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Abstract

Statistical Issues in
Breast Cancer Screening and

Clustered Survival Data Analysis

by

Xiuyu Cong

This dissertation addresses certain statistical issues in two biomedical fields, namely,
modeling breast cancer screening program and correlated survival data analysis.

For the breast cancer screening project, this study investigates statistical ap-
proaches to quantitatively describing the age effect on screening sensitivity and so-
journ time distribution. Such an investigation is directly motivated by the need to un-
derstand the inherent relationships between age and these important quantities. Age
effect is incorporated through generalized linear models under a progressive disease
modeling framework. Parameter estimates are obtained by maximizing conditional
likelihood functions. Among a set of potential models, the Akeike’s information cri-
terion and likelihood ratio test are used in model selection and inferences. Extensive

simulation studies show that the estimators have reasonable accuracy and the model



selection criterion works well. The proposed methods are illustrated using data from
two large breast cancer screening trials.

For correlated survival data analysis, an interesting yet often ignored problem is
considered, that is when cluster sizes may be informative to the outcome of inter-
est, based on a within-cluster resampling approach and a weighted marginal model.
Large sample properties for the within-cluster resampling estimators are derived un-
der the Cox proportional hazards model, including the consistency and asymptotic
normality of the regression coefficient estimators and the weak convergence property
of the estimated baseline cumulative hazard function. The weighted marginal model
is constructed by incorporating the inverse of cluster sizes as weights in the estimating
equations. Simulation studies are conducted to assess and compare the finite-sample
behaviors of the estimators and the proposed methods are applied to a dental data

example as an illustration.
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Chapter 1

Introduction

This thesis intends to address certain important statistical issues in two biomedical
research areas, namely, breast cancer screening (Chapter 2) and multivariate corre-
lated survival data analysis (Chapter 3). Since the two areas and the issues considered

are not closely related, I would like to give separate introductions in what follows.

1.1 Breast Cancer Screening

1.1.1 Statement of Problem

In evaluating breast cancer screening programs, it is very important to estimate
screening sensitivity and the distribution of sojourn time during the early stage.
Better understanding of these two can better help in assessing the effectiveness and

quality of existing screening trials and facilitate public health policy makers in rec-



ommending optimal screening strategies. Most existing studies of screening trials
consider sensitivity as an unknown constant and sojourn times follow a distribution
with constant parameters. Evidence from clinical studies shows that women’s age
are related to screening sensitivity and sojourn time distribution. However, such ev-
idence is mostly from subset data analysis by stratifying data into age groups. Little
has been done to mathematically model such relationships. Due to the sparseness
of screening data, loss of efficiency is a big concern in subset analysis, therefore it is
interesting and necessary to use structural models to estimate age-specific sensitivity

and sojourn time distribution.

1.1.2 Methods

Based on the progressive model framework of Shen and Zelen (1999), I incorporate
the age effect on sensitivity and sojourn time distribution through generalized linear

models. Three models are proposed.

o Age-specific sensitivity only (Model 1). In this model, age effect is only on
sensitivity through a generalized linear model, e.g. logistic model. Sojourn

time distribution does not depend on age.

o Age-specific sojourn time distribution (Model 2). In this model, age effect is
on the mean of the sojourn time distribution through a simple linear model.

Sensitivity is an unknown constant.



o Age-specific sensitivity and sojourn time distribution (Model 8). In this model,

both sensitivity and sojourn time distribution depend on age.

Simulation studies are conducted to compare the performance of these models
comparing with the model without age effect (Model 0). Finally, the proposed models

are applied to two large breast cancer screening trials.

1.2 Clustered Survival Data Analysis

1.2.1 Statement of Problem

There are two interesting and important issues in analyzing clustered data: one is
the correlation among individuals within each cluster and the other is the possible
informativeness of cluster size. The former is well studied in both survival and non-
survival data analysis. The latter has been ignored and only brought to researchers’
notice very recently. For analyzing categorical and uncensored continuous data, Hofi-
man, Sen, and Weinberg (2001) proposed a within cluster resampling model and
Williamson, Datta, and Satten (2003) proposed a weighted estimating equation ap-
proach to account for informative cluster sizes. Other researchers have elaborated
such models, however theory only applies for categorical and uncensored continuous
data. For survival data with censoring, the problem is more complicated and chal-
lenging due to censoring and the infinite dimensionality of baseline hazard function.

In Chapter 3, I propose to extend both methods to survival data analysis based on



the Cox proportional hazards model framework.

1.2.2 Methods

o Within Cluster Resampling (WCR). Randomly sample one individual from each
cluster, apply the usual Cox model to the resulting dataset to estimate the re-
gression coefficients, estimate the cumulative baseline hazard using the Breslow-
Aalen estimator. Repeating a large number of times, the WCR estimators can
be constructed as the mean from the resamplings. Large sample properties are

derived.

o Weighted Marginal Model (WMM). Inverse of cluster sizes are incorporated as
weights into the score function based on Cox marginal model under working

independence assumptions.

Both models adequately account for the effect of cluster size when it is informa-
tive to survival probability. Simulation studies are conducted to assess small sample
properties. The proposed methods are applied to a dental study and compared with

the analysis result from unweighted marginal model.



Chapter 2

Breast Cancer Screening

This chapter proposes mathematical models for age-specific estimation of screen-
ing sensitivity and sojourn time distribution under the progressive disease modeling
framework of Shen and Zelen (1999), and applies these models to two breast cancer
screening trials, namely, the New York Health Insurance Plan (HIP) and the Cana-
dian National Breast Screening Studies (CNBSS). A paper based on this chapter has
been published in Statistics in Medicine (Cong, Shen, and Miller, 2005). Section 2.1
provides background and literature review. Section 2.2 states model assumptions and
notations, and describes models for age-specific estimation of sensitivity and mean
sojourn time. Section 2.3 presents the simulation studies. In Section 2.4 the results
of fitting these models to the two breast cancer screening trials are reported, while

some issues related to model fitting and inferences are discussed in section 2.5.



2.1 Background

Breast cancer is the second most frequently diagnosed non-skin cancer and the second
leading cause of cancer deaths among women in North America. According to the
Cancer Figures and Facts (2003), an estimated 211,300 invasive breast cancer cases
and 39,800 deaths were expected to have occurred among women in the United States
during 2003. Breast cancer incidence has continued to increase since the 1980s, how-
ever, mortality has declined by 1.4% per year during 1989-1995 and by 3.2% since
then. The decline of breast cancer mortality over the last twenty years is probably
due to improvement in treatment for breast cancer, especially adjuvant therapy for
stage II disease, and regular early detection programs (Jatoi and Miller, 2003).

The ultimate goal for an early detection program is to detect cancer in its early
stage, which is often defined as the preclinical stage where cancer exists with no
clinical symptoms, so that patients may obtain more effective treatments. To as-
sess the efficacy of a screening program, in addition to mortality reduction, two key
quantities, screening sensitivity and sojourn time during the preclinical stage, play
important roles. Screening sensitivity is the conditional probability of classifying a
person as in the preclinical stage given that person actually has preclinical disease.
Sensitivity measures the accuracy of a screening program in detecting the preclinical
disease. Sojourn time is the length of time the disease remains in the preclinical
stage and hence the maximum duration that a screening program can advance the

diagnosis. Knowledge of these two quantities is critical in assessing the effectiveness



and quality of screening programs and facilitating public health policy makers in rec-
ommending optimal breast cancer screening strategies. Hence, many researches in
the area of cancer screening have focused on the estimation of these two quantities
with various modeling strategies (Zelen and Feinleib, 1969; Walter and Day, 1983;
Day and Walter, 1984; Peer et al., 1996; Etzioni and Shen, 1997; Straatman et al.,
1997; Shen and Zelen, 1999).

Most of the previous studies assume that the screening sensitivity is constant and
sojourn times follow a parametric distribution with a constant mean. On the other
hand, evidence from many breast cancer screening studies has suggested that the age
at detection of breast cancer contributes to the variation of screening sensitivity and
the mean sojourn time. In particular, recent studies have shown that the sensitivity
of mammography is higher in older women (Peer et al., 1996; Miller et al., 1992a,b;
Shen and Zelen, 2001). For example, from the Nijmegen study, the sensitivity of
mammography was estimated to be 64%, 85%, and 80% within the following age
groups: younger than 50, 50-69, and older than 69 years of age, respectively (Peer
et al., 1996). The increase in sensitivity of mammography with age may be explained
by the fact that breast tissue is primarily fatty and less dense for older women but
more dense in younger women (Kerlikowske et al., 1996a,b). Notably, the age at
detection has also been found to be positively associated with the duration of the
preclinical phase of breast cancer. Several studies have shown that younger women

tend to have shorter sojourn time due to faster tumor growth (Shen and Zelen, 1999;



Tabar et al., 2000). For example, using the CNBSS data, the estimated mean sojourn
time was found to be longer for the 50-59 age group relative to the 40-49 age group:
that is 3.8 years versus 2.1 years based on the results from Shen and Zelen (1999).
Similar results are seen in the reports of the Swedish Two-County trial data by Tabar
et al. (2000). They reported the mean sojourn times for women by age group as
follows: 2.4 years (ages 40 to 49); 3.7 years (50 to 59); 4.2 years (60 to 69) and 4
years (70 to 79).

The observation of differences in the screening sensitivity and preclinical duration
among various age cohorts raises a challenge for the design and conduct of screening
trials, as too long a screening interval will result in missed diagnosis of cancer in the
younger cohorts, and too short intervals will result in an unnecessarily larger number
of screening examinations. Joint estimation of the sensitivity of the screening pro-
gram and the preclinical duration of the disease is preferred for a complete evaluation
of screening clinical trials. Therefore, it is of great interest to estimate the sojourn
time and screening sensitivity by age and to quantify the association between them.
However, little has been done to model such relationships and to quantitatively ex-
plore how the screening sensitivity and sojourn time vary across age groups based on

all available data besides subset analyses.



2.2 Proposed Models

2.2.1 Assumptions, Notations and Previous Work

Consider a cohort of initially asymptomatic individuals, who are enrolled in a screen-
ing trial for early detection of a chronic disease. Assume that the disease progresses
through the following three states: a disease-free state or a state where disease cannot
be detected by current screening techniques, denoted as Sp; a preclinical state where
disease is detectable by the screening examinations yet shows no clinical symptoms,
Sp; and a clinical state where symptoms are developed, S.. Sojourn time in S, is
defined as the duration from the time at onset of S, to the time at onset of S.. The
three-state stochastic model was originally used to describe the natural history of a
chronic disease by Zelen and Feinleib (1969).

Let ¢(t) be the probability density function of the sojourn time in S, and Q(t) =
[ q(z)dz, the survival function. Let 6 be the parameter vector associated with the
sojourn time distribution @(t). Define w(t)dt to be the probability of transition from
So to Sp within the time interval (¢,¢ + dt), and I(t)dt the probability of transition
from S, to S, within (¢,¢+ dt). The following relationship among w(t), I(t) and ¢(t)

holds,

I(t) = /o w(v)q(t — v)dv.

Let tg < t; < ... < t}—1(< T) represent k ordered screening times, which can refer

to chronological time or age, where T is the follow-up time past the time of the last
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screening examination. Define the ith screening interval as [¢;-1,¢;) for ¢ = 1,2, ..., k,
where tr = T and the length of the ith interval is §; = ¢;—t;_;. Screening examinations
occur on the left-hand boundary time of each screening interval. Conditioning on the
screening history, we have trinomial samples within each screening interval. The three
exclusive possible outcomes are (i) being screening detected at t;_;, (ii) clinically
diagnosed to have the disease between the two scheduled screening examinations
(ti—1,t;) (also called interval cases) and (iii) not diagnosed with either mode in the
screening interval. The last category consists of individuals without the disease of
interest plus diseased women with false negative tests.

Let D; be the probability of an individual being detected to have preclinical disease
at the ith examination given at time ¢;,_;, and I; be the probability that an interval
case occurs in the ¢th interval. Zelen (1993) derived the functional forms of D; and
I; as the following, which are functions of the screening sensitivity, 3, transition rate

w(.) and sojourn time distribution.

D=0 {i(l — ﬁ)i—j—l /tj w(l/)Q(ti_l - I/)dl/} (21)

j: j_l
and

- {2

j_O(l — B) /tj_1 w(v)q(t — v)dv + /ti_1 w(v)q(t — V)d,/} dt
= 2_:(1 -8 /j ww) [Qticy —v) — Q(t; — v)] dv +

=0 tj-1

l w(v) [1 — Q(t — v)]dv. (2.2)

Let us first consider an important special case, the stable disease model. Under
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the stable disease model assumption, the preclinical and clinical incidence rates in a
given population remain as a constant over time, and the corresponding transition
probability is also a constant. Thus, we have w(t) = w. Under the stable disease

model, the above probabilities can be simplified as,

D; = pwp(f) {1 - ﬁi(l — B)"772Qo(tio — tj—l)} (2.3)
=0
and

i-1
L =w {(& —~ (@8> (1= B [ Qoltie1 — t;) — Qolts — tj)]} ,  (249)
=0
where Qo(t) = u(0)~! [ Q(v)dv, and u(f) = J;° Q(z)dz is the mean sojourn time
in S,.

When the age effect is not a concern in the modeling of screening sensitivity and
sojourn time, Shen and Zelen (1999) described both full and conditional likelihood

methods to estimate the parameters of interest, utilizing periodic screening data. The

full likelihood function based on k screening intervals is proportional to

[Di]s'i [Iz]rz []_ — D’L _ [i]ni—si_ri ’

k
=]

1

where n; is the total number of participants at time ¢;_1; s; is the number of individuals
who were screening detected in S, at t;—;; and r; is the number of interval cases
in the ith interval. An alternative approach is the conditional likelihood method.
Conditioning on the total number of diagnosed cases, m; = s; +1;, in the ith interval,
the likelihood of an individual being screen-detected in [t;_y,¢;) is proportional to

Si TMi—8;
Di ]i

Li(8,0|m;) = D+ I
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The overall conditional likelihood function is obtained by multiplying the likelihood
contribution from each of the k intervals. With the observed data for each screening

interval, {(s;,7;),71 = 1,2,...,k}, the conditional log likelihood function follows
k
18, 0lma, ..., me) = > {silog D; +rilog I; = (s; + 1;) log(D; + I;)} .
i=1
For simplicity, I refer to this model without the age effect as Model 0.

As shown in previous studies, the full and conditional maximum likelihood meth-
ods both lead to reasonable estimates of sensitivity and mean sojourn time. The
full likelihood method usually yields estimates with smaller variations compared with
the conditional likelihood method {Shen and Zelen, 1999). Nevertheless, the condi-
tional likelihood method will be particularly useful when the age effect is incorporated
into the modeling in the following sections. For most screening trials, we have well-
documented data regarding the age at detection among the diseased cases, whereas
the same information is sometimes missing among the asymptomatic or healthy par-
ticipants at the end of follow-up. The lack of age information among (n; — r; — s;)
subjects in the ith screening interval makes it difficult to calculate the age-specific
component, (1 — D; — I), in the full likelihood function. Hence, the conditional like-
lihood that only focuses on diagnosed cases is preferred for modeling the age-specific

screening sensitivity and sojourn time distribution in the following models.
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2.2.2 Model 1: Age-Specific Sensitivity Model

Although we can explore the age effect on screening sensitivity and sojourn time dis-
tribution by fitting data from different age cohorts with Model 0, a major concern
is the loss of efficiency in the estimation procedure with limited sample sizes in such
subset analyses. It is hence of great interest to use a structural model to study the
associations between age and sensitivity, and between age and sojourn time distribu-
tion.

A generalized linear model is used to model the association between the screening
sensitivity and the age at screening examinations. Let z denote the age at a screening
examination, and G(x) define the age-specific screening sensitivity. The model can be

formed as
g{ﬁ<x)} =a+ b(:l? - .270),

where zy is the minimum age of the cohort at study entry, and g is a link function.
Since B{x) has to be in the range of [0,1] as a probability measure, we naturally

consider a simple logit link function, from which we obtain

B(z) = exp [a + b(z — zo)]

~ l+expla+b(z— )] (2:5)

With logit link and b > 0, the sensitivity function B{z) monotonically increases
to 1 as age z increases. As b — 0, the curve reduces to a straight horizontal line,

in which case the sensitivity is independent of age. This formula also provides a

straightforward interpretation for parameter b in terms of the odds ratio. When
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b > 0, the odds of being screening detected increase multiplicatively by e’ for every
unit increase in age. It may also be plausible to use other link functions, e.g. the
identity link, to describe this association. However, the estimate of G can be out of
[0, 1] range without imposing complex constraints for parameters a and b.

Let us first derive the age-specific probabilities under the stable disease model,
assuming that the sojourn time distribution is independent of age. Let D;(5(x),6)
be the probability of being detected at the ith screening examination at age z. If a
subject is diagnosed to have the disease at her first screening examination at age z,
she must have had the preclinical disease before her first examination and remain in

Sy, at age z. By incorporating age-specific screening sensitivity into (2.1),

D1 (8(z), 8) = wp(0)5(x).

For ¢ > 1, the probability of an individual being detected at the ith screening exam-

ination can be expressed as a sum of three components:

L]

i—

Di(B(@).6) = wu(®)B@){ [[(1 - Ble — ti-s + ) Qolti-1 — to) +

J

w
Il
o

j—j—1

H Blx —tic + 1)) [Qo(tich — tj) — Qoltim1 — t-1)] +

1 1

1 —Qo(ti-1 — ti—2)}- (2.6)

i—

ol
Il

The first component describes the probability that an individual is screening detected
to have the disease at her ¢th examination, while she entered S, before ¢;. Thus, she
must have failed to be detected at (i — 1) previous examinations given at times

to, ..., ti—2. The second term summarizes the possibilities that the individual has been
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missed on (1 — 7 — 1) previous examinations if she had her preclinical disease onset
in the jth interval, where 1 < j < ¢ — 1. The last term in (2.6) corresponds to the
possibility that the individual had her preclinical disease onset after her last negative
screening examination at t;_o, and was detected at t;—1. Given age x at t;_; and the
length of each screening interval, we can obtain the age at each previous screening
examination, and the age-specific sensitivity according to (2.5), which is incorporated
into (2.6).

Similarly, let [;(6(x),8) be the probability of an individual having her disease

clinically manifested in the ith screening interval at age x,
i—1
I;(B(x),0) = wu(d) {H(l ~ Bz ~ tim1 + 1)) [Qo(ti-1 — to) — Qo(ti — to)] +

j=0

i—

—_
o

j—

(1= Bz —tio1 +1))[Qo(ti-1 — t;) — Qolti — t;) —
j=11=j
Qo(tic1 — tj—1) + Qolti — tj—1)] +
5
p(6)

- 14 Qﬂ(ti — ti—l)} . (27)

The above formula also summarizes the possibilities of an individual (i) entering S,
before t; but having all her previous ¢ screening examinations negative (false); (ii)
entering S, during [t;_1,¢;) and failing to be detected at (i—j) screening examinations,
where 1 < j <4 —1; and (iii) entering .S, and being clinically manifested in the same
interval (t;_1,¢;). Again, age-specific sensitivity at each missed screening examination
is used here.

Within each screening interval [t;_1,¢;), i = 1,..., k, we observe data (s;, x5, 7;, x}),
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where x§ consists of the ages of s; screen-detected individuals at the ith examination,
ie. x§ = (2,7 = 1,2,..,8); and x{ contains the ages at clinical diagnosis of r;
interval cases, i.e. x{ = (zf;,j = 1,2,...,7;). With the observed data, the conditional
log likelihood function is of the form

k 84 ri
l(a,b,0my, x5, xI) = Z{Zleg&(ﬁ(wfj),e)+Zlog1i<ﬁ<x:j>,9)—
Jj=1

i=1 \j=1

l
> > log [Di(B(xl)), 6) + L(B(x1;), 6)] } .

l=s,r j=1
This conditional log likelihood function can then be maximized to obtain the
corresponding estimates within the space for parameters a, b, § using a nonlinear op-
timization method proposed by Byrd et al. (1995). This quasi-Newton method allows
the parameters to be estimated with constraints so that each of the parameters can
be in a meaningful range. For example, the mean sojourn time u(f) must be positive.

This algorithm is readily implemented in statistics softwares such as R.

2.2.3 Model 2: Age-Specific Sojourn Time Distribution

This section studies the age effect on sojourn time distribution. Previous breast
cancer screening trials have also indicated that the duration of breast cancer in S,
may be age dependent. However, few studies have explicitly explored the association
between sojourn time and the age at diagnosis. Because the mean of sojourn time
is often an important summary statistic in understanding the natural history of the

disease, we consider a generalized linear model to relate the age at detection with the
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mean sojourn time,
p(z) = po + &(z — o), (2.8)

where g stands for the mean sojourn time at age xg, x is age at detection. Here, age
at detection includes the possibilities of age at screening detection and age at clinical
diagnosis.

It is concerned that the sojourn time distribution may not be uniquely determined
by its mean. When sojourn time is exponentially distributed, its survival function,
Q(v|z), is determined by its mean p(z) through Q(v|z) = exp {—v/u(z)}. However,
such a relationship may not hold in general. In this case, we can make certain
transformation on the relevant parameters to allow the mean of sojourn times change
with age. For instance, if sojourn times follow a Gamma distribution, I'(a, A), the
mean and variance can be expressed by « and A through u = a) and 0% = a)?
respectively. By modeling the age effect on the mean, u(xz), only, the corresponding
parameters « and A are functions of age z, a(x) = u(z)?/0?, and A(z) = o%/u(z).

In a simple linear model, the coefficient £ > 0 indicates that the mean sojourn
time increases as age increases and vice versa. Furthermore, £ can be explained as the
change in the mean sojourn time for a unit change in age. Given the age at detection
z, Q(tlu(x)) = [ q(vu(z))dv, where g(t|u(z)) is the age-specific probability density
function of the sojourn time in S, u(x) is used here to indicate the dependence of

the sojourn time distribution on the age at detection through the mean. Moreover,
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Accordingly, the age-specific probabilities of being screening detected at the ith ex-
amination and being an interval case within the ith interval are denoted by D; (5, u(x))
and [;(3, u(z)), respectively. Assuming a constant screening sensitivity and letting

sojourn time distribution depend on age at detection, we can obtain,

i—1 b

Di(ﬁ,u(x))%@{z:(l —ﬁ)i‘j*/j

7=0 tj-1

w(v)Q(ti-1 — V!u(fb‘))dV} (2.9)

and

LB, ul(z)) = z—:(l—ﬁ)i"j/j w(v) [Qti-1 = vlp(z)) - Qti — vlu(z))] dv
=0 tj-1

~

+

ww)[1 = Qt; = vu(z))] dv. (2.10)

ti-1
When the sojourn time distribution is age-dependent, the stable disease model
generally does not hold. Therefore, we use the nonstable disease model instead. We
consider a simple case where the transition rate w(t) is constant. This can be a rea-
sonable assumption when the screening horizon is short compared with a participant’s
age. The following two probabilities can be readily obtained from (2.9) and (2.10),

with a similar decomposition as in section 2.2.2:

Di(B,ule) = wn()B{(1-B)7Qolti1 — tolu(a)) +
3= B Qoftics ~ t511(@)) — Qoltics — tyalua)] )

(2.11)
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and

L, () = wnle){ (1= B)' [Qolti-t ~ tolu(z)) — Qolti — tolu(z))] +

Y (1= 87 [Qo(timr — t5]u(2)) = Qolts — t5]us(x))—

Qo(ti1 — tj_1|p(@)) + Qolti — tj—1|p(x))] +
0i
ooy~ L @t~ tialu(e)) | (2.12)

Similarly, the conditional log likelihood function for this age-specific sojourn time
model is of the following form,
k 84 Ty
l(ﬁ’,umg’m’i)xiS)X;) = Z {ZlOgD'L(/Bhu’(xf])) + Zlog Il(/B?/‘L(xZ]))_
i=1 | j=1 j=1

l
> log [Di(B, ulaly)) + Ii(ﬁ,u(wij))]} ,

I=s,r j=1
which can be maximized to obtain the corresponding estimates for 3, o and €. The
constant transition rate w can be canceled out in the conditional likelihood.

One reviewer of the paper pointed out that the age at detection (either screening
detected or clinically diagnosed) may not be an appropriate anchor to model the
sojourn time distribution. In fact, it is more appropriate to use the age of preclinical
onset to model the age effect on the mean sojourn time, since the age of preclinical
onset is not affected by the mode of detection. By replacing Q(¢; — v|u(z)) with
Q(t; —v|u(r)) in (2.9) and (2.10), we can model the association between sojourn time
distribution and the age at onset of preclinical disease. However, the computation of

the likelihood is more complicated, since some asymptotic numerical integration can
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be required. In the following simulation section, simulation studies will be conducted
to compare the estimated parameters between using the age at onset of preclinical
disease and the age at detection in modeling the mean sojourn time, while generating

data assuming the mean sojourn time depends on age at onset.

2.2.4 Model 3: Age-specific Sensitivity and Sojourn Time

Distribution

For completeness, let both sensitivity and mean sojourn time dependent on age at
detection as specified in (2.5) and (2.8), respectively. Correspondingly, the probability
of being screening detected at age x at time ¢;_; and that of an interval case at age

x between [t;_1,t;) are given as follows:

1—2

D) ple) = wu@)B@)] [T - Bl — tios + ) Qo(ti-r — tolpu(x)) +

j=0

l\’)

-1

H B(x —ti-1 + 1)) [Qolti-1 — tjlu(z))—

1 I=j

1—2 i—

J

Qolti—1 — tj—1|p(z))] + 1 = Qoltiz1 — tz‘—2|ﬂ(f'3))}>

(2.13)
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i—lz]
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Qo(ti — tolu(2))] + Bz — tic1 + 1)) [Qo(tiz1 — t;]u(z)) -

l=J
tior — tia|u(2)) + Qo(ti — tj—1|ulz))] +

<o
Il

A~ =

Qolt; — t;|u(z)) — Qo

0;
e - ti_lruu))} . (2.14)

The conditional log likelihood function can be written similarly as in the previous
two models substituting these two probabilities, and maximized to obtain estimates

for a,b, ug and £ simultaneously.

2.2.5 Model Inferences

Under usual regularity conditions for the likelihood function, the asymptotic proper-
ties of the conditional maximum likelihood estimators can be inferred (Serfling, 1980).
When the models are correctly specified, the conditional likelihood equations yield
consistent estimates of the true parameters. The analytic formulae for the variance
estimators of the parameters are complicated, though they are not impossible to de-
rive. Instead, the bootstrap variance estimates can be used, and the corresponding
inference for individual parameters can be made by the Wald test.

To assess whether the proposed models are adequate to describe the relationships
under study, certain hypothesis tests can be carried out. Note that Model 0 is nested

within Models 1, 2 and 3. Hence the likelihood ratio test based on the conditional
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likelihood can be used for model checking. For example, to evaluate the age effect
on screening sensitivity in Model 1, we can test the null hypothesis, Hy : b = 0,
using the likelihood ratio test. The test statistic will be —2log(LR), where LR is an
abbreviation for likelihood ratio, which is asymptotically x? distributed (Mukerjee,
1992). To test the age dependence of the mean sojourn time, we perform a likelihood
ratio test between Model 0 and Model 2 with the null hypothesis, Hy : £ = 0.

When it is of interest to compare the model fittings between Model 1 and Model 2,
the likelihood ratio test is not applicable, since Model 1 and Model 2 are not nested.
Inétead, Akeike’s information criterion (AIC) can be used for model selection among
a set of nonnested models (Burnham and Anderson, 2002). The AIC criterion is
defined as

AIC = —2log L + 2K,

where L is the likelihood and K is the number of parameters included in the model.
AIC incorporates both the log likelihood and a penalty for the number of parameters.

In model selection, a model with the smallest AIC value is often preferred.

2.3 Simulation Studies

A series of simulation studies are conducted to evaluate the proposed models in terms
of estimation accuracy and ability to capture the relationship between age at screening
examinations and screening sensitivity, or between age at detection and mean sojourn

time. Data are generated from four possible scenarios.
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e Simulation I Generate data according to Model 0, where neither screening
sensitivity nor sojourn time distribution is age-dependent. Let the sensitivity
be equal to 0.85, and sojourn times generated from an exponential distribution

with mean 2.5 years.

o Simulation II. Generate data according to Model 0, where screening sensitivity
is age-dependent and mean sojourn time is constant. Let a = 0.8, b = 1.5,
which resulted in an average sensitivity of 0.80, and sojourn times simulated

the same way as in Simulation I.

o Simulation III. Generate data according to Model 2, where mean sojourn time
depends on age and screening sensitivity is constant. Let ug = 1.5, £ = 0.6, so

that the average sojourn time was 2.60 years, and sensitivity equal to 0.85.

o Simulation I'V. Generate data according to Model 3, where both screening sensi-
tivity and mean sojourn time are age-dependent. Let a = 0.8, b = 1.5, yp = 1.5

and £ = 0.6.

For each scenario, 1000 simulations were repeated, each consisting of 50,000 screen-
ing individuals at the start. The individuals’ ages at entry were generated uniformly
from 40 to 65 years old. For each simulation cohort, four equally spaced screening
intervals were used, each of which had a length of one year.

In simulation IV, data were generated according to Model 3, then all four models

were fitted to the simulated datasets. For reasons explained in section 2.3.4, in simu-
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lations I-III, only Models 0, 1 and 2 were fitted to the simulated data. To determine
which model provided the best fit for each simulated data, the one with the smallest

AIC value was selected as the best model.

2.3.1 Simulation I

Table 2.1 shows the results for simulation I. When data were generated from Model
0 such that both sensitivity and mean sojourn time were independent of age, the
estimates for sensitivity and mean sojourn time using Model 0, the correct model,
were closest to the true with smallest bias and variation. Moreover, the correct
model had the highest probability of being selected as the best fit, 928 out of 1000
simulations as shown in the last column. Fitting the same data using Model 1 resulted
in large standard deviation for parameter estimates, in particular, l;, indicating that
sensitivity is unlikely to be age-dependent. Similarly, for the fit with Model 2, the
mean sojourn time is not age dependent. Model fitting results are consistent with the

data structure.

2.3.2 Simulation II

Table 2.2 shows the results for simulation II. When data were generated from Model
1, the estimates of parameters a and b using Model 1 were close to the true values with
small standard deviation. The resulting average sensitivity and mean sojourn time

were also close to the true values. Model 0 underestimated the mean sojourn time
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Table 2.1: Simulation I: data generated from Model 0, fitted with Models 0, 1, 2

Model 0 Model 1  Model 2

b= 0 b# 0 b= 0
True Model £= 0 £= 0 ££ 0 Power
Model 0
a= 4.41(5.46)
b= 2.20(5.64) 92.8%
L1y = 2.79(.81)
€= 12(.06)

B=.85  .84(10) .94(.11) .80(.12)
p=25 264(.66) 7.19(6.32) 2.98(.84)

Each entry is mean (standard deviation) from 1000 simulations.
Power is the proportion of selecting the correct model.

in this case. The worst fit was by Model 3 considering the large standard deviations.
Similarly as in simulation I, Model 1, the correct model, was selected as the best fit
883 times out of the 1000 simulations.

It is interesting to know how the age-specific detection probabilities change versus
age at detection. As an example, Figure 2.1 shows the relationship between age-
specific probabilities of screening and clinical detection (2.6, 2.7) based on Model
1 in simulation II. It is shown that the probability of screening detection increases
with age at detection at all four examinations, where the first exam has the highest
probability, the last exam the lowest. For interval detection, the first interval has the
highest probability of being interval detected, the last interval the lowest. The interval

detection probability appears to be decreasing with age at detection because when



Table 2.2: Simulation II:

Model 0 Model 1 Model 2
b= 0 b# 0 b= 0
True Model £= 0 £= 0 £+ 0 Power
Model 1
a=-38 —.68(.29)
b=1.5 1.67(.43) 88.3%
Lo = 1.97(1.93)
£ = 1.45(1.21)
average 3 = .80 .82(.14)  .82(.06) .74(.33)
§=2.5 2.45(.93) 2.56(.46) 4.70(4.12)

Each entry is mean (standard deviation) from 1000 simulations.

Power is the proportion of selecting the correct model.
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data generated from Model 1, fitted with Models 0, 1, 2

assuming a stable disease and with strong positive age effect on screening sensitivity,

more women are detected by mammography when they age.

2.3.3 Simulation IIT

Table 2.3 shows the results for simulation III. When data were generated from Model

2, in fitting the data, Model 2 provided the best estimates of mean sojourn time and

sensitivity. The correct model had the highest empirical probability of being selected

as the best model, even though the proportion was rather low, only 664 out of 1000

simulations.

In response to the reviewer’s comment, additional simulation studies for Model 2

were conducted to investigate the difference between using the age at onset of S, and
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Figure 2.1: Probability of detection versus age at detection
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the age at detection to model the mean sojourn time, while the true mean sojourn
time depends on age at onset. Data were generated by letting the mean sojourn
time depend on the age at onset of S,. Then, Model 2 was fitted to the generated
datasets by assuming the mean sojourn time depending on the age at onset, and by
assuming the mean sojourn time depending on the age at detection, respectively. The
results are summarized in the second and third columns of Table 2.4. In fact, with
sojourn time distribution similar to the one under investigation as in breast cancer,
the estimators do not show substantial difference between these two fittings, though

both are somewhat biased. Estimators from fitting the model with the age at onset
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Table 2.3: Simulation III: data generated from Model 2, fitted with Models 0, 1, 2

Model 0 Model 1 Model 2

b= 0 b# 0 b= 0
True Model £— 0 £= 0 £4 0 Power
Model 2
a= 1.49(1.73)
b= 1.23(1.79) 66.4%
o = 1.5 2.01(.38)
=6 38(.22)
3= .85 92(.07)  .90(.07)  .87(.12)

average = 2.6 2.31(.42) 2.48(.44) 2.68(.81)

Each entry is mean (standard deviation) from 1000 simulations.
Power is the proportion of selecting the correct model.

of S, (correctly) have smaller variations than those using the age at detection.

2.3.4 Simulation IV

Table 2.5 shows the results for simulation IV. When data were simulated using Model

3, the results of fitting Models 1-3 failed to show significant parameter estimates, b

or £. All three models resulted in similar estimated average sensitivity and mean
sojourn times. This indicates that the model including age effect on both sensitivity

and mean sojourn time does not gain much improvement over Model 1 or 2 when only

sensitivity or sojourn time depends on age. For this reason and to save computation

time, Model 3 is omitted in simulations I-III and in the subsequent data application.
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Table 2.4: Simulation Results: data generated with mean sojourn time depending on
age at onset.

Model 2
True values  Age at onset* Age at detection'
o =15 1.94(.38) 2.00(.58)
£=6 35(.19) 37(.21)
8= .85 88(.10) 87(.12)
average u = 2.6 2.58(.54) 2.68(.79)

Each entry is mean(standard deviation) from simulations
* Fitting Model 2 assuming dependence on age at onset
! Fitting Model 2 assuming dependence on age at detection

Table 2.5: Simulation IV: data generated from Model 3, fitted with all four models

Model 0 Model 1 Model 2  Model 3
b= 0 b# 0 b= 0 b# 0

True Model £= 0 £= 0 £4 0 £4 0
Model 3
a=—.8 —1.13(.23) —.32(.42)
b=15 1.80(.31) 1.34(.54)
po = 1.5 59(.15)  1.61(.47)
=.6 .94(.09) 57(.29)

average 0 = .80  .96(.05) .80(.03) .88(.07)  .82(.07)
average = 2.62 1.75(.23) 2.75(.24) 2.35(.26) 2.68(.46)

Each entry is mean(standard deviation) from 1000 simulations
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2.4 Application to Two Breast Cancer Screening

Trials

As motivated by the breast cancer screening trials, we illustrate the proposed models
and estimation methods using data from two large screening trials: HIP study and
CNBSS. The three proposed models were fitted to both the HIP trial and the CNBSS.
Based on previous findings, the exponential distribution is the best-fitting distribution
for the sojourn times among several parametric families that have been explored for
early detection of breast cancer (Zelen and Feinleib, 1969; Walter and Day, 1983).
Thus, an exponential model for sojourn time distribution is assumed. Model 2 was
fitted to both datasets with age at detection, assuming a constant transition rate, for

computational simplicity.

2.4.1 Data Description

The HIP study was carried out in the 1960s and was the first randomized breast can-
cer screening trial to evaluate screening mammography. The study enrolled approx-
imately 62,000 asymptomatic women, 40 to 64 years old at entry. The participants
were evenly randomized to a screening or control group. Women in the screening
group were offered an initial and three additional annual screening examinations. No
screening examination was offered to the control group. Women in this group fol-

lowed their usual practice in obtaining medical care. In this analysis, only data from
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the screening group for the first five years of follow-up were used. The numbers of
participants, screening detected at each exam and interval cases among each interval

are summarized in Table 2.6.

Table 2.6: HIP: total participants, screening detected and interval cases.

Screening Exam

First Second Third Fourth

No. of total participants 20,166 15,936 13,679 11,971
No. of screening detected 55 32 18 27

No. of interval cases 13 8 11 13

The CNBSS investigators conducted two randomized controlled screening trials
by the age of entry. In the first trial about 50,340 women aged 40 to 49 years at
entry were randomized to either a study or control group. Women in the study group
had an initial and then four annual screening examinations. The second trial enrolled
women aged 50-59 years, with 19,711 in the study group and 19,694 in the control
group. The same screening schedule and screening modality were given to women in
the study group as in the first trial. Since we are primarily interested in age-specific
sensitivity and sojourn time, to obtain a wider age range, we combined the data from
the two screening groups from the CNBSS with the first five years of follow-up in this
analysis. The numbers of participants, screening detected at each exam and interval

cases among each interval are summarized in Table 2.7.
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Table 2.7: CNBSS: total participants, screening detected and interval cases.

Screening Exam

First Second Third Fourth

No. of total participants 44,925 40,093 39,413 39,032
No. of screening detected 238 100 85 105

No. of interval cases 36 30 17 26

2.4.2 Analysis Results

For the purpose of model selection, the AIC value for each model is calculated and
shown in Table 2.8 for HIP and 2.9 for CNBSS. In addition, the likelihood ratio test
statistic, —2log(LR), with its p-value in the parentheses, is estimated between the
nested models. For the HIP study, the AIC value for Model 1 is the smallest, though
the differences among the three models are not substantial. It seems to indicate an
indifference between the models under comparison, especially between Model 1 and
Model 2 (Burnham and Anderson, 2002). For the nested models (Model 0 and Model
1), the likelihood ratio test indicates a marginal statistical significance of Model 1
over Model 0 (p=0.07), while the effect of age on the sojourn time distribution is
even weaker. For the CNBSS, the difference in the AIC values between Model 1 and
Model 0 is 5.72, which shows significant evidence of Model 1 being favored over Model
0. On the other hand, the age effect on the sojourn time distribution is relatively

weak, similar to the results from the HIP study. In addition, the likelihood ratio
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Table 2.8: Parameter estimates from the proposed models for HIP

Model 0 Model 1 Model 2

§= 0 =0 §# 0

—log L 98.86 97.23 97.36

. o o= —13(144) .

estimates @ = 75(19) b = .47(.29) ? _ 59( 1)
po= 21359 T gce A = 201069
go= aoi ¢ 52(.32)

~210g(LR) 3.26(.07) ** 3.0(.08)

AIC 201.72 200.46 200.72

* parameter estimates from data (bootstrap standard error).
** _2log(LR) value (p-value).

statistic for testing Model 1 versus Model 0 also leads to a statistically significant age
effect on screening sensitivity; whereas the age effect is marginally significant for the
mean sojourn time. The Wald test results from the conditional likelihood are less
stable than those from the likelihood ratio tests, as found previously (Shen et al.,
2001). Thus, the inference here does not rely on the Wald test.

As shown in Tables 2.8 and 2.9, the coefficient estimates b are positive in both
trials, indicating that screening sensitivity increases with age at screening examina-
tions. Figure 2.2 shows the relationship between screening sensitivity and age in both
studies based on the parameter estimates. The overall sensitivity of the CNBSS in
the observed range of age is generally higher than that of the HIP study, and the

sensitivity increases more rapidly with age in the CNBSS.
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Table 2.9: Parameter estimates from the proposed models for CNBSS

Model 0 Model 1 Model 2

b= 0 b+ 0 b= 0

§€= 0 £¢= 0 §¢# 0

—log L 289.53 285.67 287.77

. o o= 31(278)

estimates O = 82(.10)« b = 1.07(13.26) b= 80(.20)
po=208(48) T o) Ao = LTO(8))
po=esad ¢ 11(.07)

—210g(LR) 7.72(.005) ** 3.52(.06)

AIC 583.06 577.34 581.54

* parameter estimates from data (bootstrap standard error).
** —2log(LR) value (p-value).

Based on the estimated & and b in Model 1, the screening sensitivity for the HIP
study varies from .47 to .85 for the observed age range, with an average of .69. The
mean sojourn time is estimated to be 2.57 years with a bootstrap SE of .46. The
average sensitivity and mean sojourn time are comparable with those estimated by
Shen and Zelen (2001), which are the estimates under Model 0, and those by Day and
Walter (1984) of .82 for sensitivity and 1.7 years for the mean sojourn time. For the
CNBSS, sensitivity changes from .58 to .99 with an average being .90 and the mean
sojourn time is 2.42 years with a bootstrap SE of 1.22 under Model 1. These are also
comparable with the parameters estimated in Shen and Zelen (2001).

When fitting Model 2 with the mean sojourn time specified as in (2.8), we ob-
tained positive estimates for é in both studies, which indicates an increasing trend for

the mean sojourn time with age at detection, though such a relationship is not sta-
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Figure 2.2: Sensitivity versus age at screening examinations
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tistically significant. The estimates lead to an average mean sojourn time of 3.04 and
2.9 years, respectively, for the HIP study and the CNBSS. The corresponding screen-
ing sensitivity is .59 (SE, .15) and .80 (SE, .20) for the HIP trial and the CNBSS,

respectively.

2.5 Discussion

Models are proposed to evaluate the age effect on screening sensitivity and sojourn

time distribution in breast cancer screening trials. The results suggested, to a rea-
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sonable degree, that the screening sensitivity increases with the age at screening ex-
aminations. Previous studies noted this tendency as described in the subset analyses
by stratifying women into different age groups (Peer et al., 1996). Parmigiani, on the
other hand, proposed some parametric models to relate age to screening sensitivity,
as well as to sojourn times (Parmigiani, 2002). However, the estimates of parameters
based on his models were loosely determined using the subset analysis results of Peer
et al. (1996).

Naturally, we can jointly model the age dependencies on both the sojourn time
distribution and screening sensitivity (Model 3). Simulation study IV showed that
the model including age effect on both screening sensitivity and mean sojourn time
does not gain much improvement over Model 1 or Model 2. Neither the AIC selec-
tion procedure nor the likelihood ratio test led to significant differences. In other
words, when either the screening sensitivity or mean sojourn time is age dependent,
introducing age dependency on the second quantity does not significantly improve the
model fitting. A plausible explanation is that screening sensitivity and mean sojourn
time are strongly correlated. When the screening sensitivity is higher, smaller tumors
become detectable so that the sojourn time in S, becomes longer. This correlation is
most likely to weaken the identifiability of the age effect on both screening sensitivity
and mean sojourn time in the same model.

Even though it is more appropriate to use the age at onset of preclinical disease

to model the sojourn time distribution, the difference in model fitting would not be
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substantial for breast cancer than using age at detection according to our simulation
studies. However, the difference could be significant for cancers with much longer
sojourn times, such as prostate cancer.

A simple logit model for screening sensitivity and a linear model for mean sojourn
time are suggested in analyzing the two screening trials, the general methodology
to estimate the unknown parameters remains to be the same with any alternative
parametric models. As suggested in some studies, as women age, the increase in
the mean sojourn time may slow down (Tabar et al., 2000). In this case, a three-
parameter logistic curve for the effect of age may be more appropriate to capture this

trend, u(z) = However, it is worth noting that, compared with the simple

_a
TTbeele=20) °

linear model, more parameters need to be estimated for this flexible model, which

may yield less efficient estimators.



Chapter 3

Informative Cluster Size in

Clustered Survival Data Analysis

In this chapter, I generalize two methods for analyzing clustered survival data with in-
formative cluster sizes. One is the within cluster resampling method of Hoffman et al.
(2001) based on the Cox proportional hazards model framework. Asymptotic theories
are developed for the regression coefficient estimators, so are the weak convergence
property of the estimated cumulative baseline hazard function, and the corresponding
consistent variance-covariance estimators. An alternative is to generalize the standard
marginal model (MM) of Lee, Wei, and Amato (1992) by incorporating the inverse
of cluster sizes as weights into the score function to account for informative cluster
sizes.

The rest of this chapter is organized as follows. Section 3.1 provides a motivating

38
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example and literature review. Section 3.2 introduces the within-cluster resampling
method and weighted marginal models under the Cox proportional hazard model.
The large sample properties for the estimators of the regression coefficients and the
cumulative baseline hazard function are derived for the within-cluster resampling
method. Section 3.3 conducts simulation studies to assess the finite sample properties
of the proposed methods. Section 3.5 applies the two proposed methods to the dental

study and compare the results with those from the standard marginal models.

3.1 Motivating Example and Literature Review

3.1.1 Motivating Example

Correlated survival data often arise in biomedical research settings. For example, in
randomized multi-center clinical trials, patients are recruited and grouped by study
centers. In dental or family disease studies, all teeth of the same person or all members
of the same family are naturally clustered together. Observations within the same
cluster are likely to be correlated, where the correlation needs to be accounted for in
statistical estimation and inference.

Another interesting problem in clustered/correlated survival data, which is often
ignored, is the possible informativeness of cluster sizes. Cluster size is informative
when the outcome of interest among individuals in a cluster is associated with the

size of that cluster. For example, in a toxicology study assessing the effect of mother
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mice being exposed to certain toxicant, mothers that are particularly susceptible to
the toxicant may produce more offspring with birth defects that have lower survival
probabilities and meanwhile may experience more fetal resorptions, hence reducing
the litter size. In this case, pups of a smaller litter tend to have shorter survival, thus
the cluster size is informative to the effect of toxicant exposure on offspring survival.
Another example is found in a dental study, where the effects of behavioral factors
such as cigarette smoking and hygiene status, may predict tooth survival for patients
with chronic periodontitis (McGuire and Nunn, 1996). The outcome of interest was
the time to tooth loss from initiation of therapy. Shown in Figure 3.1 are the Kaplan-
Meier survival curves for molar teeth stratified by the cluster sizes (the number of
molars of a patient < 6, =7 or =8). We can see that patients with more teeth have
higher molar survival probability. As a result, cluster size is informative to tooth

survival.

3.1.2 Literature Review

Marginal models have been proposed and widely used for analyzing clustered survival
data. Under the proportional hazards model framework, Lee et al. (1992) proposed
a multiplicative intensity model where they estimated the regression coefficients as-
suming independence among observations and provided a “sandwich” form covari-
ance matrix estimator that takes account of the intra-cluster correlation. Similarly,

in analyzing multivariate failure times where individuals experience multiple failure



Figure 3.1: Kaplan-Meier curves for the survival of molars in the dental study
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types, for example, heart disease and cancer, or repeated failures of the same type
such as multiple tumor recurrence, Wei, Lin, and Weissfeld (1989) proposed using
the marginal Cox proportional hazards model (Cox, 1972, 1975) for each failure type
without specifying any dependence structure among the distinct failure types while
the covariance matrix was estimated jointly across all failure types to adjust for the
correlation. Spiekerman and Lin (1998) and Clegg, Cai, and Sen (1999) presented
a more general marginal regression model for multivariate failure time data which
included Wei et al. (1989) and Lee et al. (1992) as special cases. Alternative marginal
models include the accelerated failure time model, additive hazard model and linear
transformation models. Yin and Cai (2004) considered marginal additive hazards
models for multivariate survival data. Lin and Wei (1992) proposed a semiparamet-
ric accelerated failure time model where the covariates are linearly related to the
logarithm of the survival times for the multivariate case. Lee, Wei, and Ying (1993)
applied a log-linear regression model based on a population-averaged approach to
highly stratified failure time data. The class of semiparametric linear transformation
models includes the proportional hazards and the proportional odds models as special
cases. In these models, the covariates are linearly related to an unknown transfor-
mation of the failure time with a fully specified error distribution. Chen and Wei
(1997) proposed an approach similar to that of Wei et al. (1989) for multivariate
failure time data by modeling each marginal failure time with a linear transformation

model. Cai, Wei, and Wilcox (2000) combined the idea of the generalized estimating
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equation method (Liang and Zeger, 1986) and the linear transformation models for
correlated survival data.

However, all the aforementioned methods do not explicitly consider the possi-
ble informativeness of cluster sizes. When cluster size is informative, the standard
marginal models tend to overweight the large clusters since each individual obser-
vation contributes equally in the likelihood function and therefore produce biased
estimates. Hoffman et al. (2001) proposed a within-cluster resampling (WCR) proce-
dure, where one observation is randomly sampled from each cluster. The observations
in the resampled dataset are thus independent and standard methods can be readily
applied. By resampling the observed data with replacement many times, the final
estimator can be obtained through averaging over the estimates from the resampled
data. Williamson et al. (2003) proposed a modified generalized estimating equa-
tion method, where the estimating equation is inversely weighted by cluster sizes.
Both methods can adequately account for informative cluster sizes by weighting clus-
ters equally and produce valid inferences for the parameters of interest. Follmann,
Proschan, and Leifer (2003) discussed the asymptotic theories and broad applications
of the WCR approach under a different name, multiple outputation. More recently,
Benhin, Rao, and Scott (2005) gave a thorough and in-depth discussion on a mean
estimating equation approach that is in essence analogous to the work of Williamson
et al. (2003).

The theoretical development of the within cluster resampling and weighted esti-
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mating equation is well established for uncensored categorical and continuous data.
For correlated survival data, the problem is much more complicated and challeng-
ing due to the existence of censoring and the infinite dimensionality of the unknown

hazard function.

3.2 Proposed Methods

3.2.1 Notations

Let ¢ = 1,...,m index the clusters which are assumed to be independent of each
other, and j = 1,...,n; denote the individuals within the ith cluster. Let T;; and Cj;
be the failure and censoring times for the jth individual in the ith cluster, respectively.
Let Z;; (t) denote a p-vector of possibly time-dependent covariates, where ¢t € [0, 7]
for some finite constant 7 > 0. Assume that Tj; is conditionally independent of C;;
given Z;;(t). The observed times are X;; = min (T;;, C;;), with the censoring indicator
Ay; = I (X;; = T,5), where I () is the indicator function.

If cluster sizes are ignorable (non-informative to survival), the usual marginal

proportional hazards model (Lee et al., 1992) is defined as

A(t|Zij(2)) = Ao(t) exp(BoZi (1)), (3.1)

where Ao(t) is an unspecified baseline hazard function, and 3, is the regression coef-

ficient vector. Define the counting process Nj; (t) = I (X;; <t,A;; = 1), the at-risk
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process Y;; (t) = 1 (X;; > t), and

My ()= Nit) = [ Yiyw) exp(Biu)) o)

Note that M;; (t) is a local square-integrable martingale with respect to the marginal
filtration F;;(t) = o {N;;(u), Y;;(u), Zi;(w) : 0 < u < t}. However, due to the within-
cluster dependence, M;; (t) is not a martingale with respect to the joint filtration
generated by the history of all the failure, censoring and covariate information up
to time t. Regression based on (3.1) would yield consistent estimators and valid in-
ference. However, when cluster sizes are informative, the model estimators may be
asymptotically biased by a direct application of (3.1). The causes for cluster sizes be-
ing informative can be complicated and usually unknown, since some latent variables

may implicitly affect the baseline hazard for each cluster and/or the covariates.

3.2.2 The Within-Cluster Resampling Method

Randomly sample, with replacement, one individual from each of the m clusters. The
bth resampled dataset denoted by {X?,AYZ!(¢);i=1,...,m,t€[0,7]}, consists
of m independent observations, which can be analyzed using the Cox proportional
hazards model for independent failure time data. For b=1,..., B, we introduce the

following necessary notation:
Si7(8,1) =m™" D YPHZ))*F exp(BZY(1)),
i=1

sP(8,t) = B{S(8,1)}, e(8,t) =sV(8,1)/59(8,1),
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Vi(8,t) = S (3,)/5(8,t) — {SV(8,1)/57(8,1)}*?,
where a® = 1,a,aa’, for k =0,1,2.

For the bth resampled data, the partial likelihood function is given by

(e ) A
0 =] {e p(8 zz<X1>>} | 62)

i=1 mSlSO) (8, Xi‘b)

and accordingly, the score function is

Z / {zb (8, t)}dN}’(t). (3.3)

2 (8,1)

Solving Uy(B3) = 0, one can obtain a consistent estimator for 3, denoted as Bb.
Analogously, the baseline cumulative hazard Aq(t) fo Ao(u)du can be estimated by

the Breslow-Aalen estimator, which for the bth resampled dataset is given by

;/Z dNb()

) exp(B,Z3(u))

Repeating this procedure a large number of times, the WCR estimator for 3 is con-

structed as the average of the B resample-based estimates,

wcr = Zﬂlv (34)

and similarly, the WCR estimator for Ag(¢) is

B
Rolt. ) = 5 > 4806, 3y, 33)
b=1

where 8 = (B,,...,8p).
An attractive feature of the WCR method is that the estimates can be obtained
by maximizing the standard partial likelihood function for independent data with-

out specifying any correlation matrix. Simply by averaging over the estimates from
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the resampled data, we can obtain a consistent estimators for 3, and the variance-

covariance matrix of B, in a relatively straightforward fashion, as shown in the next

wCr

section.

3.2.3 Inference Procedures

Under certain regularity conditions (Anderson and Gill, 1982) and (Fleming and Har-
rington, 1990, pp.289-290)), for each resampled dataset, ,@b is consistent and asymp-

totically normal. To prove the asymptotic normality of 3, ,,, the central limit theorem

wcr?

(CLT) cannot be directly applied since 3., is the average of B identically distributed

WCIr

but dependent maximum partial likelihood estimators. Following similar arguments

as in (Hoffman et al., 2001), B,., can be rewritten as as the sum of m independent

WCT

cluster-specific terms so that the multivariate CLT can be applied. The asymptotic
normality is stated in the following theorem, for which the proof is outlined in the

Appendix.

Theorem 3.2.1. Under regularity conditions, as the number of clusters m — oo, the

within-cluster resampling estimator B, is asymptotically normal, that is

\/E(chr - /80) - NP(0> Z)
in distribution, where 3 is a finite and positive definite matrix.

A consistent estimator for X is given as

B
ﬁ::%{zﬁb—w—nﬁ}, (3.6)
b=1
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where X is the estimated variance-covariance matrix for 3, given by

{3 [wea i} @)

and € is the estimated covariance matrix among the B resample-based estimates Bb,

B

A — A —

Q= (B - 1)_1 Z(/Bb - /chr)(lgb - ﬁwcr)l‘

b=1
The consistency of S is given in Theorem 2, with a sketched proof in the Appendix.

Theorem 3.2.2. Under the same regularity conditions, £ is consistent for .

Let W (t) = vm(Ao(t, B)=Ao(t)), t € [0, 7], and let W(t) be a zero-mean Gaussian

process with a finite covariance function between W(t;) and W(ts).
Theorem 3.2.3. The random process W (t) converges weakly to W(t) fort € [0, 7].

Similar to equation (3.6), the covariance function of Ay(¢, 3), between time ¢; and

ts, can be estimated by

= 2 Cov{Ab(t1, By), A (t2, By)} -
B-1) Z{[\g(tlﬁb) — Ao(t1, B HAb (t2, By) — Ao(t2, B)} |, (3.8)
b=1

where Cov{Ab(t;, 3,), A 2(ta, B,)} can be estimated by

min(t1,t2) d[\S(U) " ~ >
———— + H'(8,,t1)2H(8,, t2),
/0 SéO) (/Bb> u)

and

/Bb) b
H(By,t) Z/ m{S dN? ().

0 Iabv }
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3.2.4 Weighted Marginal Model

To avoid the intensive computation of WCR, consider extending the work of Williamson
et al. (2003) to the clustered survival data with informative cluster sizes. Consider

the following weighted score function

LA T 2k Db Ye()Zu(®) exp(BZu() | |
ve) = z_: n z_:/o {Z” ) D het 7 2oy Yi(t) exp(B'Zy (1)) } a0

(3.9)
By setting U(8) = 0, one can obtain the estimator from the weighted marginal model,
denoted by mem. To account for the informative cluster sizes, the contribution
of each individual to the overall estimating equation is inversely weighted by the
corresponding cluster size. Similar to the WCR approach, this weighting scheme
eliminates the overweight for larger clusters as opposed to the standard unweighted
marginal models. Asymptotic properties of this estimator can be justified following
arguments similar to those in Cai and Prentice (1997) by letting the weights equal
the inverse of each cluster size.
The covariance matrix of /7 (Bymm — B,) can be consistently estimated by the

following robust “sandwich” form estimator:

T =TI (B ) VI (B (3.10)

where I{8,,) is the information matrix with B, replaced by Bymm,

ng Mg

V=33 S Uy UL,
i=1

T oj=1 k=1



o0

- /T Z(t) - D ohet i 2oty Yu(t) Zwt ) exp(Bymm Zai (1)) 4T (1)
0 Ek—l Nk Z?kl )/kl exp(ImemZkl( ))

The baseline cumulative hazard function at time ¢ can be estimated using the weighted

Breslow-Aalen estimator,

in: 1 o de(u)
i=1 L j=1 Zk 1nk Zz 1Ykl eXp(/memZkl( ))

The covariance function can be estimated as

Wmm

Cov(Ao(t1, Bymm), Ao (t2, Bumm) Z% Yibi(ta), (3.11)

where

1 & ¢ sz(U) ! —1/7 3

hilt) = — . — H' (I (Bymm) Ui (2),
i Z/O Zk-—l Nk El IYkl( )exp(/awmmzkl( ))
J AN
ey ;Uij(t)
and
i 1 DY - ?:1:;kl(u)zkl( )exp(ﬁwmmzkl(u))dNij(u).
i1 0 {0k a2 Yi(u ) exP(BrymmZit (1)) }2

3.3 Simulation Studies

Simulation studies were conducted to assess the performance of the proposed methods.
Different scenarios were considered by varying within-cluster correlations, censoring
rates, and most importantly, informative and non-informative cluster sizes on covari-

ate effects. Two sets of simulations were conducted: one with datasets of clusters
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m = 100 and the other with m = 200. For each set of simulation, I simulated 1,000
datasets and analyzed each dataset using the WCR method with B = 2,000 resam-

ples, the WMM and the MM methods under the working independence assumption.

3.3.1 Simulation Procedure

Correlated failure times were simulated using the Cox PH model with positive stable

frailty (Hougaard, 1986),

AMtij|Zi;, wi) = dosw; exp(YoZij)

where w; follows a positive stable distribution with parameter a, o € (0, 1).

o Positive stable frailty w;. The family of stable distributions is usually character-
ized with four parameters «, 7, 0,8, where a € (0, 2] is the index of stability, n €
[—1,1] the skewness parameter, o > 0 the scale parameter and ¢ € (—oo, +00)
the location parameter (Nolan, 2006). When « € (0,1),7 = 1,6 = 0, the distri-
bution has a support on the positive half of the real line and is called the positive
stable distribution. In this simulation, I fixed the scale parameter ¢ = 1 for
identifiability purpose and the positive stable distribution has essentially one
parameter a. A positive stable variable can be simulated using the following

representation (Chambers et al., 1976; Nolan, 2006),

W = (a(6)/6) "



52

where # and £ are independent, # is uniform on (0,7), £ is exponential with

mean one, and

(sin(1 — a)8)(sin ag)*/(1-o)
a(6) = = (SO;H e :

The parameter « represents the degree of correlation between cluster members,
with a — 0 giving maximal positive dependence, and o — 1 corresponding to
the independent case. Let a equal 0.5 and 0.75, corresponding to the within-
cluster correlation p = 0.3,0.15, respectively. For ease of exposition, I consid-
ered a constant baseline hazard, Ao;(t) = 1. After integrating out the frailty,
the true marginal regression parameters are B, = a7, and the true baseline

cumulative hazard at time ¢ is Ag(t) =t

o Cluster size n;. The size of each cluster is either randomly generated, the
non-informative case, or depends on the frailty value. To simulate informative
cluster sizes, I let the size of each cluster depend on the value of the generated

frailty such that

n =2+ k/10,if gp < wi < gep10,k = 0,10,20, ..., 90.

where gy, is the kth percentile of the frailty distribution. As a result, the cluster
sizes vary from 2 to 11, depending on which percentile range the frailty values
fall. For the non-informative cases, the cluster sizes are randomly taken from

{2,...,11} no matter what the frailty values are.

o Correlated failure times T;;. For cluster ¢, given the generated the frailty w;,
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the survival times of the individuals within this cluster, T;;,5 = 1,...,n;, can

be independently generated from the above model.

e Censoring times C;;. The censoring times were generated independently from
a uniform distribution U(0,a), where the value of a can be selected to achieve

desired censoring rates.

o Covariates Z;;. Two covariates were included in the simulation: one was a
binary variable, Z;, taking the value of 0 or 1 with an equal probability of 0.5,
which may represent the treatment or control group; the other was a continuous

variable, Z,, independently generated from a uniform U (0, 1) distribution.

3.3.2 Simulation Results

For each simulated dataset, I obtained the point estimates and standard errors of the
regression coefficients using all three methods, 83,..,, Bomm and B 1 also calculated
the sample standard deviation over 1,000 simulations, the mean standard error and

the 95% confidence interval coverage rate for each estimated coefficient.

3.3.2.1 Informative cluster size

This section shows the simulation results when cluster sizes are informative. As shown
in Table 3.1, when cluster sizes are informative, the point estimates of the regression
coefficients using the WCR and WMM methods are approximately unbiased and

for which the 95% confidence interval coverage rates are close to the nominal value,
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whereas the MM estimates are substantially biased. The variation of the parameter
estimates decreases when the number of clusters increases, and increases when the
censoring rate increases. The sample standard deviations (SD) are close to the mean
standard errors (SE) for the WCR and WMM methods, which suggests that our

variance estimators (3.6) and (3.10) provide good estimates for the variability of B,

and Bmm-

Figure 3.2 shows the quantile-quantile (Q-Q) plots for the estimated coefficients
after being standardized versus a standard normal distribution. All six Q-Q plots
appear to lie closely on the identity line, which indicate that the parameter estimators
follow approximately normal distributions. The deviation from the identity line (the
solid line) in the bottom two plots shows the bias in the MM estimator.

For the cumulative baseline hazard, we computed the point-wise estimates and
standard errors for some selected time points, which were the 20th, 40th, 60th and
80th percentiles of the underlying true failure time distribution. The results were
shown in Tables 3.2 and 3.3. The WCR estimator, Ay(¢, B), and the WMM estimator
Ao(t, Bymm) Provide point-wise estimates that are very close to the true cumulative
baseline hazard with satisfactory 95% confidence interval coverage rate. The MM
estimator is significantly biased with poor coverage rate. The WCR and MM methods
yielded similar point-wise estimates for the cumulative baseline hazard, however, the
WCR estimator has uniformly better 95% confidence interval coverage rates. The

similarity between the columns SD and SE suggests that (3.8) and (3.11) serve as
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good estimators for the variance of Aq(t, B) and Ag(t, mem), respectively.

Figure 3.3 shows the Q-Q plots for the point-wise estimates of the cumulative
baseline hazard at two time points, i.e. ¢ = 0.04 and ¢ = 0.25. All plots appear as
straight lines, indicating asymptotic normality. However, on the ones for the MM
estimates, the points are substantially deviant from the solid identity line, which

shows the biasedness of the MM estimator similarly as for the regression estimates.

3.3.2.2 Non-informative cluster size

Similar simulation studies are conducted for non-informative cluster sizes. Results are
shown in a similar fashion as in the previous section. Table 3.4 shows the results for
the regression parameters. One can see that when cluster sizes are not informative,
all point estimates are approximately unbiased and the coverage rates of all three
methods are reasonably close to the nominal level. The variation of the parameter
estimates decreases when the number of clusters increases, and increases when the
censoring rate increases. In Figure 3.4, all six Q-Q plots appear as straight line and
stay close to the identity line.

For the cumulative baseline hazard, as shown in Tables 3.5 and 3.6, all three
models perform comparably. As an example, in Figure 3.5 the Q-Q plots at the two
time points are similar for all three models. The points align closely along with the

identity line except at the tails.
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Figure 3.2: Q-Q plots for @ with informative cluster sizes: 1,000 simulations with

m = 200, a = 0.5 and 50% censoring rate.
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Figure 3.3: Q-Q plots for Ag(t) with informative cluster sizes: 1,000 simulations with

m = 200, a = 0.5 and 50% censoring rate.
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Figure 3.4: Q-Q plots for 3 with non-informative cluster sizes: 1,000 simulations with

m = 200, « = 0.5 and 50% censoring rate.
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Figure 3.5: Q-Q plots for Ay(t) with non-informative cluster sizes: 1,000 simulations

with m = 200, « = 0.5 and 50% censoring rate.
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3.4 Data Application

I applied the WCR (with B = 10,000), WMM and MM methods to the motivating
example, the dental study in Spiekerman and Lin (1998). The original study was con-
ducted by McGuire and Nunn (1996) to assess the effect of some commonly measured
clinical factors in predicting tooth survival. The dataset consists of 100 consecutive
patients from Dr. McGuire’s appointment book. All of these patients had been diag-
nosed with moderate to severe chronic adult periodontitis and had received at least
five years of maintenance care. For this analysis, I considered the effect on tooth
survival for two covariates, age and smoking status (0 = smoker, and 1 otherwise).
The failure time for each tooth is defined as the time to tooth loss measured from the
initiation of active periodontal therapy.

In this analysis, only the upper and lower molars were considered (a normal person
should have a maximum of eight molars). There were 96 patients with both upper
and lower molars, i.e. the number of clusters was 96. The cluster size ranged from 1
to 8. The total number of teeth was 598 with 58 observed failures. As illustrated in
section 3.1.1, the cluster size might be informative to tooth survival. Patients who
have more teeth tend to have higher tooth survival probability; more precisely, larger
cluster sizes indicate better survival.

The analysis results are summarized in Table 4, where I compare the estimates
of the regression coefficients using the WCR and WMM methods with those using

the standard MM. The point estimate for the effect of smoking status is similar using
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Table 3.7: Estimates of the regression coefficients for the dental study.

WCR WMM MM

Covariate Estimate SE Estimate SE Estimate SE

Smoker -0.501  0.304 -0.500  0.342 -0.558  0.340

Age 1.877  0.984 1.721 0.743 1.759 0.724

WCR and WMM but quite different from that obtained by the MM method. This
might be due to the informativeness of cluster sizes. The hazard ratio of tooth loss
for cigarette smoking is 1.647 (WCR and WMM) and 1.747 (MM) with overlapping
95% confidence intervals. Smoking is a very important factor that hastens tooth loss.
The estimates of the age effect from the three methods are consistent, indicating that

older patients would lose their tooth sooner than younger ones.

3.5 Discussion

When cluster sizes are informative to the covariate effect on the outcome of interest,
the estimated regression coefficients could be substantially biased when using the
standard marginal model approach. In contrast, both the within-cluster resampling
and weighted marginal model methods provide valid estimates. Simulation studies
have shown that the estimates under the within-cluster resampling and weighted

marginal model methods are approximately unbiased with reasonable 95% confidence
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interval coverage. On the other hand, when cluster sizes are informative such that
the hazard ratio increases as cluster sizes get bigger, any estimation procedure that
overweights the larger clusters will overestimate the covariate effect. This is precisely
shown in our simulation studies where the estimates by the standard marginal model
are positively biased.

