Finite Element Approximations to the System of Shallow Water Equations, Part I: Continuous Time a Priori Error Estimates

dc.contributor.authorChippada, S.en_US
dc.contributor.authorDawson, Clint N.en_US
dc.contributor.authorMartinez, M.L.en_US
dc.contributor.authorWheeler, Mary F.en_US
dc.date.accessioned2018-06-18T17:42:19Zen_US
dc.date.available2018-06-18T17:42:19Zen_US
dc.date.issued1995-12en_US
dc.date.noteDecember 1995en_US
dc.description.abstractVarious sophisticated finite element models for surface water flow exist in the literature. Gray, Kolar, Luettich, Lynch and Westerink have developed a hydrodynamic model based on the generalized wave continuity equation (GWCE) formulation, and have formulated a Galerkin finite element procedure based on combining the GWCE with the nonconservative momentum equations. Numerical experiments suggest that this method is robust, accurate and suppresses spurious oscillations which plague other models. We analyze a slightly modified Galerkin model which uses the conservative momentum equations (CME). For this GWCE-CME system of equations, we present an a priori error estimate based on an L² projection.en_US
dc.format.extent26 ppen_US
dc.identifier.citationChippada, S., Dawson, Clint N., Martinez, M.L., et al.. "Finite Element Approximations to the System of Shallow Water Equations, Part I: Continuous Time a Priori Error Estimates." (1995) <a href="https://hdl.handle.net/1911/101873">https://hdl.handle.net/1911/101873</a>.en_US
dc.identifier.digitalTR95-35en_US
dc.identifier.urihttps://hdl.handle.net/1911/101873en_US
dc.language.isoengen_US
dc.relation.HasVersionSIAM J. Numer. Anal. 35 (1998), no. 2, 692-711en_US
dc.titleFinite Element Approximations to the System of Shallow Water Equations, Part I: Continuous Time a Priori Error Estimatesen_US
dc.typeTechnical reporten_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR95-35.pdf
Size:
478.23 KB
Format:
Adobe Portable Document Format