clamav.net/
https://www.clamav.net/

182

[235] E. Sadredini, R. Rahimi, V. Verma, M. Stan, and K. Skadron, “eAP: A scalable

and efficient in-memory accelerator for automata processing,” in Proceedings of

the 52nd Annual IEEE/ACM International Symposium on Microarchitecture,

MICRO ’52, (New York, NY, USA), pp. 87—-99, ACM, 2019.

[236] Materialize, “Materialize: The streaming database you already know how to

use.” Available at https://materialize.com/, 2023. [Online; Accessed 29

June 2023].

[237] D. G. Murray, F. McSherry, M. Isard, R. Isaacs, P. Barham, and M. Abadi,

“Incremental, iterative data processing with timely dataflow,” Commun. ACM,

vol. 59, p. 75–83, sep 2016.

[238] “Fearless concurrency.” Available at https://doc.rust-lang.org/book/

ch16-00-concurrency.html, 2023. [Online; Accessed 10 Aug, 2023].

[239] F. McSherry, A. Lattuada, M. Hoffmann, and N. Benesch, “Timely Dataflow.”

Available at https://github.com/TimelyDataflow/timely-dataflow, 2023.

[Online; Accessed 29 Jun, 2023].

[240] P. Tucker, D. Maier, T. Sheard, and L. Fegaras, “Exploiting punctuation

semantics in continuous data streams,” IEEE Transactions on Knowledge and

Data Engineering, vol. 15, no. 3, pp. 555–568, 2003.

[241] Z. Qian, Y. He, C. Su, Z. Wu, H. Zhu, T. Zhang, L. Zhou, Y. Yu, and Z. Zhang,

“TimeStream: Reliable stream computation in the cloud,” in Proceedings of the

8th ACM European Conference on Computer Systems, EuroSys ’13, (New York,

NY, USA), p. 1–14, Association for Computing Machinery, 2013.

https://materialize.com/
https://doc.rust-lang.org/book/ch16-00-concurrency.html
https://doc.rust-lang.org/book/ch16-00-concurrency.html
https://github.com/TimelyDataflow/timely-dataflow

183

[242] “Personalized web search challenge.” Available at https://www.kaggle.com/

c/yandex-personalized-web-search-challenge, 2014. [Online; Accessed 30

June, 2023].

[243] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. Maltz, Z. Liu, V. Wang,

B. Pang, H. Chen, Z.-W. Lin, and V. Kurien, “Pingmesh: A large-scale system

for data center network latency measurement and analysis,” in Proceedings of

the 2015 ACM Conference on Special Interest Group on Data Communication,

SIGCOMM ’15, (New York, NY, USA), p. 139–152, Association for Computing

Machinery, 2015.

[244] “DEBS 2014 grand challenge: Smart Homes.” Available at https://debs.org/

grand-challenges/2014/, 2014. [Online; Accessed 30 June 2023].

[245] “Relative Strength Index.” Available at https://en.wikipedia.org/wiki/

Relative_strength_index, 2023. [Online; Accessed 30 June 2023].

[246] A. Ţăran-Moroşan, “The relative strength index revisited,” African Journal of

Business Management, vol. 5, no. 14, pp. 5855–5862, 2011.

[247] S. Lloyd, “Least squares quantization in pcm,” IEEE Transactions on Informa-

tion Theory, vol. 28, no. 2, pp. 129–137, 1982.

[248] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning

applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,

pp. 2278–2324, 1998.

[249] D. Anguita, A. Ghio, L. Oneto, X. Parra Perez, and J. L. Reyes Ortiz, “A

public domain dataset for human activity recognition using smartphones,” in

https://www.kaggle.com/c/yandex-personalized-web-search-challenge
https://www.kaggle.com/c/yandex-personalized-web-search-challenge
https://debs.org/grand-challenges/2014/
https://debs.org/grand-challenges/2014/
https://en.wikipedia.org/wiki/Relative_strength_index
https://en.wikipedia.org/wiki/Relative_strength_index

184

Proceedings of the 21th International European Symposium on Artificial Neural

Networks, Computational Intelligence and Machine Learning, pp. 437–442, 2013.

[250] A. Khadersab and S. Shivakumar, “Vibration analysis techniques for rotating

machinery and its effect on bearing faults,” Procedia Manufacturing, vol. 20,

pp. 247–252, 2018. 2nd International Conference on Materials, Manufacturing

and Design Engineering (iCMMD2017), 11-12 December 2017, MIT Aurangabad,

Maharashtra, INDIA.

[251] “Kurtosis.” Available at https://en.wikipedia.org/wiki/Kurtosis, 2023.

[Online; Accessed 30 June 2023].

[252] “Crest Factor.” Available at https://en.wikipedia.org/wiki/Crest_factor,

2023. [Online; Accessed 30 June 2023].

[253] H. Huang and N. Baddour, “Bearing vibration data collected under time-varying

rotational speed conditions,” Data in Brief, vol. 21, pp. 1745–1749, 2018.

[254] “Fraud detection with Flink.” Available at https://nightlies.apache.org/

flink/flink-docs-master/docs/try-flink/datastream/, Online; Accessed

30 June, 2023.

[255] R. Wu and E. J. Keogh, “Current time series anomaly detection benchmarks

are flawed and are creating the illusion of progress,” IEEE Transactions on

Knowledge and Data Engineering, vol. 35, no. 3, pp. 2421–2429, 2023.

[256] J. C. Beard, P. Li, and R. D. Chamberlain, “RaftLib: A C++ template library

for high performance stream parallel processing,” in Proceedings of the Sixth

International Workshop on Programming Models and Applications for Multicores

https://en.wikipedia.org/wiki/Kurtosis
https://en.wikipedia.org/wiki/Crest_factor
https://nightlies.apache.org/flink/flink-docs-master/docs/try-flink/datastream/
https://nightlies.apache.org/flink/flink-docs-master/docs/try-flink/datastream/

185

and Manycores, PMAM ’15, (New York, NY, USA), p. 96–105, Association for

Computing Machinery, 2015.

	thesis-front-page-signed
	Thesis_Final

