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Abstract

Compressive Sensing for 3D Data Processing

Tasks: Applications, Models and Algorithms

by

Chengbo Li

Compressive sensing (CS) is a novel sampling methodology representing a paradigm

shift from conventional data acquisition schemes. The theory of compressive sens-

ing ensures that under suitable conditions compressible signals or images can be

reconstructed from far fewer samples or measurements than what are required by

the Nyquist rate. So far in the literature, most works on CS concentrate on one-

dimensional or two-dimensional data. However, besides involving far more data,

three-dimensional (3D) data processing does have particularities that require the de-

velopment of new techniques in order to make successful transitions from theoretical

feasibilities to practical capacities. This thesis studies several issues arising from the

applications of the CS methodology to some 3D image processing tasks. Two specific

applications are hyperspectral imaging and video compression where 3D images are

either directly unmixed or recovered as a whole from CS samples. The main issues

include CS decoding models, preprocessing techniques and reconstruction algorithms,

as well as CS encoding matrices in the case of video compression.

Our investigation involves three major parts. (1) Total variation (TV) regular-



iii

ization plays a central role in the decoding models studied in this thesis. To solve

such models, we propose an efficient scheme to implement the classic augmented

Lagrangian multiplier method and study its convergence properties. The resulting

Matlab package TVAL3 is used to solve several models. Computational results show

that, thanks to its low per-iteration complexity, the proposed algorithm is capable

of handling realistic 3D image processing tasks. (2) Hyperspectral image processing

typically demands heavy computational resources due to an enormous amount of data

involved. We investigate low-complexity procedures to unmix, sometimes blindly, CS

compressed hyperspectral data to directly obtain material signatures and their abun-

dance fractions, bypassing the high-complexity task of reconstructing the image cube

itself. (3) To overcome the “cliff effect” suffered by current video coding schemes, we

explore a compressive video sampling framework to improve scalability with respect

to channel capacities. We propose and study a novel multi-resolution CS encoding

matrix, and a decoding model with a TV-DCT regularization function.

Extensive numerical results are presented, obtained from experiments that use not

only synthetic data but also real data measured by hardware. The results establish

feasibility and robustness, to various extent, of the proposed 3D data processing

schemes, models and algorithms. There still remain many challenges to be further

resolved in each area, but hopefully the progress made in this thesis will represent a

useful first step towards meeting these challenges in the future.
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Chapter 1

Introduction

For many years, signal processing relies on the well-known Shannon sampling theorem

[1], stating that the sampling rate must be at least twice as high as the highest

frequency to avoid losing information while capturing the signal (the so-called Nyquist

rate). In many applications, such as digital cameras, the Nyquist rate is too high to

either store or transmit without making compression a necessity prior. In addition,

increasing the sampling rate might be very costly in many other scenarios — medical

scanners, high-speed analog-to-digital converters, and so forth.

In recent years, a new theory of compressive sensing — also known under the

terminology of compressed sensing, compressive sampling, or CS — has drawn a lot

of researchers’ attention. It builds a fundamentally novel approach to data acquisition

and compression which overcomes drawbacks of the traditional method. Nowadays,

compressive sensing has been widely studied and applied to various fields, such as

radar imaging [35], magnetic resonance imaging [36, 37, 38], analog-to-information

conversion [39], sensor networks [40, 41] and even homeland security [42].

A new iterative CS solver — TVAL3 — has been proposed for 1D and 2D sig-

nal processing in the author’s master thesis [9], and has been successfully applied to

1
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single-pixel cameras [32, 34]. TVAL3 is short for “TV minimization by augmented

Lagrangian and alternating direction algorithms”. Its efficiency and robustness has

been empirically investigated, but the theoretical convergence has not been estab-

lished. In this thesis, the algorithm behind TVAL3 will be restated for more general

cases and a proof of convergence will be studied and presented. After that, the thesis

will move into the main part — high-dimensional data processing employing the CS

theory and the general TVAL3 method. It would be inefficient to study the general

case of the high-dimensional data without considering inherent structures and char-

acteristics of different kinds. Therefore, two classes of 3D data processing problem

will be addressed here — hyperspectral data unmixing and video compression.

The thesis is organized as follows: a review of compressive sensing, an introduction

to the total variation, and the background of hyperspectral data unmixing and video

compression will be covered in this chapter; Chapter 2 completes the general TVAL3

algorithm by extending it to a more general setting and establishing a convergence

result; Chapter 3 and 4 describe in detail the compressive sensing and unmixing

of hyperspectral data and the compressive video sensing framework, respectively;

Chapter 5 concludes the thesis by iterating the main contributions and discussing the

future work in the relevant fields of scientific research.

1.1 Compressive Sensing

In 2004, Donoho, Candès, Romberg and Tao conducted a series of in-depth research

based on the discovery that a signal may still be recovered even though the num-

ber of data is deemed insufficient by Shannon’s criterion, and built the theory of

compressive sensing [4, 3, 2]. To make the exact recovery possible from far fewer

samples or measurements, CS theory counts on two principles: sparsity and incoher-
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ence. Sparsity screens out the signal of interest, while incoherence restricts the sensing

schema. Specifically, a large but sparse signal is encoded by a relatively small num-

ber of incoherent linear measurements, and the original signal can be reconstructed

from the encoded sample by finding the sparsest signal from the solution set of a

under-determined linear system. It has been proven that computing the sparsest so-

lution directly (ℓ0 minimization in mathematics) is NP-hard and generally requires

prohibitive computations of exponential complexity [10]. However, the discovery of

ℓ0-ℓ1 equivalence [8] averted solving NP-hard problems for compressive sensing.

Differing from ℓ0-norm, which counts the number of nonzeros and is not a real

norm literally, ℓ1-norm measures the sum of magnitudes of all elements of a vector.

The use of ℓ1-norm as a sparsity-promotion function can be traced back decades. In

1986, for example, Santosa and Symes [13] introduced ℓ1 minimization to reflection

seismology, seeking a sparse reflection function which indicates significant variances

between subsurface layers from bandlimited data. They appear to be the first to

give a coherent mathematical argument behind using ℓ1-norm for sparsity promotion,

though it had been used by practitioners long before. In the next few years, Donoho

and his colleague carried this brilliant idea further and explored some early results

regarding ℓ1 minimization and signal recovery [15, 16]. More work on ℓ1 minimization

under special setups was investigated in the early 2000s [22, 23, 24, 25].

Grounded on those early efforts, a major breakthrough was achieved by Candès,

Romberg and Tao [3, 2], and Donoho [4] between 2004 and 2006, which theoretically

proved ℓ1 minimization is equivalent to ℓ0 minimization under some conditions for

signal reconstruction problems. Furthermore, they showed that a K-sparse signal

(under some basis) could be exactly recovered from cK linear measurements using ℓ1

minimization, where c is a constant. This new theory has significantly improved those

earlier results on sparse recovery using ℓ1. Here, the constant c directly decides the size
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of linear measurements. The introduction of the restricted isometry property (RIP)

for matrices [5] — a key concept of compressive sensing — responded this question

theoretically. Candès and Tao showed that if the measurement matrix satisfies the

RIP to a certain degree, it is sufficient to guarantee the exact sparse signal recovery.

It has been shown that Gaussian, Bernoulli and partial Fourier matrices with random

permutations possess the RIP with high probability [3, 26], and become reasonable

choices as the measurement or sensing matrix. For example, K-sparse signals of length

N require only cK log(N/K)≪ N random Gaussian measurements for exact recovery.

However, it is extremely difficult and sometimes impractical to verify the RIP property

for most types of matrices. Is RIP truly an indispensable property for compressive

sensing? For instance, measurement matrices A and GA in ℓ1 minimization should

retain exactly the same recoverability and stability as long as matrix G is square and

nonsingular, but their RIP constant may vary a lot due to different choices of G.

A non-RIP analysis, studied by Zhang, proved recoverability and stability theorems

without the aid of RIP and claimed prior knowledge could never hurt, but possibly

enhance the reconstruction via ℓ1 minimization [7].

Other than ℓ1 minimization methods (also known as Basis Pursuit [12, 27, 28]),

greedy methods could also handle compressive sensing problems by iteratively com-

puting the support of the signal. Generally speaking, a greedy method refers to the

one following the metaheuristic of choosing the best immediate or local optimum at

each stage and eventually expecting to find the global optimum. In 1993, Mallat and

Zhang introduced Matching Pursuit (MP) [29], which is the prototypical greedy al-

gorithm applied to compressive sensing. In recent years, a series of MP-based greedy

methods have been proposed for compressive sensing, such as Orthogonal Matching

Pursuit [30], Compressive Sampling Matching Pursuit [31], and so on. However, ℓ1

minimization methods usually require fewer measurements than greedy algorithms
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and provide better stability. When noise exists or the signal is not exactly sparse, ℓ1

minimization methods provide a much more stable solution and make the methods

applicable to real world problems.

1.2 TV Regularization

Total variation (abbreviated TV) regularization can be regarded as a generalized ℓ1

regularization in compressive sensing problems. Instead of assuming the signal is

sparse, the premise of TV regularization is that the gradient of the underlying signal

or image is sparse. In other words, total variation measures the discontinuities and

the TV minimization seeks the solution with the sparsest gradient.

In the broad area of compressive sensing, TV minimization has attracted more

and more research activities since recent research indicates that the use of TV regular-

ization instead of the ℓ1 term makes the reconstructed images sharper by preserving

the edges or boundaries more accurately. In most cases, edges of the underlying im-

age are more essential to characterize different properties than the smooth part. For

example, in the realm of seismic imaging, detecting boundaries of distinct media play

a key role in identifying the geological structure. This advantage of TV minimization

stems from the property that it can recover not only sparse signals or images, but

also dense staircase signals or piecewise constant images. Even though this result has

only been theoretically proven under some special circumstances [2], it stands true

on a much larger scale empirically.

The history of TV is long and rich, tracing back at least to 1881 when Jordan first

introduced total variation for real-valued functions while studying the convergence of

Fourier series [11]. After decades of research, it has been thoroughly investigated and

widely used for the computation of discontinuous solutions of inverse problems (see
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[19, 20, 21], for example). In 1992, Rudin, Osher and Fatemi [14] first introduced the

concept total variation into image denoising problems. From then on, TV minimizing

models have become one of the most popular and successful methodologies for image

denoising [14, 43], deconvolution [47, 46] and restoration [49, 48], to cite just a few.

Some constructive discussions on TV regularized problems have been reported by

Chambolle et al. [50, 51].

In spite of those remarkable advantages of TV regularization, the properties of

non-differentiability and non-linearity make TV minimization far less accessible and

solvable computationally than ℓ1 minimization. Geman and Yang [45] proposed a

joint minimization method to solve half-quadratic models [44, 45]. Grounded on

this work, Wang, Yang, Yin and Zhang proposed and studied a fast half-quadratic

method to solve deconvolution and denoising problems with TV regularization [46]

and further extended this method to image reconstruction [52] and multichannel im-

age deconvolution problems [53, 54]. The two central ideas in this approach are

“splitting” and “alternating”. The key step is to introduce a so-called splitting vari-

able to move the differentiation operator from inside the TV term to outside, thus

enabling low-complexity subproblems in an alternating minimization setting. These

ideas have been previously used in solving a number other problems, but their ap-

plications to TV regularized problems has resulted in algorithms significantly faster

than the previous state-of-the-art algorithms in this area.

Even though this method is very efficient and effective, it restricts the measure-

ment matrix to the partial Fourier matrix. Under a more general setting, Goldstein

and Osher [56] added Bregman regularization [55] into this idea, producing the so-

called split Bregman algorithm for TV regularized problems. This algorithm is equiv-

alent to the classic alternating direction method of multipliers [58, 59] when only one

inner iteration of split Bregman is performed. Around the same year, Li, Zhang and
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Yin employed the same splitting and alternating direction idea on the classic aug-

mented Lagrangian method [60, 61] and developed an efficient TV regularized solver

— TVAL3 [9, 125]. This particular implementation also integrates a non-monotone

line search [82] and Barzilai-Borwein steps [79] into it and results in a much faster

algorithm. TVAL3 has been proposed and thoroughly studied in author’s master the-

sis [9], and numerical evidences indicates that TVAL3 outperforms other TV solvers

when solving compressive sensing problems, such as SOCP [48], ℓ1-Magic [2, 3, 5],

TwIST [86, 85] and NESTA [84]. However, its theoretical result of convergence has

not been established until recently. In this thesis, algorithms of 3D data processing

are extended from TVAL3, whose general descriptions as well as convergence proof

will be revealed in Chapter 2.

1.3 3D Data Processing

Three-dimensional (3D) data processing has tremendous applications in today’s world,

such as in surveillance [93], exploitation [92], wireless communications [96], military

intelligence [94], public entertainments [95], environmental monitoring [91], and so

forth. However, some common bottlenecks or difficulties slow down the pace of devel-

opment of 3D data processing. One of the main difficulties rises from the enormous

volume of 3D data, which causes inconvenience of storing, transmitting and even pro-

cessing. Therefore, it is critical to explore the inherence of data on different domains

and develop effectual methods to reduce the volume of 3D data without losing the

key information.

Compressive sensing has been widely recognized as a promising and effective acqui-

sition method for 1D and 2D data processing. In this thesis, the author will explore

two important classes of 3D data processing tasks — hyperspectral unmixing and
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video compression — grounded on the framework of compressive sensing. Both hy-

perspectral and video data can be regarded as a series of 2D images. Simply applying

the compressive sensing idea on 2D images slice by slice could work to some extent,

but is far from optimal or ideal situations. More sparsity and further compression

can be obtained by properly utilizing inherent connections among those 2D slices.

For example, video clips are usually continuous in time domain and the unchanged

background in adjacent frames could be subtracted. This is one straightforward way

to enhance the sparsity of video data. Moreover, advanced techniques or methods

require further study on the nature of 3D data sets. More detailed introduction and

review of hyperspectral and video data will be presented at the beginning of Chapters

3 and 4, respectively.

1.4 Organization

The thesis is organized as follows. Chapter 2 describes the TVAL3 algorithm in a gen-

eral setting and establishes a theoretical convergence result for the algorithm. Chapter

3 focuses on the hyperspectral imaging and proposes new compressive sensing and

unmixing schemes which can significantly reduce both the storage and computational

complexity. Chapter 4 turns to the discussion of video compression for wireless com-

munication and raises a novel multi-resolution framework based on the compressive

video sensing. Both Chapter 3 and Chapter 4 contain descriptions and results of a

number of numerical experiments to demonstrate the efficiency and effectiveness, as

well as limitations, of proposed methods or framework. Lastly, Chapter 5 concludes

the whole thesis and points out the future work of compressive sensing on 3D data

processing.



Chapter 2

General TVAL3 Algorithm

The algorithm of TVAL3 has been proposed and numerically studied for TV regular-

ized compressive sensing problems in author’s master thesis [9]. Extensive numerical

experiments have demonstrated its efficiency and high tolerance to noise. In this chap-

ter, the methodology of TVAL3 will be described in a general case and convergence

will be theoretically analyzed for the first time.

Starting with the review of the classic augmented Lagrangian method, this chapter

will describe the development of the general TVAL3 algorithm step by step.

2.1 Review of Augmented Lagrangian Method

For constrained optimization, a fundamental class of methods is to seek the minimizer

or maximizer by solving a sequence of unconstrained subproblems iteratively. The

solutions of subproblems should converge to a minimizer or maximizer eventually.

Back to 1943, Courant [57] proposed the quadratic penalty method, which could be

viewed as the precursor to the augmented Lagrangian method. This method penalizes

equality constraint violation by adding a multiple of the square of the constraint

9
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violation into the objective function and turns the constrained optimization problems

to be unconstrained. Due to its simplicity and intuitive appeal, this approach has been

used and studied comprehensively. However, it requires the penalty parameter to go to

infinity to guarantee convergence, which may cause a deterioration in the numerical

conditioning of the method. In 1969, Hestenes [60] and Powell [61] independently

proposed the augmented Lagrangian method which, by introducing and adjusting

Lagrangian multiplier estimates, no longer requires the penalty parameter to go to

infinity for the method to converge.

2.1.1 Derivations and Basic Results

Let us begin with considering a general equality-constrained minimization problem

min
x

f(x), s.t. h(x) = 0, (2.1)

where h is a vector-valued function and both f and hi for all i are differentiable. The

first-order optimality conditions for (2.1) are







∇xL(x, λ) = 0,

h(x) = 0,

(2.2)

where L(x, λ) = f(x) − λTh(x) is the Lagrangian function of (2.1). By optimiza-

tion theory, conditions in (2.2) are necessary for optimality under some constraint

qualifications. In addition, if problem (2.1) is a convex program, then they are also

sufficient.

In light of the optimality conditions above, an optimum x∗ to the original problem

(2.1) is both a stationary point of the Lagrangian function and a feasible point of
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constraints, which means x∗ solves

min
x
L(x, λ), s.t. h(x) = 0. (2.3)

In fact, it is obvious that (2.1) is equivalent to (2.3) for any λ. According to the

quadratic penalty method, a local minimizer x∗ of (2.3) may be obtained by solving a

series of unconstrained problems with the constraint violations penalized as follows:

min
x
LA(x, λ;µ) = f(x)− λTh(x) +

µ

2
h(x)Th(x). (2.4)

It follows the analysis of the penalty method that λ can be arbitrary but µ needs to go

to infinity, which may cause a deterioration of the numerical conditioning and result

in inaccuracy. The augmented Lagrangian method iteratively solves problem (2.4)

above, but updates multiplier λ in a specific way, and still guarantee convergence to

the minimizer of (2.1) without forcing penalty parameter µ to go to infinity. In that

case, LA(x, λ;µ) is known as the augmented Lagrangian function.

Intuitively, the augmented Lagrangian function differs from the standard La-

grangian function by adding a square penalty term, and differs from the quadratic

penalty function by the presence of the linear term involving the multiplier λ. Hence,

the augmented Lagrangian method combines the advantages of the Lagrange multi-

plier and penalty techniques without having their respective drawbacks.

Specifically, the augmented Lagrangian method can be described as follows. Fixing

the multiplier λ at the current estimate λk and the penalty parameter µ to µk > 0

at the k-th iteration, we minimize the augmented Lagrangian function LA(x, λ
k;µk)

with respect to x and denote the minimizer of current iterate as xk+1. To update

the multiplier estimates from iteration to iteration, Hestenes [60] and Powell [61]

-
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suggested the following update formula:

λk+1 = λk − µkh(xk+1). (2.5)

Bertsekas [71] proved one of the fundamental theorems to estimate the error

bounds and also the rate of convergence. For convenience, ‖.‖ refers to ℓ2 norm

hereafter. The theorem can be reiterated as follows:

Theorem 2.1.1 (Local Convergence). Let x∗ be a strictly local optimum of (2.1)

at which the gradients ∇hi(x
∗) are linearly independent, and f, h ∈ C2 in an open

neighborhood of x∗. Furthermore, x∗ together with its associated Lagrangian multiplier

λ∗ satisfies

zT∇2
xxL(x∗, λ∗)z > 0,

for all z 6= 0 with ∇hi(x
∗)T z = 0 ∀i; i.e., the second-order sufficient conditions are

satisfied for λ = λ∗. Choose µ̄ > 0 so that ∇2
xxLA(x

∗, λ∗; µ̄) is also positive definite.

Then there exist positive constants δ, ǫ, and M such that the following claims hold:

1. For all (λk, µk) ∈ D where D , {(λ, µ) : ‖λ− λ∗‖ < δµ, µ ≥ µ̄}, the problem

min
x
LA(x, λ

k;µk) s.t. ‖x− x∗‖ = ǫ

has a unique solution xk , x(λk, µk). It satisfies

‖xk − x∗‖ ≤ M

µk
‖λk − λ∗‖.

Moreover, function x(λ, µ) is continuously differentiable in the interior of D.

--
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2. For all (λk, µk) ∈ D,

‖λk+1 − λ∗‖ ≤ M

µk
‖λk − λ∗‖,

if λk+1 is attained by (2.5).

3. For all (λk, µk) ∈ D, ∇2
xxLA(x

k, λk;µk) is positive definite and ∇hi(x
k) are

linearly independent.

A detailed proof for local convergence theorem can be found in [71], pp. 108.

The local convergence theorem implies at least three features of the augmented

Lagrangian method. First of all, the method converges in one iteration if λ = λ∗.

Secondly, as long as µk satisfies M
µk < 1 for any k, the error bounds in the theorem

are able to guarantee that

‖λk+1 − λ∗‖ < ‖λk − λ∗‖;

i.e., the multiplier estimates converge linearly. Hence, {xk} also converges linearly.

Lastly, if µk goes to infinity, then

lim
k→+∞

‖λk+1 − λ∗‖
‖λk − λ∗‖ = 0;

i.e., the multiplier estimates converge superlinearly.

The augmented Lagrangian method requires solving an unconstrained minimiza-

tion subproblem at each iteration, which could be overly expensive. Therefore, design-

ing appropriate schemes to solve subproblems is one of the key issues when applying

the augmented Lagrangian method.

Numerically, it is impossible to find an exact minimizer of unconstrained minimiza-
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tion subproblem at each iteration. For convex optimization, Rockafellar [63] proved

the global convergence of the augmented Lagrangian method in the convex case for

an arbitrary penalty parameter, without demanding an exact minimum at each iter-

ation. In addition, the objective function f is no long assumed to be differentiable

and the theorem still holds.

Theorem 2.1.2 (Global Convergence). Suppose that

1. f is convex and hi are linear constraints;

2. the feasible set {x : h(x) = 0} is non-empty;

3. µk = µ is constant for all k;

4. a sequence {ǫk}∞ satisfies 0 ≤ ǫk → 0 and
∑∞

i

√
ǫk <∞;

5. at the k-th iteration, choose xk+1 ∈ {x : ‖∇xLA(x, λ
k;µk)‖ ≤ ǫk} and update

multiplier λk+1 following (2.5).

Then attained sequence {xk} converges to the global minimizer of (2.1).

A detailed proof for global convergence theorem can be found in [63], pp. 560–561.

This theorem confirms the global convergence under the condition of convexity

and approximate solutions for unconstraint subproblems. The error tolerance for

solving subproblems ensures the feasibility of this method in numerical analysis and

scientific computation.

2.1.2 Operator Splitting

Now we consider some structured function f . A large number of problems in physics,

mechanics, economics and mathematics consider f(x) = f1(Bx) + f2(x), where both

-
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f1 and f2 are convex, proper, lower semicontinuous functionals, and B is a linear

operator. In the early 1980s, Glowinski et al. studied this type of problems in depth

using the augmented Lagrangian and operator-splitting methods [68, 69, 70], which

are also closely related to the time-dependent approach as can be seen in, e.g., [67].

We consider

min
x
{f1(Bx) + f2(x)} , s.t. Ax = b, (2.6)

where f1 may be non-differentiable. Let w = Bx, then (2.6) is clearly equivalent to

min
w,x
{f1(w) + f2(x)} , s.t. Ax = b, Bx = w. (2.7)

With a new variable and the extra linear constraints, the objective of (2.6) has been

split into two parts. The aim of splitting is to separate non-differentiable terms from

other differentiable ones. Now (2.7) can be simply rewritten as

min
w,x
{f1(w) + f2(x)} , s.t. h(w, x) = 0, (2.8)

where for simplicity the two linear constraints have been written into a single con-

straint.

The augmented Lagrangian function for (2.8) is

LA(w, x, λ;µ) = f1(w) + f2(x)− λTh(w, x) +
µ

2
h(w, x)Th(w, x). (2.9)

For fixed λk and µk, denote f1(w) as ϕ(w) and other parts in LA(w, x, λ
k;µk) as

-
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φ(w, x) which is differentiable. Then the augmented Lagrangian method solves

min
w,x
{ϕ(w) + φ(w, x)} (2.10)

at the k-th iteration and then update the multiplier. The multiplier-updating formula

could be more general than the one suggested by Hestenes and Powell; that is,

λk+1 = λk − ςkµkh(xk+1). (2.11)

Provided that ςk is selected from a closed interval in (0, 2), the convergence of the

augmented Lagrangian method is still guaranteed in the convex case analogous to

Theorem 2.1.2 [63]. Considering problem (2.6) without constraints, Glowinski proved

a stronger theorem for both finite and infinite dimensional settings [70].

Other than (2.11), Buys [62] and Tapia [64] have suggested two other multiplier

update formulas (called Buys update and Tapia update respectively), both involving

second-order information of LA. Tapia [65] and Byrd [66] have shown that both

update formulas give quadratic convergence if one-step (for Tapia update) or two-

step (for Buys update) Newton’s method is applied to subproblems. However, the

estimate of the second-order derivative and the use of Newton’s step can be too

expensive to compute at each iteration for large-scale problems.

Specifically, an implementation of the augmented Lagrangian method for (2.6)

can be put into the following algorithmic framework:

Algorithm 2.1.1 (Augmented Lagrangian Method).

Initialize µ0, λ0, 0 < α0 ≤ ς0 ≤ α1 < 2, tolerance tol, and starting points w0, x0.

While ‖∇L(xk, λk)‖ > tol Do

Set wk+1
0 = wk and xk+1

0 = xk;



17

Find a minimizer (wk+1, xk+1) of LA(w, x, λ
k;µk), starting from wk+1

0 and

xk+1
0 and terminating when ‖∇(w,x)LA(w

k+1, xk+1, λk;µk)‖ ≤ tol;

Update the multiplier using (2.11) to obtain λk+1;

Choose the new penalty parameter µk+1 ≥ µk and α0 ≤ ςk+1 ≤ α1;

End Do

To accommodate non-differentiable functions, let

∇̃g(u) = argmin
ξ∈∂g(u)

‖ξ‖.

That is, ∇̃g(u) is the member of ∂g(u) with the smallest ℓ2 norm; and it is equivalent

to the gradient of g if the functional is differentiable. In Algorithm 2.1.1, we will

replace“∇” by “∇̃” whenever the objective function is non-differentiable.

In Algorithm 2.1.1, ςk = 1 appears to generally give the best convergence from

our computational experience, but it is not necessarily the case for the choice of small

µk. Concerning the choice of µk, it has been shown that larger µk results in faster

asymptotic convergence rate. On the other hand, larger µk causes numerical condi-

tioning problems in practice. Fortunately, the combined effect of all these factors is

the fact that convergence of the augmented Lagrangian method is relatively insensi-

tive to the choice of the penalty parameter in most cases. In practice, starting with a

small µk and then increasing µk from iterate to iterate usually gives a faster conver-

gence numerically than keeping µk fixed. This approach is also known as parameter

continuation.

The augmented Lagrangian method has been successfully applied to different

fields, such as constraint motion problems [75], seismic reflection tomography [76],

and so forth. From a numerical perspective, the only nontrivial part in the use of

Algorithm 2.1.1 is how to efficiently minimize the augmented Lagrangian function or
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equivalently (2.10) at each iteration. Taking into account the particular structure as

in (2.10), a well-suited algorithm will be proposed and theoretically analyzed in the

next section. Before that, another method of multipliers which has a close relation

to the augmented Lagrangian method will be briefly reviewed.

2.1.3 A Discussion on Alternating Direction Methods

Extending the classic augmented Lagrangian method as described above, Glowin-

ski et al. [58, 59] also suggested another slightly different way to handle (2.8) —

the alternating direction method (abbreviated ADM). The common advantage of

both methods includes the capability of handling the non-differentiability and side-

constraints. Instead of requiring the exact minimizer of the augmented Lagrangian

function (2.9) at each iteration, ADM only demands minimizers with respect to w

and x respectively, and then update the multiplier. Specifically, at the k-th iteration,

we compute 





xk+1 = argmin
x
LA(w

k, x, λk;µk),

wk+1 = argmin
w
LA(w, x

k+1, λk;µk),

λk+1 = λk − ςkµkh(wk+1, xk+1).

(2.12)

Contrary to the joint minimization as is done in the augment Lagrangian method,

ADM uses the idea of alternating minimization to produce computationally more

affordable iterations (2.12). Provided that

0 < ςk = ς <
1 +
√
5

2
,

the theoretical convergence of ADM can be similarly guaranteed [70]. More results

and analysis applying ADM to convex programming and variational inequalities can
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be found, for example, in [72, 73, 74].

ADM can potentially reduce the iteration-complexity of the algorithm by solving

two simpler subproblems at each iteration, instead of directly minimizing the aug-

mented Lagrangian function (2.9). In fact, under the assumption that f2 is linear,

Gabay and Mercier [59] also proved the convergence of ADM for

0 < ςk = ς < 2.

However, the linear assumption is quite strict and most problems stemmed from signal

processing or sparse optimization do not fall into this category.

Even though ADM seems more appealing than the classic augmented Lagrangian

method, our general TVAL3 algorithm is still founded on the augmented Lagrangian

method. First of all, on the problems of our interests ADM appears to be more

sensitive to the choice of penalty parameters, whereas the augmented Lagrangian

method is more robust. This is advantageous since the observation or data acquired

by hardware in the field of signal processing are almost always noisy and a more

robust method is favorable. Secondly, ADM requires separability of the objective

function into exactly two blocks, and demands high-accuracy minimization for each

block. ADM is most efficient if both subproblems can be accurately solved efficiently.

However, it is not necessarily the case for the problems we solve in signal processing

or sparse optimization. For example, in TV regularized minimization, one of those

subproblems is usually quadratic minimization and that dominates the computation.

Thus, without special structures, it can be too expensive to find a high-accuracy

minimizer at each iteration. The general TVAL3 algorithm considered in this chapter

handles the quadratic subproblems in an inexact manner (one aggressive step along

the descent direction). The convergence of the general TVAL3 algorithm, founded
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on the framework of the augmented Lagrangian method, will be proved later in this

chapter.

2.2 An Algorithm

A major concern while applying the augmented Lagrangian method for (2.10) is

how to efficiently solve a series of unconstraint subproblems. Here we propose an

alternating direction type method for minimizing the type of functions in (2.10).

2.2.1 Descriptions

Suppose g : Rn → R is continuous and bounded below, and has the following form:

g(u) , g(w, x) = ϕ(w) + φ(w, x). (2.13)

Furthermore, let us assume that φ is continuously differentiable and minimizing

g(w, x) with respect to w only is easy. Many optimization problems originated in

compressive sensing, image denoising, deblurring and impainting fall into this cate-

gory after introducing appropriate splitting variables and employing the augmented

Lagrangian method or other penalty methods. An instance will be given in the next

section and further discussions corresponding to this type will be involved in the

following chapters.

The goal is to solve

min
w,x

g(w, x). (2.14)

The proposed algorithm is based on an alternating direction scheme, as well as a non-
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monotone line search [82] with Barzilai-Borwein [79] steps to accelerate convergence.

The Barzilai-Borwein (BB) method utilizes the previous two iterates to select step

length and may achieve superlinear convergence under certain circumstances [79, 80].

For given wk, applying BB method on minimizing g(wk, x) with respect to x leads to

a step length

ᾱk =
sTk sk
sTk yk

, (2.15)

or alternatively

ᾱk =
sTk yk
yTk yk

, (2.16)

where sk = xk − xk−1 and yk = ∇xg(wk, xk)
T −∇xg(wk, xk−1)

T (assuming g is differ-

entiable w.r.t. x).

Starting with a BB step in (2.15) or (2.16), we utilize a nonmonotone line search

algorithm (NLSA) to ensure convergence. The NLSA is an improved version of the

Grippo, Lampariello and Lucidi nonmonotone line search [81]. Zhang and Hager

[82] showed that the scheme was generally superior to previous schemes with either

nonmonotone or monotone line search techniques, based on extensive numerical ex-

periments. At each iteration, NLSA requires checking the so-called nonmonotone

Armijo condition, which is

g(wk, xk + αkdk) ≤ Ck + δαk∇xg(wk, xk)dk (2.17)

where dk is a descent direction and Ck is a weighted average of function values. More

specifically, the algorithmic framework can be depicted as follows:
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Algorithm 2.2.1 (Nonmonotone Alternating Direction).

Initialize ζ > 0, 0 < δ < 1 < ρ, 0 ≤ ηmin ≤ ηmax ≤ 1, tolerance tol,

and starting points w0, x0. Set Q0 = 1 and C0 = g(w0, x0).

While ‖∇̃g(wk, xk)‖ > tol Do

Let dk be a descent direction of g(wk, x) at xk;

Choose αk = ᾱkρ
θk where ᾱk > 0 is the BB step and θk is the largest integer

such that both the nonmonotone Armijo condition (2.17) and αk ≤ ζ hold;

Set xk+1 = xk + αkdk;

Choose ηk ∈ [ηmin, ηmax] and set

Qk+1 = ηkQk + 1, Ck+1 = (ηkQkCk + g(wk, xk+1))/Qk+1;

Set wk+1 = argminw g(w, xk+1).

End Do

The nonmonotone Armijo condition could also been substituted by the nonmono-

tone Wolf conditions [82]. The choice of ηk controls the degree of nonmonotonicity.

Specifically, if ηk = 0 for all k, the line search is monotone; if ηk = 1 for all k, Ck is the

average value of objective function at (wi, xi) for i = 1, 2, . . . , k. Therefore, the bigger

ηk is, the more nonmonotone the scheme becomes. Besides, θk is not necessary to be

positive. In practical implementations, starting from the BB step, we could increase

or decrease the step length by forward or backward tracking until the nonmonotone

Armijo condition satisfies.

Although Algorithm 2.2.1 takes a form of alternating direction method, it treats

the two directions quite differently. One direction can be regarded as an “easy”

direction, another a “hard” one. The proposed algorithm deviates from the two

common alternating direction strategies: the classic alternating minimization or the

popular block coordinate descent technique. Unlike the former, it does not require
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minimization of the objective function in the hard direction; and unlike the latter, it

does not ask for a descent of function value at each iteration. This feature allows the

algorithm to have inexpensive iterations and to take relatively large steps, while still

possessing a convergence guarantee as will be shown. Indeed, computational evidence

shows that this feature helps enhance the practical efficiency of the algorithm in a

number of applications described later in this thesis.

2.2.2 Convergence Analysis

The convergence proof of Algorithm 2.2.1 has some similarities with the proof of

NLSA shown in [82] and both proof follows the same path. However, NLSA only

considers continuously differentiable functionals using gradient methods whereas Al-

gorithm 2.2.1 takes into account non-differentiability of the objective function under

the framework of alternating direction. For notational simplicity, define

gk(·) , g(wk, ·). (2.18)

The convergence proof requires the following two assumptions:

Assumption 2.2.1 (Direction Assumption). There exist c1 > 0 and c2 > 0 such that







∇gk(xk)dk ≤ −c1‖∇gk(xk)‖2,

‖ dk ‖ ≤ c2‖∇gk(xk)‖.
(2.19)

Assumption 2.2.2 (Lipschitz Condition). There exists L > 0, such that for any

given x, x̃, and w,

‖∇xg(w, x)−∇xg(w, x̃)‖ = ‖∇xφ(w, x)−∇xφ(w, x̃)‖ ≤ L‖x− x̃‖. (2.20)
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The direction assumption obviously holds if

dk = −∇gk(xk)
T .

This choice leads to the simple steepest-descent step in Algorithm 2.2.1. The Lipschitz

condition is widely assumed in the analysis of convergence of gradient methods. In

this sense, Assumptions 2.2.1 and 2.2.2 are both reasonable.

To start with, the following lemma presents some basic properties and suggests

the algorithm is well-defined.

Lemma 2.2.1. If ∇gk(xk)dk ≤ 0 holds for each k, then for the sequences generated

by Algorithm 2.2.1, we have gk(xk) ≤ gk−1(xk) ≤ Ck for each k and {Ck} is monotone

non-increasing. Moreover, if ∇gk(xk)dk < 0, step length αk > 0 always exists.

Proof. Define real-valued function

Dk(t) =
tCk−1 + gk−1(xk)

t+ 1
for t ≥ 0,

then

D′
k(t) =

Ck−1 − gk−1(xk)

(t+ 1)2
for t ≥ 0.

Due to the nonmonotone Armijo condition (2.17) and ∇gk(xk)dk ≤ 0, we have

Ck−1 − gk−1(xk) ≥ −δαk−1∇gk−1(xk−1)dk−1 ≥ 0.

Therefore, D′
k(t) ≥ 0 holds for any t ≥ 0, and then Dk is non-decreasing.

Since

Dk(0) = gk−1(xk) and Dk(ηk−1Qk−1) = Ck,
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we have

gk−1(xk) ≤ Ck for any k.

As being described in Algorithm 2.2.1,

wk = argmin
w

g(w, xk),

then we have

g(wk, xk) ≤ g(wk−1, xk).

Hence, gk(xk) ≤ gk−1(xk) ≤ Ck holds for any k.

Furthermore,

Ck+1 =
(ηkQkCk + gk(xk+1))

Qk+1
≤ (ηkQkCk + Ck+1)

Qk+1
,

i.e.,

(ηkQk + 1)Ck+1 ≤ (ηkQkCk + Ck+1),

i.e.,

Ck+1 ≤ Ck.

Thus, {Ck} is monotone non-increasing.

If Ck is replaced by gk(xk) in (2.17), the nonmonotone Armijo condition becomes

the standard Armijo condition. It is well-known that αk > 0 exists for the standard

Armijo condition while ∇gk(xk)dk < 0 and g is bounded below (see [83] for example).

Since gk(xk) ≤ Ck, it follows αk > 0 exists as well for the nonmonotone Armijo

condition (2.17). D 
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Defining Ak recursively by

Ak =
1

k + 1

k∑

i=0

gk(xk), (2.21)

then by induction, it is easy to show that Ck is bounded above by Ak. Together with

the facts that Ck is also bounded below by gk(xk) and αk > 0 always exists, it is

sufficient to claim that Algorithm 2.2.1 is well-defined.

In the next lemma, the lower bound of the step length generated by Algorithm

2.2.1 will be given in accordance with the final convergence proof.

Lemma 2.2.2. Assuming ∇gk(xk)dk ≤ 0 for any k and Lipschitz condition (2.20)

holds with constant L, then

αk ≥ min

{
ζ

ρ
,
2(1− δ)

Lρ

|∇gk(xk)dk|
‖dk‖2

}

. (2.22)

Proof. It is noteworthy that ρ > 1 is required in Algorithm 2.2.1. If ραk ≥ ζ , then

the lemma already holds.

Otherwise,

ραk = ᾱkρ
θk+1 < ζ,

which indicates that θk is not the largest integer to make the k-th step length less

than ζ . According to Algorithm 2.2.1, θk must be the largest integer satisfying the

nonmonotone Armijo condition (2.17), which leads to

gk(xk + ραkdk) ≥ Ck + δραk∇gk(xk)dk.
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Lemma 2.2.1 showed Ck ≥ gk(xk), so

gk(xk + ραkdk) ≥ gk(xk) + δραk∇gk(xk)dk. (2.23)

On the other hand, for α > 0 we have

∫ α

0

(∇gk(xk + tdk)−∇gk(xk)) dk dt = gk(xk + αdk)− gk(xk)− α∇gk(xk)dk.

Together with the Lipschitz condition, we get

gk(xk + αdk) = gk(xk) + α∇gk(xk)dk +

∫ α

0

(∇gk(xk + tdk)−∇gk(xk)) dk dt

≤ gk(xk) + α∇gk(xk)dk +

∫ α

0

tL‖dk‖2 dt

= gk(xk) + α∇gk(xk)dk +
1

2
Lα2‖dk‖2.

Let α = ραk, which gives

gk(xk + ραkdk) ≤ gk(xk) + ραk∇gk(xk)dk +
1

2
Lρ2α2

k‖dk‖2. (2.24)

Compare (2.23) with (2.24), which implies

(δ − 1)∇gk(xk)dk ≤
1

2
Lραk‖dk‖2.

Since ∇gk(xk)dk ≤ 0,

αk ≥
2(1− δ)

Lρ

|∇gk(xk)dk|
‖dk‖2

.

Therefore, the step length αk is bounded below by (2.22).

With the aid of the above lower bound, we are able to establish the convergence

D 
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of Algorithm 2.2.1:

Theorem 2.2.1 (Optimality Conditions). Suppose g is bounded below and both di-

rection assumption (2.19) and Lipschitz condition (2.20) hold. Then the iterates

uk , (wk, xk) generated by Algorithm 2.2.1 satisfies

lim
k→0
∇̃g(uk) = 0. (2.25)

Proof. Since g is differentiable with respect to x, (2.25) is equivalent to







lim
k→0
∇̃wg(wk, xk) = 0,

lim
k→0
∇xg(wk, xk) = 0.

(2.26)

The proof can be completed by showing two parts respectively.

First, due to the nature of Algorithm 2.2.1,

wk = argmin
w

g(w, xk).

Then

0 ∈ ∂wg(wk, xk),

which implies

∇̃wg(wk, xk) = 0.

Next, let us show the second half grounded on the nonmonotone Armijo condition

gk(xk + αkdk) ≤ Ck + δαk∇gk(xk)dk. (2.27)

If ραk < ζ , according to the lower bound of αk given by Lemma 2.2.2 and direction
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assumption (2.19), we have

gk(xk + αkdk) ≤ Ck − δ
2(1− δ)

Lρ

|∇gk(xk)dk|2
‖dk‖2

≤ Ck −
2δ(1− δ)

Lρ

c21‖∇gk(xk)‖4
c22‖∇gk(xk)‖2

= Ck −
[
2δ(1− δ)c21

Lρc22

]

‖∇gk(xk)‖2.

On the other hand, if ραk ≥ ζ , this lower bound together with direction assumption

(2.19) gives

gk(xk + αkdk) ≤ Ck + δαk∇gk(xk)dk

≤ Ck − δαkc1‖∇gk(xk)‖2

≤ Ck −
δζc1
ρ
‖∇gk(xk)‖2.

Define constant

τ̃ = min

{
2δ(1− δ)c21

Lρc22
,
δζc1
ρ

}

,

which leads to

gk(xk + αkdk) ≤ Ck − τ̃‖∇gk(xk)‖2. (2.28)

Next we show that

1

Qk

≥ 1− ηmax. (2.29)

Obviously it follows Q0 = 1 that

1

Q0
≥ 1− ηmax.
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Assuming that (2.29) also holds for k = j, then

Qj+1 = ηjQj + 1

≤ ηj
1− ηmax

+ 1

≤ ηmax

1− ηmax
+ 1

=
1

1− ηmax

,

which implies

1

Qj+1
≥ 1− ηmax.

By induction, we conclude that (2.29) holds for all k.

Thus, it follows from (2.28) and (2.29) that

Ck − Ck+1 = Ck −
ηkQkCk + gk(xk+1)

Qk+1

=
Ck(ηkQk + 1)− (ηkQkCk + gk(xk+1))

Qk+1

=
Ck − gk(xk+1)

Qk+1

≥ τ̃‖∇gk(xk)‖2
Qk+1

≥ τ̃(1− ηmax)‖∇gk(xk)‖2. (2.30)

Since g is bounded below, {Ck} is also bounded below. Besides, Lemma 2.2.1

illustrates {Ck} is monotone non-increasing, so there exists C∗ ∈ R such that

Ck → C∗, as k →∞.

Hence, we have

Ck − Ck+1 → 0, as k →∞.
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Combining this and (2.30), we get

‖∇gk(xk)‖ → 0;

i.e.,

lim
k→0
∇̃xg(wk, xk) = 0.

Coupling two parts completes the proof of this theorem.

With the aid of Theorem 2.2.1, we can further conclude the global convergence of

Algorithm 2.2.1 under the assumption of strong convexity.

Corollary 2.2.1. If g is jointly and strongly convex, then under the same assumptions

as in Theorem 2.2.1, sequence (wk, xk) generated by Algorithm 2.2.1 converges to the

unique minimizer (w∗, x∗) of unconstraint problem (2.13).

The proof is omitted here since it directly follows Theorem 2.2.1.

By this time, we have proposed an alternating direction type method with a non-

monotone line search for a special class of unconstraint minimization problems, and

fulfilled descriptions by thoroughly studying the convergence. TVAL3 — a combi-

nation of this algorithm and the classic augmented Lagrangian method — aiming at

solving a more general class of both constraint and unconstraint problems will be

depicted next.

2.3 General TVAL3 and One Instance

The general TVAL3 algorithm is built by means of a combination of the classic aug-

mented Lagrangian method with an appropriate variable splitting (see Algorithm

D 
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2.1.1) and nonmonotone alternating direction method for subproblems (see Algo-

rithm 2.2.1). More precisely, it implements the following algorithmic framework after

variable splitting:

Algorithm 2.3.1 (General TVAL3).

Initialization.

While ‖∇̃L(xk, λk)‖ > tol Do

Set starting points wk+1
0 = wk and xk+1

0 = xk for the subproblem;

Find minimizer wk+1 and xk+1 of LA(w, x, λ
k;µk) using Algorithm 2.2.1;

Update the multiplier using (2.11) and non-decrease the penalty parameter;

End Do

In fact, the purpose of variable splitting is to separate the non-differentiable part

in order to easily find its closed-form solution while applying the general TVAL3

algorithm. In other words, the original non-differentiable problem is divided into two

parts — separable non-differentiable part with explicit solution and differentiable part

requiring heavy computation.

From previous analysis, the convergence of this method follows immediately. The-

orem 2.1.2 has ensured the convergence of outer loop while Theorem 2.2.1 has provided

the convergence of inner loop, which together indicates the convergence of the gen-

eral TVAL3 method. The convergence rate is not deepened since it is not necessarily

related to the practical efficiency of methods or algorithms. The convergence rate

analyzes the relation between error and number of iterations, but neglects the com-

plexity of each iteration. In the real world, the real cost relies on the multiplication of

both. One advantage of the general TVAL3 method is its low cost at each iteration.

Mostly it requires only two or three matrix-vector multiplications to process one inner

iteration, which results in the significant decrease on overall computation.
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2.3.1 Application to 2D TV Minimization

One instance is for solving the compressive sensing problem with total variation (TV)

regularization:

min
u

TV (u) ,
∑

i

‖Diu‖, s.t. Au = b, (2.31)

where u ∈ Rn or u ∈ Rs×t with s · t = n, Diu ∈ R2 is the discrete gradient of u at

pixel i, A ∈ Rm×n (m < n) is the measurement matrix, and b ∈ Rm is the observation

of u via some linear measurements. The regularization term is called isotropic TV. If

‖.‖ is replaced by 1-norm, then it is called anisotropic TV. With minor modifications,

the following derivation for solving (2.31) is applicable for anisotropic TV as well.

In light of variable splitting, an equivalent variant of (2.31) is considered:

min
wi,u

∑

i

‖wi‖, s.t. Au = b and Diu = wi for all i. (2.32)

Its corresponding augmented Lagrangian function is

LA(wi, u) =
∑

i

(‖wi‖ − νT
i (Diu− wi) +

βi

2
‖Diu− wi‖2)

−λT (Au− b) +
µ

2
‖Au− b‖2, (2.33)

and then the subproblem at each iteration of TVAL3 becomes

min
wi,u
LA(wi, u). (2.34)

At the k-th iteration, solving (2.34) with respect to wi gives a closed-form solution
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since it is separable; i.e.,

wi,k+1 = max

{∥
∥
∥
∥
Diuk −

νi
βi

∥
∥
∥
∥
− 1

βi
, 0

}
(Diuk − νi/βi)

‖Diuk − νi/βi‖
, (2.35)

where 0 ·(0/0) = 0 is followed. This formula is used to be called shrinkage (see [46] for

example). On the other hand, (2.33) is quadratic with respect to u and its gradient

can be easily derived as

dk(u) =
∑

i

(βiD
T
i (Diu− wi,k+1)−DT

i νi) + µAT (Au− b)− ATλ. (2.36)

According to Algorithm 2.2.1, we only require one step of steepest descent with prop-

erly adjusted step length; i.e.;

uk+1 = uk − αkdk(uk). (2.37)

Therefore, the TVAL3 algorithm for TV regularized problems on compressive

sensing has been obtained by incorporating (2.35), (2.36) and (2.37) into the general

framework of Algorithm 2.3.1.

