Isothermal Nucleic Acid Assays Based on Nucleic Acid Sequence Based Amplification (NASBA) and Recombinase Polymerase Amplification (RPA) for HIV-1 Diagnosis and Management in Low Resource Settings

dc.contributor.advisorRichards-Kortum, Rebecca Raeen_US
dc.contributor.committeeMemberBiswal, Sibani Len_US
dc.contributor.committeeMemberMcDevitt, Johnen_US
dc.creatorRohrman, Brittany Annen_US
dc.date.accessioned2016-01-25T21:18:04Zen_US
dc.date.available2016-01-25T21:18:04Zen_US
dc.date.created2015-05en_US
dc.date.issued2015-04-01en_US
dc.date.submittedMay 2015en_US
dc.date.updated2016-01-25T21:18:04Zen_US
dc.description.abstractOver two-thirds of the estimated 35 million people worldwide infected with HIV live in the developing world. Nucleic acid tests (NATs) are necessary for early infant diagnosis and for monitoring patients receiving therapy. However, NATs cost $50-100 USD per test and require expensive thermal cycling equipment that may be unavailable in the developing world. This thesis presents two low-cost NATs for HIV-1 diagnosis and management that are based on isothermal amplification, which eliminates the need for expensive thermal cycling equipment. In one assay, HIV-1 viral RNA is detected using nucleic acid sequence based amplification (NASBA) and a custom lateral flow test. This assay costs about \$16 USD and only requires a heat block. When coupled with NASBA, the lateral flow test detected concentrations of synthetic RNA spanning the entire clinical range. When the assay was evaluated using pediatric plasma samples, the sensitivity (61%) and limit-of-detection (10,000 HIV-1 copies/mL plasma) were lower because of the genetic diversity of the samples, and the specificity was lower (88%) due to amplicon contamination. In the other assay, HIV-1 proviral DNA is amplified using recombinase polymerase amplification (RPA). This assay, which costs about \$5 per test, was integrated into a paper and plastic microfluidic device. The device was capable of amplifying 10 copies of plasmid HIV-1 DNA to detectable levels in 15 minutes. The assay was then adapted for real-time quantification. On average, the assay predicted sample concentrations within one order of magnitude of the correct concentration. In addition, a method for incubating RPA reactions without external equipment was developed. Using human body heat for incubation, all RPA reactions with 10 copies of plasmid HIV-1 DNA and 95% of reactions with 100 copies of plasmid HIV-1 DNA tested positive. Finally, concentrations of background DNA found in whole blood were shown to prevent the amplification of target DNA by RPA. To address this problem, three sequence-specific capture methods were developed to enrich target DNA concentration relative to background DNA concentration. These methods may be enable detection of high proviral loads in 0.1 mL infant blood samples but require improvement to detect lower proviral loads.en_US
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationRohrman, Brittany Ann. "Isothermal Nucleic Acid Assays Based on Nucleic Acid Sequence Based Amplification (NASBA) and Recombinase Polymerase Amplification (RPA) for HIV-1 Diagnosis and Management in Low Resource Settings." (2015) Diss., Rice University. <a href="https://hdl.handle.net/1911/88115">https://hdl.handle.net/1911/88115</a>.en_US
dc.identifier.urihttps://hdl.handle.net/1911/88115en_US
dc.language.isoengen_US
dc.rightsCopyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.en_US
dc.subjectHIV-1en_US
dc.subjectrecombinase polymerase amplificationen_US
dc.subjectRPAen_US
dc.subjectnucleic acid sequence based amplificationen_US
dc.subjectNASBAen_US
dc.subjectlateral flow assayen_US
dc.titleIsothermal Nucleic Acid Assays Based on Nucleic Acid Sequence Based Amplification (NASBA) and Recombinase Polymerase Amplification (RPA) for HIV-1 Diagnosis and Management in Low Resource Settingsen_US
dc.typeThesisen_US
dc.type.materialTexten_US
thesis.degree.departmentBioengineeringen_US
thesis.degree.disciplineEngineeringen_US
thesis.degree.grantorRice Universityen_US
thesis.degree.levelDoctoralen_US
thesis.degree.nameDoctor of Philosophyen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ROHRMAN-DOCUMENT-2015.pdf
Size:
4.21 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
PROQUEST_LICENSE.txt
Size:
5.85 KB
Format:
Plain Text
Description:
No Thumbnail Available
Name:
LICENSE.txt
Size:
2.61 KB
Format:
Plain Text
Description: