Browsing by Author "Taylor, Antoinette J."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging(Springer Nature, 2018) Zeng, Beibei; Huang, Zhiqin; Singh, Akhilesh; Yao, Yu; Azad, Abul K.; Mohite, Aditya D.; Taylor, Antoinette J.; Smith, David R.; Chen, Hou-TongDuring the past decades, major advances have been made in both the generation and detection of infrared light; however, its efficient wavefront manipulation and information processing still encounter great challenges. Efficient and fast optoelectronic modulators and spatial light modulators are required for mid-infrared imaging, sensing, security screening, communication and navigation, to name a few. However, their development remains elusive, and prevailing methods reported so far have suffered from drawbacks that significantly limit their practical applications. In this study, by leveraging graphene and metasurfaces, we demonstrate a high-performance free-space mid-infrared modulator operating at gigahertz speeds, low gate voltage and room temperature. We further pixelate the hybrid graphene metasurface to form a prototype spatial light modulator for high frame rate single-pixel imaging, suggesting orders of magnitude improvement over conventional liquid crystal or micromirror-based spatial light modulators. This work opens up the possibility of exploring wavefront engineering for infrared technologies for which fast temporal and spatial modulations are indispensable.Item Ultrafast Optical Microscopy of Single Monolayer Molybdenum Disulfide Flakes(Macmillan Publishers Limited, 2016) Seo, Minah; Yamaguchi, Hisato; Mohite, Aditya D.; Boubanga-Tombet, Stephane; Blancon, Jean-Christophe; Najmaei, Sina; Ajayan, Pulickel M.; Lou, Jun; Taylor, Antoinette J.; Prasankumar, Rohit P.We have performed ultrafast optical microscopy on single flakes of atomically thin CVD-grown molybdenum disulfide, using non-degenerate femtosecond pump-probe spectroscopy to excite and probe carriers above and below the indirect and direct band gaps. These measurements reveal the influence of layer thickness on carrier dynamics when probing near the band gap. Furthermore, fluence-dependent measurements indicate that carrier relaxation is primarily influenced by surface-related defect and trap states after above-bandgap photoexcitation. The ability to probe femtosecond carrier dynamics in individual flakes can thus give much insight into light-matter interactions in these two-dimensional nanosystems.