Browsing by Author "Masui, Kyoko"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item 3D microfabrication of single-wall carbon nanotube/polymer composites by two-photon polymerization lithography(Elsevier, 2013) Ushiba, Shota; Shoji, Satoru; Masui, Kyoko; Kuray, Preeya; Kono, Junichiro; Kawata, SatoshiWe present a method to develop single-wall carbon nanotube (SWCNT)/polymer composites into arbitrary three-dimensional micro/nano structures. Our approach, based on two-photon polymerization lithography, allows one to fabricate three-dimensional SWCNT/polymer composites with a minimum spatial resolution of a few hundreds nm. A near-infrared femtosecond pulsed laser beam was focused onto a SWCNT-dispersed photo resin, and the laser light solidified a nanometric volume of the resin. The focus spot was three-dimensionally scanned, resulting in the fabrication of arbitrary shapes of SWCNT/polymer composites. SWCNTs were uniformly distributed throughout the whole structures, even in a few hundreds nm thick nanowires. Furthermore, we also found an intriguing phenomenon that SWCNTs were self-aligned in polymer nanostructures, promising improvements in mechanical and electrical properties. Our method has great potential to open up a wide range of applications such as micro- and nanoelectromechanical systems, micro/nano actuators, sensors, and photonics devices based on CNTs.Item Macroscopic Ensembles of Aligned Carbon Nanotubes in Bubble Imprints Studied by Polarized Raman Microscopy(Hindawi Publishing Corporation, 2014) Ushiba, Shota; Hoyt, Jordan; Masui, Kyoko; Kono, Junichiro; Kawata, Satoshi; Shoji, Satoru; NanoJapan ProgramWe study the alignment of single-wall carbon nanotubes (SWCNTs) in bubble imprints through polarized Raman microscopy. A hemispherical bubble containing SWCNTs is pressed against a glass substrate, resulting in an imprint of the bubble membrane with a coffee ring on the substrate. We find that macroscopic ensembles of aligned SWCNTs are obtained in the imprints, in which there are three patterns of orientations: (i) azimuthal alignment on the coffee ring, (ii) radial alignment at the edge of the membrane, and (iii) random orientation at the center of the membrane. We also find that the alignment of SWCNTs in the imprints can be manipulated by spinning bubbles. The orientation of SWCNTs on the coffee ring is directed radially, which is orthogonal to the case of unspun bubbles. This approach enables one to align SWCNTs in large quantities and in a short time, potentially opening up a wide range of CNT-based electronic and optical applications.