Browsing by Author "Derry, Paul J."
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Adsorption and Unfolding of a Single Protein Triggers Nanoparticle Aggregation(American Chemical Society, 2016) Dominguez-Medina, Sergio; Kisley, Lydia; Tauzin, Lawrence J.; Hoggard, Anneli; Shuang, Bo; Indrasekara, A. Swarnapali D.S.; Chen, Sishan; Wang, Lin-Yung; Derry, Paul J.; Liopo, Anton; Zubarev, Eugene R.; Landes, Christy F.; Link, StephanThe response of living systems to nanoparticles is thought to depend on the protein corona, which forms shortly after exposure to physiological fluids and which is linked to a wide array of pathophysiologies. A mechanistic understanding of the dynamic interaction between proteins and nanoparticles and thus the biological fate of nanoparticles and associated proteins is, however, often missing mainly due to the inadequacies in current ensemble experimental approaches. Through the application of a variety of single molecule and single particle spectroscopic techniques in combination with ensemble level characterization tools, we identified different interaction pathways between gold nanorods and bovine serum albumin depending on the protein concentration. Overall, we found that local changes in protein concentration influence everything from cancer cell uptake to nanoparticle stability and even protein secondary structure. We envision that our findings and methods will lead to strategies to control the associated pathophysiology of nanoparticle exposure in vivo.Item Efficacy of Novel Carbon Nanoparticle Antioxidant Therapy in a Severe Model of Reversible Middle Cerebral Artery Stroke in Acutely Hyperglycemic Rats(Frontiers, 2018) Fabian, Roderic H.; Derry, Paul J.; Rea, Harriett Charmaine; Dalmeida, William V.; Nilewski, Lizanne G.; Sikkema, William K.A.; Mandava, Pitchaiah; Tsai, Ah-Lim; Mendoza, Kimberly; Berka, Vladimir; Tour, James M.; Kent, Thomas A.INTRODUCTION: While oxidative stress can be measured during transient cerebral ischemia, antioxidant therapies for ischemic stroke have been clinically unsuccessful. Many antioxidants are limited in their range and/or capacity for quenching radicals and can generate toxic intermediates overwhelming depleted endogenous protection. We developed a new antioxidant class, 40 nm × 2 nm carbon nanoparticles, hydrophilic carbon clusters, conjugated to poly(ethylene glycol) termed PEG-HCCs. These particles are high-capacity superoxide dismutase mimics, are effective against hydroxyl radical, and restore the balance between nitric oxide and superoxide in the vasculature. Here, we report the effects of PEG-HCCs administered during reperfusion after transient middle cerebral artery occlusion (tMCAO) by suture in the rat under hyperglycemic conditions. Hyperglycemia occurs in one-third of stroke patients and worsens clinical outcome. In animal models, this worsening occurs largely by accelerating elaboration of reactive oxygen species (ROS) during reperfusion. METHODS: PEG-HCCs were studied for their protective ability against hydrogen peroxide in b.End3 brain endothelial cell line and E17 primary cortical neuron cultures. In vivo, hyperglycemia was induced by streptozotocin injection 2 days before tMCAO. 58 Male Sprague-Dawley rats were analyzed. They were injected IV with PBS or PEG-HCCs (4 mg/kg 2×) at the time of recanalization after either 90- or 120-min occlusion. Rats were survived for up to 3 days, and infarct volume characteristics and neurological functional outcome (modified Bederson Score) were assessed. RESULTS: PEG-HCCs were protective against hydrogen peroxide in both culture models. In vivo improvement was found after PEG-HCCs with 90-min ischemia with reduction in infarct size (42%), hemisphere swelling (46%), hemorrhage score (53%), and improvement in Bederson score (70%) (p = 0.068-0.001). Early high mortality in the 2-h in the PBS control group precluded detailed analysis, but a trend was found in improvement in all factors, e.g., reduction in infarct volume (48%; p = 0.034) and a 56% improvement in Bederson score (p = 0.055) with PEG-HCCs. CONCLUSION: This nano-antioxidant showed some improvement in several outcome measures in a severe model of tMCAO when administered at a clinically relevant time point. Long-term studies and additional models are required to assess potential for clinical use, especially for patients hyperglycemic at the time of their stroke, as these patients have the worst outcomes.Item Naphthoquinones Oxidize H2S to Polysulfides and Thiosulfate, Implications for Therapeutic Applications(MDPI, 2022) Olson, Kenneth R.; Clear, Kasey J.; Derry, Paul J.; Gao, Yan; Ma, Zhilin; Cieplik, Nathaniel M.; Fiume, Alyssa; Gaziano, Dominic J.; Kasko, Stephen M.; Narloch, Kathleen; Velander, Cecilia L.; Nwebube, Ifeyinwa; Pallissery, Collin J.; Pfaff, Ella; Villa, Brian P.; Kent, Thomas A.; Wu, Gang; Straub, Karl D.1,4-Napththoquinones (NQs) are clinically relevant therapeutics that affect cell function through production of reactive oxygen species (ROS) and formation of adducts with regulatory protein thiols. Reactive sulfur species (RSS) are chemically and biologically similar to ROS and here we examine RSS production by NQ oxidation of hydrogen sulfide (H2S) using RSS-specific fluorophores, liquid chromatography-mass spectrometry, UV-Vis absorption spectrometry, oxygen-sensitive optodes, thiosulfate-specific nanoparticles, HPLC-monobromobimane derivatization, and ion chromatographic assays. We show that NQs, catalytically oxidize H2S to per- and polysulfides (H2Sn, n = 2–6), thiosulfate, sulfite and sulfate in reactions that consume oxygen and are accelerated by superoxide dismutase (SOD) and inhibited by catalase. The approximate efficacy of NQs (in decreasing order) is, 1,4-NQ ≈ juglone ≈ plumbagin > 2-methoxy-1,4-NQ ≈ menadione >> phylloquinone ≈ anthraquinone ≈ menaquinone ≈ lawsone. We propose that the most probable reactions are an initial two-electron oxidation of H2S to S0 and reduction of NQ to NQH2. S0 may react with H2S or elongate H2Sn in variety of reactions. Reoxidation of NQH2 likely involves a semiquinone radical (NQ·−) intermediate via several mechanisms involving oxygen and comproportionation to produce NQ and superoxide. Dismutation of the latter forms hydrogen peroxide which then further oxidizes RSS to sulfoxides. These findings provide the chemical background for novel sulfur-based approaches to naphthoquinone-directed therapies.Item Oxidation of Hydrogen Sulfide to Polysulfide and Thiosulfate by a Carbon Nanozyme: Therapeutic Implications with an Emphasis on Down Syndrome(Wiley, 2024) Derry, Paul J.; Liopo, Anton V.; Mouli, Karthik; McHugh, Emily A.; Vo, Anh T. T.; McKelvey, Ann; Suva, Larry J.; Wu, Gang; Gao, Yan; Olson, Kenneth R.; Tour, James M.; Kent, Thomas A.; Smalley-Curl Institute; Welch Institute for Advanced Materials; The NanoCarbon CenterHydrogen sulfide (H2S) is a noxious, potentially poisonous, but necessary gas produced from sulfur metabolism in humans. In Down Syndrome (DS), the production of H2S is elevated and associated with degraded mitochondrial function. Therefore, removing H2S from the body as a stable oxide could be an approach to reducing the deleterious effects of H2S in DS. In this report we describe the catalytic oxidation of hydrogen sulfide (H2S) to polysulfides (HS2+n−) and thiosulfate (S2O32−) by poly(ethylene glycol) hydrophilic carbon clusters (PEG-HCCs) and poly(ethylene glycol) oxidized activated charcoal (PEG-OACs), examples of oxidized carbon nanozymes (OCNs). We show that OCNs oxidize H2S to polysulfides and S2O32− in a dose-dependent manner. The reaction is dependent on O2 and the presence of quinone groups on the OCNs. In DS donor lymphocytes we found that OCNs increased polysulfide production, proliferation, and afforded protection against additional toxic levels of H2S compared to untreated DS lymphocytes. Finally, in Dp16 and Ts65DN murine models of DS, we found that OCNs restored osteoclast differentiation. This new action suggests potential facile translation into the clinic for conditions involving excess H2S exemplified by DS.Item Oxidized Activated Charcoal Nanozymes: Synthesis, and Optimization for In Vitro and In Vivo Bioactivity for Traumatic Brain Injury(Wiley, 2024) McHugh, Emily A.; Liopo, Anton V.; Mendoza, Kimberly; Robertson, Claudia S.; Wu, Gang; Wang, Zhe; Chen, Weiyin; Beckham, Jacob L.; Derry, Paul J.; Kent, Thomas A.; Tour, James M.; Smalley-Curl Institute;NanoCarbon Center;Welch Institute for Advanced MaterialsCarbon-based superoxide dismutase (SOD) mimetic nanozymes have recently been employed as promising antioxidant nanotherapeutics due to their distinct properties. The structural features responsible for the efficacy of these nanomaterials as antioxidants are, however, poorly understood. Here, the process–structure–property–performance properties of coconut-derived oxidized activated charcoal (cOAC) nano-SOD mimetics are studied by analyzing how modifications to the nanomaterial's synthesis impact the size, as well as the elemental and electrochemical properties of the particles. These properties are then correlated to the in vitro antioxidant bioactivity of poly(ethylene glycol)-functionalized cOACs (PEG-cOAC). Chemical oxidative treatment methods that afford smaller, more homogeneous cOAC nanoparticles with higher levels of quinone functionalization show enhanced protection against oxidative damage in bEnd.3 murine endothelioma cells. In an in vivo rat model of mild traumatic brain injury (mTBI) and oxidative vascular injury, PEG-cOACs restore cerebral perfusion rapidly to the same extent as the former nanotube-derived PEG-hydrophilic carbon clusters (PEG-HCCs) with a single intravenous injection. These findings provide a deeper understanding of how carbon nanozyme syntheses can be tailored for improved antioxidant bioactivity, and set the stage for translation of medical applications.Item The Chemical Basis of Intracerebral Hemorrhage and Cell Toxicity With Contributions From Eryptosis and Ferroptosis(Frontiers, 2020) Derry, Paul J.; Vo, Anh Tran Tram; Gnanansekaran, Aswini; Mitra, Joy; Liopo, Anton V.; Hegde, Muralidhar L.; Tsai, Ah-Lim; Tour, James M.; Kent, Thomas A.Intracerebral hemorrhage (ICH) is a particularly devastating event both because of the direct injury from space-occupying blood to the sequelae of the brain exposed to free blood components from which it is normally protected. Not surprisingly, the usual metabolic and energy pathways are overwhelmed in this situation. In this review article, we detail the complexity of red blood cell degradation, the contribution of eryptosis leading to hemoglobin breakdown into its constituents, the participants in that process, and the points at which injury can be propagated such as elaboration of toxic radicals through the metabolism of the breakdown products. Two prominent products of this breakdown sequence, hemin, and iron, induce a variety of pathologies including free radical damage and DNA breakage, which appear to include events independent from typical oxidative DNA injury. As a result of this confluence of damaging elements, multiple pathways of injury, cell death, and survival are likely engaged including ferroptosis (which may be the same as oxytosis but viewed from a different perspective) and senescence, suggesting that targeting any single cause will likely not be a sufficient strategy to maximally improve outcome. Combination therapies in addition to safe methods to reduce blood burden should be pursued.