High amplitude response behavior of a linear oscillator-nonlinear absorber system: Identification, analysis, and attenuation by using a semi-active absorber in series

dc.contributor.advisorDick, Andrew J.
dc.contributor.committeeMemberO'Malley, Marcia K.
dc.contributor.committeeMemberNagarajaiah, Satish
dc.creatorEason, Richard
dc.date.accessioned2013-09-16T15:05:11Z
dc.date.accessioned2013-09-16T15:05:15Z
dc.date.available2013-09-16T15:05:11Z
dc.date.available2013-09-16T15:05:15Z
dc.date.created2013-05
dc.date.issued2013-09-16
dc.date.submittedMay 2013
dc.date.updated2013-09-16T15:05:16Z
dc.description.abstractAuxiliary absorbers provide an effective means to attenuate the vibrations of a structural or mechanical system (the "primary structure"). The simplest auxiliary absorber, a tuned mass damper (TMD), provides reliable narrow-band attenuation but is not robust to the effects of detuning. Strongly nonlinear tuned mass dampers (NTMDs) are capable of wide-band, irreversible energy transfer known as "energy pumping" but can also exhibit high amplitude solutions which significantly amplify the response of the primary structure. Semi-active tuned mass dampers (STMDs) incorporate an actuating element in order to achieve real-time tuning adjustment capability. This thesis presents a global dynamic analysis of the response of a primary structure with an NTMD and then explores the performance of a novel absorber configuration consisting of an NTMD and STMD attached to the primary structure in series. The global dynamic analysis is conducted using a new cell mapping method developed by the author and introduced within the thesis: the parallelized multi-degrees-of-freedom cell mapping (PMDCM) method. The benefits of the additional STMD component are explored for two distinct applications: (1) restoring the performance of a linear TMD which develops a weak nonlinearity due to operation outside of the intended range or other means, and (2) acting as a safety device to eliminate or minimize convergence to the detached high-amplitude response. In the weakly nonlinear case, the STMD is shown to reduce the effects of the nonlinearity and improve attenuation capability by constraining the motion of the NTMD. In the strongly nonlinear case, the STMD effectively eliminates the complex response behavior and high amplitude solutions which were present in the original system, resulting in a single low amplitude response. Experimental tests using an adjustable-length pendulum STMD verify the numerical results.
dc.format.mimetypeapplication/pdf
dc.identifier.citationEason, Richard. "High amplitude response behavior of a linear oscillator-nonlinear absorber system: Identification, analysis, and attenuation by using a semi-active absorber in series." (2013) Diss., Rice University. <a href="https://hdl.handle.net/1911/71949">https://hdl.handle.net/1911/71949</a>.
dc.identifier.slug123456789/ETD-2013-05-546
dc.identifier.urihttps://hdl.handle.net/1911/71949
dc.language.isoeng
dc.rightsCopyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.
dc.subjectVibration absorber
dc.subjectTuned mass damper (TMD)
dc.subjectNonlinear energy sink (NES)
dc.subjectNonlinear tuned mass damper (NTMD)
dc.subjectSemi-active tuned mass damper (STMD)
dc.subjectAttenuation
dc.subjectNonlinear dynamics
dc.titleHigh amplitude response behavior of a linear oscillator-nonlinear absorber system: Identification, analysis, and attenuation by using a semi-active absorber in series
dc.typeThesis
dc.type.materialText
thesis.degree.departmentMechanical Engineering and Materials Science
thesis.degree.disciplineEngineering
thesis.degree.grantorRice University
thesis.degree.levelDoctoral
thesis.degree.nameDoctor of Philosophy
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
EASON-THESIS.pdf
Size:
5.04 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.61 KB
Format:
Item-specific license agreed upon to submission
Description: