Civil and Environmental Engineering Publications
Permanent URI for this collection
Browse
Browsing Civil and Environmental Engineering Publications by Issue Date
Now showing 1 - 20 of 226
Results Per Page
Sort Options
Item Characterizing Dynamic Transitions Associated With Snap-Through: A Discrete System(The American Society of Mechanical Engineers, 2012) Wiebe, R.; Virgin, L. N.; Stanciulescu, Ilinca; Spottswood, S.M.; Eason, T.G.Geometrically nonlinear structures often possess multiple equilibrium configurations. Under extreme conditions of excitation, it is possible for these structures to exhibit oscillations about and between these co-existing configurations. This behavior may have serious implications for fatigue in the context of aircraft surface panels. Snap-through is a name often given to sudden changes in dynamic behavior associated with mechanical instability (buckling). This is an often encountered problem in hypersonic vehicles in which severe thermal loading and acoustic excitation conspire to create an especially hostile environment for structural elements. In this paper, a simple link model is used, experimentally and numerically, to investigate the mechanisms of snap-through buckling from a phenomenological standpoint.Item Alumoxane/ferroxane nanoparticles for the removal of viral pathogens: the importance of surface functionality to nanoparticle activity(The Royal Society of Chemistry, 2012) Maguire-Boyle, Samuel J.; Liga, Michael V.; Li, Qilin; Barron, Andrew R.; Richard E. Smalley Institute for Nanoscale Science and TechnologyA bi-functional nano-composite coating has been created on a porous Nomex fabric support as a trap for aspirated virus contaminated water. Nomex fabric was successively dip-coated in solutions containing cysteic acid functionalized alumina (alumoxane) nanoparticles and cysteic acid functionalized iron oxide (ferroxane) nanoparticles to form a nanoparticle coated Nomex (NPN) fabric. From SEM and EDX the nanoparticle coating of the Nomex fibers is uniform, continuous, and conformal. The NPN was used as a filter for aspirated bacteriophage MS2 viruses using end-on filtration. All measurements were repeated to give statistical reliability. The NPN fabrics show a large decrease as compared to Nomex alone or alumoxane coated Nomex . An increase in the ferroxane content results in an equivalent increase in virus retention. This suggests that it is the ferroxane that has an active role in deactivating and/or binding the virus. Heating the NPN to 160 C results in the loss of cysteic acid functional groups (without loss of the iron nanoparticleメs core structure) and the resulting fabric behaves similar to that of untreated Nomex , showing that the surface functionalization of the nanoparticles is vital for the surface collapse of aspirated water droplets and the absorption and immobilization of the MS2 viruses. Thus, for virus immobilization, it is not sufficient to have iron oxide nanoparticles per se, but the surface functionality of a nanoparticle is vitally important in ensuring efficacy.Item A Closed-Form Technique for the Reliability and Risk Assessment of Wind Turbine Systems(MDPI, 2012) Mensah, Akwasi F.; Dueñas-Osorio, LeonardoThis paper proposes a closed-form method to evaluate wind turbine system reliability and associated failure consequences. Monte Carlo simulation, a widely used approach for system reliability assessment, usually requires large numbers of computational experiments, while existing analytical methods are limited to simple system event configurations with a focus on average values of reliability metrics. By analyzing a wind turbine system and its components in a combinatorial yet computationally efficient form, the proposed approach provides an entire probability distribution of system failure that contains all possible configurations of component failure and survival events. The approach is also capable of handling unique component attributes such as downtime and repair cost needed for risk estimations, and enables sensitivity analysis for quantifying the criticality of individual components to wind turbine system reliability. Applications of the technique are illustrated by assessing the reliability of a 12-subassembly turbine system. In addition, component downtimes and repair costs of components are embedded in the formulation to compute expected annual wind turbine unavailability and repair cost probabilities, and component importance metrics useful for maintenance planning and research prioritization. Furthermore, this paper introduces a recursive solution to closed-form method and applies this to a 45-component turbine system. The proposed approach proves to be computationally efficient and yields vital reliability information that could be readily used by wind farm stakeholders for decision making and risk management.Item Time-dependent resilience assessment and improvement of urban infrastructure systems(American Institute of Physics, 2012) Ouyang, Min; Duenas-Osorio, LeonardoThis paper introduces an approach to assess and improve the time-dependent resilience of urban infrastructure systems, where resilience is defined as the systemsメ ability to resist various possible hazards, absorb the initial damage from hazards, and recover to normal operation one or multiple times during a time period T. For different values of T and its position relative to current time, there are three forms of resilience: previous resilience, current potential resilience, and future potential resilience. This paper mainly discusses the third form that takes into account the systemsメ future evolving processes. Taking the power transmission grid in Harris County, Texas, USA as an example, the time-dependent features of resilience and the effectiveness of some resilience-inspired strategies, including enhancement of situational awareness, management of consumer demand, and integration of distributed generators, are all simulated and discussed. Results show a nonlinear nature of resilience as a function of T, which may exhibit a transition from an increasing function to a decreasing function at either a threshold of post-blackout improvement rate, a threshold of load profile with consumer demand management, or a threshold number of integrated distributed generators. These results are further confirmed by studying a typical benchmark system such as the IEEE RTS-96. Such common trends indicate that some resilience strategies may enhance infrastructure system resilience in the short term, but if not managed well, they may compromise practical utility system resilience in the long run.Item Observation and modeling of the evolution of Texas power plant plumes(European Geosciences Union, 2012) Zhou, W.; Cohan, D.S.; Pinder, R.W.; Neuman, J.A.; Holloway, J.S.; Peischl, J.; Ryerson, T.B.; Nowak, J.B.; Flocke, F.; Zheng, W.G.During the second Texas Air Quality Study 2006 (TexAQS II), a full range of pollutants was measured by aircraft in eastern Texas during successive transects of power plant plumes (PPPs). A regional photochemical model is applied to simulate the physical and chemical evolution of the plumes. The observations reveal that SO2 and NOy were rapidly removed from PPPs on a cloudy day but not on the cloud-free days, indicating efficient aqueous processing of these compounds in clouds. The model reasonably represents observed NOx oxidation and PAN formation in the plumes, but fails to capture the rapid loss of SO2 (0.37 h−1) and NOy (0.24 h−1) in some plumes on the cloudy day. Adjustments to the cloud liquid water content (QC) and the default metal concentrations in the cloud module could explain some of the SO2 loss. However, NOy in the model was insensitive to QC. These findings highlight cloud processing as a major challenge to atmospheric models. Model-based estimates of ozone production efficiency (OPE) in PPPs are 20–50 % lower than observation-based estimates for the cloudy day.Item A lower bound on snap-through instability of curved beams under thermomechanical loads(Elsevier, 2012) Stanciulescu, Ilinca; Mitchell, Toby; Chandra, Yenny; Eason, Thomas; Spottswood, MichaelA non-linear finite element formulation (three dimensional continuum elements) is implemented and used for modeling dynamic snap-through in beams with initial curvature. We identify a non-trivial (non-flat) configuration of the beam at a critical temperature value below which the beam will no longer experience snap-through under any magnitude of applied quasi-static load for beams with various curvatures. The critical temperature is shown to successfully eliminate snap-through in dynamic simulations at quasistatic loading rates. Thermomechanical coupling is included in order to model a physically minimal amount of damping in the system, and the resulting post-snap vibrations are shown to be thermoelastically damped. We propose a test to determine the critical snap-free temperature for members of general geometry and loading pattern; the analogy between mechanical prestress and thermal strain that holds between the static and dynamic simulations is used to suggest a simple method for reducing the vulnerability of thin-walled structural members to dynamic snap-through in members of large initial curvature via the introduction of initial pretension.Item Numerical pathologies in snap-through simulations(Elsevier, 2012) Chandra, Yenny; Stanciulescu, Ilinca; Eason, Thomas; Spottswood, MichaelAircraft structures operating in severe environments may experience snap-through, causing the curvature on part or all of the structure to invert inducing fatigue damage. This paper examines the performance of beam and continuum nonlinear finite element formulations in conjunction with several popular implicit time stepping algorithms to assess the accuracy and stability of numerical simulations of snap-through events. Limitations of the structural elements are identified and we provide examples of interaction between spatial and temporal discretizations that affect the robustness of the overall scheme and impose strict limits on the size of the time step. These limitations need to be addressed in future works in order to develop accurate, robust and efficient simulation methods for response prediction of structures encountering extreme environments.Item Quantification of Lifeline System Interdependencies after the 27 February 2010 Mw 8.8 Offshore Maule, Chile, Earthquake(Earthquake Engineering Research Institute, 2012-06) Dueñas-Osorio, Leonardo; Kwasinski, AlexisData on lifeline system service restoration is seldom exploited for the calibration of performance prediction models or for response comparisons across systems and events. This study explores utility restoration curves after the 2010 Chilean earthquake through a time series method to quantify coupling strengths across lifeline systems. When consistent with field information, cross-correlations from restoration curves without significant lag times quantify operational interdependence, whereas those with significant lags reveal logistical interdependence. Synthesized coupling strengths are also proposed to incorporate cross-correlations and lag times at once. In the Chilean earthquake, coupling across fixed and mobile phones was the strongest per region followed by coupling within and across telecommunication and power systems in adjacent regions. Unapparent couplings were also revealed among telecommunication and power systems with water networks. The proposed methodology can steer new protocols for post-disaster data collection, including anecdotal information to evaluate causality, and inform infrastructure interdependence effect prediction models.Item Inverse modeling of Texas NOxᅠemissions using space-based and ground-based NO2ᅠobservations(European Geosciences Union, 2013) Tang, W.; Cohan, D.S.; Lamsal, L.N.; Xiao, X.; Zhou, W.Inverse modeling of nitrogen oxide (NOx) emissions using satellite-based NO2 observations has become more prevalent in recent years, but has rarely been applied to regulatory modeling at regional scales. In this study, OMI satellite observations of NO2 column densities are used to conduct inverse modeling of NOx emission inventories for two Texas State Implementation Plan (SIP) modeling episodes. Addition of lightning, aircraft, and soil NOx emissions to the regulatory inventory narrowed but did not close the gap between modeled and satellite-observed NO2 over rural regions. Satellite-based top-down emission inventories are created with the regional Comprehensive Air Quality Model with extensions (CAMx) using two techniques: the direct scaling method and discrete Kalman filter (DKF) with decoupled direct method (DDM) sensitivity analysis. The simulations with satellite-inverted inventories are compared to the modeling results using the a priori inventory as well as an inventory created by a ground-level NO2-based DKF inversion. The DKF inversions yield conflicting results: the satellite-based inversion scales up the a priori NOx emissions in most regions by factors of 1.02 to 1.84, leading to 3–55% increase in modeled NO2 column densities and 1–7 ppb increase in ground 8 h ozone concentrations, while the ground-based inversion indicates the a priori NOx emissions should be scaled by factors of 0.34 to 0.57 in each region. However, none of the inversions improve the model performance in simulating aircraft-observed NO2 or ground-level ozone (O3) concentrations.Item Direct calculation of critical points in parameter sensitive systems(Elsevier, 2013) Moghaddasie, Behrang; Stanciulescu, IlincaAt critical points along the equilibrium path, sudden and sometimes catastrophic changes in the structural behaviour are observed. The equilibrium path, load-bearing capacity and locations of critical points can be sensitive to variations in parameters, such as geometrical imperfections, multi-parameter loadings, temperature and material properties. This paper introduces an incremental-iterative procedure to directly calculate the critical load for parameterized elastic structures. A modified Newton's method is proposed to simultaneously set the residual force and the minimum eigenvalue of the tangent stiffness matrix to zero by using an iterative algorithm. To demonstrate the performance of this method, numerical examples are presented.Item Equilibria and stability boundaries of shallow arches under static loading in a thermal environment(Elsevier, 2013) Moghaddasie, Behrang; Stanciulescu, IlincaThe structural behaviour of shallow arches is complex and can be influenced by many parameters. In this paper, the response of a half-sine shallow arch under static loading in a thermal environment is investigated. The arch has pinned supports and the material behaviour is assumed elastic. The exact displacement field, load-bearing capacity and the locus of critical points are obtained. Boundaries of domains with different stability behaviours (e.g., different number of limit and bifurcation points) are also determined. Three types of loading (concentrated, uniform and asymmetrical uniform) are examined. The primary equilibrium paths are verified against results obtained from finite element simulations. The proposed method is robust and accurate.Item Systematic Construction of Higher Order Bases for the Finite Element Analysis of Multiscale Elliptic Problems(Elsevier, 2013) Soghrati, Soheil; Stanciulescu, IlincaWe introduce a new approach to deriving higher order basis functions implemented in the Multiscale Finite Element Method (MsFEM) for elliptic problems. MsFEM relies on capturing small scale features of the system through bases utilized in the coarse scale solution. The proposed technique for the derivation of such bases is completely systematic and the increase in the associated computational cost is insignificant. We also show that the implementation of higher order bases in MsFEM leads to similar advantages as using higher order Lagrangian shape functions in the conventional finite element method. Various numerical examples for heat transfer problems with periodic or heterogeneous thermal properties are given to demonstrate the efficiency and improved characteristics of the proposed higher order bases.Item Effect of Surface Friction on Tire-Pavement Contact Stresses during Vehicle Maneuvering(American Society of Civil Engineers, 2013) Wang, Hao; Al-Qadi, Imad L.; Stanciulescu, IlincaAccurate modeling of tire-pavement contact behavior plays an important role in the analysis of pavement performance and vehicle stability control. A threedimensional (3-D) tire-pavement interaction model was developed using the finite element method (FEM) to analyze the forces and contact stresses generated during vehicle maneuvering (free rolling, braking/acceleration, and cornering). A pneumatic radial-ply tire structure with rubber and reinforcement was simulated. The steady-state tire rolling process was simulated using an Arbitrary Lagrangian Eulerian (ALE) formulation. An improved friction model that considers the effect of sliding speed on friction coefficients was implemented to analyze the effects of pavement surface friction on contact stresses, friction forces, and cornering forces. The results show that the magnitudes and non-uniformity of contact stresses are affected by vehicle maneuvering conditions. As the pavement surface friction increases, the tangential tire-pavement contact stresses at various rolling conditions (free rolling, braking/acceleration, and cornering) and the vertical contact stresses at the cornering condition increase. It is reasonable to use the constant friction coefficient when predicting tire-pavement contact stresses at the free rolling condition or at the cornering condition with small slip angles. However, it is important to use the sliding-velocity-dependent friction model when predicting the friction force at tire braking.Item Constraining ozone-precursor responsiveness using ambient measurements(American Geophysical Union, 2013) Digar, Antara; Cohan, Daniel S.; Xiao, Xue; Foley, Kristen M.; Koo, Bonyoung; Yarwood, GregThis study develops probabilistic estimates of ozone (O3) sensitivities to precursor emissions by incorporating uncertainties in photochemical modeling and evaluating model performance based on ground-level observations of O3 and oxides of nitrogen (NOx). Uncertainties in model formulations and input parameters are jointly considered to identify factors that strongly influence O3 concentrations and sensitivities in the Dallas-Fort Worth region in Texas. Weightings based on a Bayesian inference technique and screenings based on model performance and statistical tests of significance are used to generate probabilistic representation of O3 response to emissions and model input parameters. Adjusted (observation-constrained) results favor simulations using the sixth version of the carbon bond chemical mechanism (CB6) and scaled-up emissions of NOx, dampening the overall sensitivity of O3 to NOx and increasing the sensitivity of O3 to volatile organic compounds in the study region. This approach of using observations to adjust and constrain model simulations can provide probabilistic representations of pollutant responsiveness to emission controls that complement the results obtained from deterministic air-quality modeling.Item Seismic Reliability Assessment of Aging Highway Bridge Networks with Field Instrumentation Data and Correlated Failures. I: Methodology(Earthquake Engineering Research Institute, 2013) Ghosh, Jayadipta; Rokneddin, Keivan; Padgett, Jamie E.; Dueñas-Osorio, LeonardoThe state-of-the-practice in seismic network reliability assessment of highway bridges often ignores bridge failure correlations imposed by factors such as the network topology, construction methods, and present-day condition of bridges, amongst others. Additionally, aging bridge seismic fragilities are typically determined using historical estimates of deterioration parameters. This research presents a methodology to estimate bridge fragilities using spatially interpolated and updated deterioration parameters from limited instrumented bridges in the network, while incorporating the impacts of overlooked correlation factors in bridge fragility estimates. Simulated samples of correlated bridge failures are used in an enhanced Monte Carlo method to assess bridge network reliability, and the impact of different correlation structures on the network reliability is discussed. The presented methodology aims to provide more realistic estimates of seismic reliability of aging transportation networks and potentially helps network stakeholders to more accurately identify critical bridges for maintenance and retrofit prioritization.Item Seismic Reliability Assessment of Aging Highway Bridge Networks with Field Instrumentation Data and Correlated Failures. II: Application(Earthquake Engineering Research Institute, 2013) Rokneddin, Keivan; Ghosh, Jayadipta; Dueñas-Osorio, Leonardo; Padgett, Jamie E.The Bridge Reliability in Networks (BRAN) methodology introduced in the companion paper is applied to evaluate the reliability of part of the highway bridge network in South Carolina, USA, under a selected seismic scenario. The case study demonstrates Bayesian updating of deterioration parameters across bridges after spatial interpolation of data acquired from limited instrumented bridges. The updated deterioration parameters inform aging bridge seismic fragility curves through multidimensional integration of parameterized fragility models, which are utilized to derive bridge failure probabilities. The paper establishes the correlation structure among bridge failures from three information sources to generate realizations of bridge failures for network level reliability assessment by Monte Carlo analysis. Positive correlations improve the reliability of the case study network, also predicted from the network topology. The benefits of the BRAN methodology are highlighted in its applicability to large networks while addressing some of the existing gaps in bridge network reliability studies.Item The Sources and Impacts of Tropospheric Particulate Matter(Nature Education, 2013) Griffin, Robert J.Aerosols vary in composition, size, concentration, and source. They profoundly affect climate, visibility, human health, and biogeochemical cycling.Item Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles(National Academy of Sciences, 2013) Neumann, Oara; Feronti, Curtis; Neumann, Albert D.; Dong, Anjie; Schell, Kevin; Lu, Benjamin; Kim, Eric; Quinn, Mary; Thompson, Shea; Grady, Nathaniel; Nordlander, Peter; Oden, Maria; Halas, Naomi J.; Laboratory for Nanophotonics; Rice Quantum InstituteThe lack of readily available sterilization processes for medicine and dentistry practices in the developing world is a major risk factor for the propagation of disease. Modern medical facilities in the developed world often use autoclave systems to sterilize medical instruments and equipment and process waste that could contain harmful contagions. Here, we show the use of broadband light-absorbing nanoparticles as solar photothermal heaters, which generate high-temperature steam for a standalone, efficient solar autoclave useful for sanitation of instruments or materials in resource-limited, remote locations. Sterilization was verified using a standard Geobacillus stearothermophilus-based biological indicator.Item Seismic Damage Accumulation of Highway Bridges in Earthquake Prone Regions(Earthquake Engineering Research Institute, 2013) Ghosh, Jayadipta; Padgett, Jamie E.; Sánchez-Silva, MauricioCivil infrastructures, such as highway bridges, located in seismically active regions are often subjected to multiple earthquakes, such as multiple main shocks along their service life or main shock-aftershock sequences. Repeated seismic events result in reduced structural capacity and may lead to bridge collapse causing disruption in normal functioning of transportation networks. This study proposes a framework to predict damage accumulation in structures under multiple shock scenarios after developing damage index prediction models and accounting for the probabilistic nature of the hazard. The versatility of the proposed framework is demonstrated on a case study highway bridge located in California for two distinct hazard scenarios: a) multiple main shocks along the service life, and b) multiple aftershock earthquake occurrences following a single main shock. Results reveal that in both cases there is a significant increase in damage index exceedance probabilities due to repeated shocks within the time window of interest.Item A numerical investigation of snap-through in a shallow arch-like model(Elsevier, 2013) Chandra, Yenny; Stanciulescu, Ilinca; Virgin, Lawrence N.; Eason, Thomas G.; Spottswood, Stephen M.Slender curved structures may experience a loss of stability called snap-through, causing the curvature on part or all of the structure to invert inducing fatigue damage. This paper presents a framework for analyzing the transient responses of slender curved structures. A numerical study of snap-through in a shallow arch-like model under periodic excitations is performed on a simplified model and on a detailed finite element model. The boundaries that separate the snap-through and no snap-through regions in the forcing parameters space are identified. Various post-snap responses are analyzed. The effects of initial conditions on the snap-through boundaries and post-snap responses are examined. Forcing parameters that lead to chaotic response are identified.