The merit, among others, of the within-cluster resampling method is that it is
unnecessary to make assumptions of the underlying correlation structure. By re-
sampling one observation out of each cluster, the estimation problem is reduced to
an independent case, hence standard methods for independent data can be readily
applied.

The within-cluster resampling method is computationally intensive due to the
resampling scheme. The variance estimators defined in (3.6) and (3.8) involve the
subtraction of two terms, thus it is possible to obtain negative estimates. However,
this is very rare in the simulations. In particular, the occurrence frequency is less
than one out of a thousand when the number of resampling is large. Another poten-
tial problem in applying the within-cluster resampling method is that the estimator
from a single resampling dataset might be unstable under heavy censoring since each

resample only consists of partial information from the original data.



Chapter 4

Conclusions and Future Work

In summary, I have considered age-specific estimation of screening sensitivity and
sojourn time distribution for breast cancer screening trials, and marginal analysis of

multivariate survival data when cluster sizes are informative.

4.1 Breast Cancer Screening

I generalized the model framework of Shen and Zelen (1999) to incorporate age in-
formation in estimating screening sensitivity and sojourn time distribution. Three
models were proposed: the first one considered screening sensitivity as age-dependent
through a generalized linear model while keeping sojourn time with a constant mean;
the second one had mean sojourn time depend on age through a simple linear model
and sensitivity as a constant; the third one considered both screening sensitivity and

mean sojourn time as age-dependent, which is essentially a combination of the other
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two models.

Through simulation studies, I found that these models have reasonable perfor-
mance. They captured the structure correctly in simulated data in that when data
were generated with certain age dependence, and analyzed with all models, the model
indicating that same age dependence has the best fit and provides best estimates with
smallest variations for the parameters of interest. Applying the proposed models to
two breast cancer screening trials, I found that in both trials, screening sensitivity is
positively related to age at screening examinations, and mean sojourn time may also
depend on age but less significantly.

One of the goals for better estimation of sensitivity and sojourn time distribution
is to provide better insights for public policy makers in making decisions for optimal
breast cancer screening strategies. The findings that age is related to sensitivity
and sojourn time can be incorporated into decision analytical models, cost-effective
analysis and meta-analysis models for breast cancer screening trials.

The models are proposed for, but should not be limited to breast cancer screening,.
I believe with careful consideration of the natural history of other chronic disease, the

models can be applied to other settings.

4.2 Clustered Survival Data Analysis

I have considered two marginal approaches for analyzing clustered survival data when

cluster sizes are informative to survival probability. The first approach extends the
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work of Hoffman et al. (2001), provides necessary theoretical development for appli-
cation of the within cluster resampling method to survival data with independent
censoring. Asymptotic properties were developed for both regression coefficients and
baseline cumulative hazards. The second approach combines the idea of standard
marginal model (Lee et al., 1992) and the weighted estimating equation approach
(Williamson et al., 2003) by incorporating inverse cluster sizes as weights into the
score function. Robust variance estimators were provided for both regression coeffi-
cients and baseline cumulative hazards.

Simulation studies confirmed the consistency and asymptotic normality of the
estimators for both methods. I also found that when cluster sizes are informative to
survival probabilities, estimates using standard marginal models ignoring cluster sizes
tend to be substantially biased, whereas the two proposed models provides consistent
estimates. On the other hand, when cluster sizes are not informative, the proposed
methods perform comparably with the standard marginal models.

Both proposed models are based on Cox proportional hazards model for esti-
mation. When nonproportionality is a concern, it would be of interest to explore
other model frameworks, for example, additive hazards model, accelerate failure time
model, and linear transformation model. In fact, appeared in a recent issue of Life-
time Data Analysis, Lu (2005) discussed a similar weighted model under the linear
transformation model framework. However, the author did not provide simulation or

data application results for his model.
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I have discussed in Chapter 3 that within cluster resampling estimates may be
unstable under heavy censoring due to the fact that resampled datasets only contain
partial information of the original data. There is another issue with smaller number
of clusters, m, within the original dataset. When there are a small number of clusters,
the number of resamplings, B, can achieve an upper limit. Follmann et al. (2003)
discussed this problem in a non-survival analysis setting. It will be interesting to
explore this problem for better usage of within cluster resampling in multivariate

survival data analysis.



Appendix A

Asymptotic Properties of WCR

A.1 Asymptotic Normality of 3

wcCr

Expanding the score function of the bth resample, Uy(3), defined in (3.3), in a Taylor

series around 3, we get

Up(Bo) = J:(8) (B, — Bo), (A1)

where 3 lies on the segment between 8, and Bb, which can be rewritten as

By — B) = ﬁubm())m;l(ﬁ*).

Averaging over b= 1,..., B resamples, we obtain

\/77_1( wcr - Z Ub /30 mJb (/8 )

Anderson and Gill Anderson and Gill (1982) showed that m~=1J,(3*) converges to a
positive definite matrix in probability. Hence, it remains to show that B='m=1/2 32 U,(8,)
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converges in distribution to a normal distribution as m — oo. Interchanging the order

of summation, we rewrite

m T (1

i=1 Sb (BOat)

Z/ {Z2(t) — e(By, ) } dME(E) + 0,(1)

< B
Ui(Bo) + 0p(1)

1 B
ﬁZbBﬂUb(ﬁo) = m;
1

where U;(8,) = 2 Sp, /T {Z8(t) — e(By, t) } dM?(t). Since U;(8,) are independent
with zero mean and finite variance, by the multivariate CLT Sen and Singer (1993),
m~1/2 Zf;l U,(3,) is asymptotically normal with mean zero and some positive defi-
nite covariance matrix.

Finally, by Slutsky’s theorem, /m(B,. — By) — N,(0,%) in distribution as

m — 00, where X is positive definite, for which a consistent estimator is provided.

The proof of its consistency follows.

A.2 Consistency of ¥

The consistency of 33, defined in (3.8), follows similarly as in Appendix 2 of Hoffman

et al. (2001). First, we write

Var(vimf,) = E{Var(vmB,|data)} + Var{ E(vmB,|data)},
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where the expectations on the right-hand side are over the resampling distribution

for 3, given the data. Note that E(8,|data) = 8., thus

Var(v/mB,.,) = mVar(B,) — mE{Var(8,|data)}. (A.2)

For the first term on the right-hand side of (A.2), from each resample we obtain a
consistent estimator of Var(8,), denoted as 3, given in equation (3.7). By averaging
over the B resamples, the resulting estimator is also consistent. The second term
in (A.2) can be estimated as the covariance matrix among the B resample-based

estimate ﬁb, that is

Q - E’;‘I Z(Bb - chr)(:@b - /chr)/'

Since E{Var(y/m@,|data)} = mE(£), to show the consistency of 3 , we need to
show that m€ — mE(Q) — 0 in probability as m — oco. To prove this, we can show
that m2Var(2) — 0, Since the B resamples are identically distributed although not
independent, and all the pairwise covariance between resamples are also identical, we

have

A —

m2Var(Q) = (F?T)Qvar{ﬁ(/éb - chr)\/%(lab - chr),}

B . _ _ . _ . -
+ 5 Cov{(By = Bue) (B — Bucr)'s By = Bucr) By = B (1-3)

The first term of (A.3) is approximately zero for large B, the second term of (A.3)
goes to zero as m — oo by a similar argument as in Hoffman et al. (2001). This

completes the proof for consistency of 3,
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A.3 Weak Convergence Properties of \y(t)

By adding and subtracting a common term of Ag(t, Jé; ) evaluated at the true parameter

values, denoted as Ag(t, B), we rewrite

W(t) =

= ﬁ {j—\O(ta 50) -

vm {/_\o(ta B8) - Ao(t)}

)} + v {Ro(t,B) - Ro(t, B0) } . (A4)

The first term on the right-hand side of (A.4) can be written as

Vm {Ao(t, By) — Mo(t) }

\/77—’L

vm

ii/t{

i=1

_INw) [
O)(/@O) ) /OdAO(U):I
dN(

(u)
— dAg(u
O)</307 ) O( )}]

1

B b(w
> s+ a1,
b=

1
|mB
m

R

The second term of (A.4) can be written in the following form

Vi {Rolt, B) = olt, B) } = vim

By the Taylor series expansion,

AS(t: By)

Therefore,

\/T_n{/_\o(t,,é) - /_\O(tngo)} = _\/E(chr - /30

- Ag(t;ﬂo)

Z{Ab (t:8) — A} (1:80) |

ts(l) * R
(B, ~ By / ﬁmu;ﬁ*)

(B, By) /O o(Boy ) dAo(w) + op(1).

y /0 e(Bo, u)dAo(w) + oy(1).
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It then follows that

1 m B ¢ :
= ﬁ Z { Z (IBWCI‘ 180)/\/0 e(ﬁﬂ,u)dAO(u)} + Op(l)

i=1 b=1
(A.5)
and since this is a sum of m independent terms with expected mean zero and fi-
nite variance, by the multivariate CLT Sen and Singer (1993), the finite-dimensional
distribution of W (t) converges weakly to a zero-mean Gaussian process, denoted as
W(t), with finite covariance function.

We then need to show the tightness of W (t). Define the two terms of (A.5)
as Qu(t) = BTy m V2 [1 5O (B, u) " dMP(u) and Qa(t) = —v/(Byer —
ﬁo)’/ote(ﬁo,u)dAo(u)‘ The tightness of W(t) follows the tightness of Q;(¢) and
Q2(t). Under the regularity conditions, m=1/2 3" fot s (B,,u)"'dM}(u) is a square-

integrable martingale with respect to the joint filtration
F(t) =VP,o {Nib(u),Yib(u), Zh(u): 0 <u <t}

Thus, Q;(t) is tight by Theorem 10.2 of Pollard (1990). Under the regularity condi-
tions, the tightness of Qy(t) follows from Theorem 1. This completes the proof for

Theorem 3.
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