To demonstrate the efficiency of the TVAL3 implementation, it is compared to

other state-of-the-art implementations of TV regularized methods, such as ℓ1-Magic

[2, 3, 5], TwIST [85, 86] and NESTA [84].

Experiments were performed on a Lenovo X301 laptop running Windows XP and

MATLAB R2009a (32-bit) and equipped with a 1.4GHz Intel Core 2 Duo SU9400

and 2GB of DDR3 memory.

While running TVAL3, we uniformly set parameters η = .9995, ρ = 5/3, δ = 10−5

and ζ = 104 presented in Algorithm 2.2.1, and initialized multipliers to 0 and fixed

weights in front of multipliers at 1.6 presented in Algorithm 2.3.1. Additionally, the
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SNR: 77.64dB,  CPU time: 4.27s SNR: 46.59dB,  CPU time: 13.81s

SNR: 34.18dB,  CPU time: 24.35s SNR: 51.08dB,  CPU time: 1558.29s

Figure 2.1: Recovered 64×64 phantom image from 30% orthonormal measurements without noise.
Top-left: original image. Top-middle: reconstructed by TVAL3. Top-right: reconstructed by
TwIST. Bottom-middle: reconstructed by NESTA. Bottom-right: reconstructed by ℓ1-Magic.

values of penalty parameters might vary in a range of 25 to 29 according to distinct

noise level and required accuracy.

In an effort to make comparisons fair, for other tested solvers mentioned above,

we did tune their parameters and try to make them perform optimal or near optimal.

In the first test, a 64× 64 phantom image is encoded by an orthonormal random

matrix generated by QR factorization from a Gaussian random matrix. The images

are recovered by TVAL3, TwIST, NESTA and ℓ1-Magic respectively from 30% mea-

surements without the additive noise. The quality of recovered images is measured by

the signal-to-noise ratio (SNR), which is defined as the power ratio between a signal

and the background noise. All parameters are tuned to achieve the best performance.

From Figure 2.1, we observe that TVAL3 achieves the highest-quality image
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Figure 2.2: Recovered 256 × 256 MR brain image. Both the measurement rate and the noise
level are 10%. Top-left: original image. Top-right: reconstructed by TVAL3. Bottom-left:

reconstructed by TwIST. Bottom-right: reconstructed by NESTA.

(77.64dB) but requires the shortest running time (4.27 seconds). The second highest-

quality image (51.08dB) is recovered by ℓ1-Magic at the expense of the unacceptable

running time (1558.29 seconds). TwIST and NESTA attain relatively medium-quality

images (around 46.59dB and 34.18dB respectively) within reasonable running times

(13.81 and 24.35 seconds respectively). This test suggests that TVAL3 is capable of

high accuracy within an affordable running time, and outperforms other state-of-the-

art implementations more or less.

Noise is inevitable in practice. The following test focuses on the performance of

different implementations under the influence of Gaussian noise. Specifically, a 256×
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256 MR brain image, which contains much more details than phantom, is encoded

by a permutated sequency-ordered Walsh Hadamard matrix using fast transform. In

order to investigate the robustness, we choose both noise level and measurement rate

to be 10%. The above phantom test has indicated the ℓ1-Magic is hardly applicable

to large-scale problems due to its low efficiency, so only TVAL3, TwIST and NESTA

are performed here.

From Figure 2.2, we can only recognize vague outline of the image recovered by

TwIST even though the running time is longest. Nevertheless, the image recovered

by either TVAL3 or NESTA is more subtle and preserves more details contained in

the original brain image. In comparison with NESTA, TVAL3 achieves better accu-

racy (higher SNR) in shorter running time statistically, and provides higher contrast

visually. For example, some gyri in the image recovered by TVAL3 are still distin-

guishable but this is not the case in images recovered by either TwIST or NESTA.

Furthermore, the image recovered by NESTA is still noisy while the image recovered

by TVAL3 is much cleaner. This implies the fact that TVAL3 is capable of better

denoising effects than NESTA. Actually, this would be a desirable property when

handling data with lots of noise, which will always be the case in practice.

Two tests are far less than enough to draw a solid conclusion. More numerical

experiments and analysis with different flavors have been covered in [9], which revealed

the comprehensive performance of TVAL3 on TV regularized problems.

With moderate modifications, TVAL3 is easily to extend to some other TV reg-

ularized models with extra requirements, for example, imposing nonnegativity con-

straints or dealing with complex signals/measurements. For the convenience of other

researchers, it has been implemented in MATLAB aiming at solving various TV reg-

ularized models in the field of compressive sensing, and published at the following

URL:
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http://www.caam.rice.edu/~optimization/L1/TVAL3/.

http://www.caam.rice.edu/~optimization/L1/TVAL3/


Chapter 3

Hyperspectral Data Unmixing

In this chapter, we develop a hyperspectral unmixing scheme with the aid of compres-

sive sensing. This scheme could recover the abundance and signatures straightly from

the compressed data instead of the whole massive hyperspectral cube. In light of the

general TVAL3 method discussed in Chapter 2, a effective and robust reconstruction

algorithm is proposed and conscientiously investigated.

3.1 Introduction to Hyperspectral Imaging

By exploiting the wavelength composition of electromagnetic radiation (EMR), hy-

perspectral imaging collects and processes data from across the electromagnetic spec-

trum. Hyperspectral sensors capture information as a series of “images” over many

contiguous spectral bands containing the visible, near-infrared and shortwave infrared

spectral bands [98]. These images, generated from different bands, pile up and form

a 3D hyperspectral cube for processing and further analysis. If each image can be

viewed as a long vector, the hyperspectral cube will become a large matrix which

is more easily accessible mathematically. Each column of the matrix records the in-

39
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formation from the same spectral band and each row records the information at the

same pixel. For much of the past decade, hyperspectral imaging has been actively

researched and widely developed. It has matured into one of the most powerful and

fast growing technologies. For example, the development of hyperspectral sensors

and their corresponding software to analyze hyperspectral data has been regarded as

a critical breakthrough in the field of remote sensing. Hyperspectral imaging has a

wide range of applications in industry, agriculture and military, such as terrain clas-

sification, mineral detection and exploration [87, 88], pharmaceutical counterfeiting

[89], environmental monitoring [91] and military surveillance [90].

The fundamental property of hyperspectral imaging which researchers want to

obtain is spectral reflectance: the ratio of reflected energy to incident energy as a

function of wavelength [97]. Reflectance varies with wavelength for most materi-

als. These variations are evident and sometimes characteristic when comparing these

spectral reflectance plots of different materials. Several libraries of reflectance spec-

tra of natural and man-made materials are accessible for public use, such as ASTER

Spectral Library [122] and USGS Spectral Library [123]. These libraries provide a

source of reference spectra that helps the interpretation and analysis of hyperspectral

images.

It is highly possible that more than one material contributes to an individual

spectrum captured by the sensor, which leads to a composite or mixed spectrum.

Typically, hyperspectral imaging is of spatially low resolution, in which each pixel,

from a given spatial element of resolution and at a given spectral band, is a mixture

of several different material substances, termed endmembers, each possessing a char-

acteristic hyperspectral signature [99]. In general, endmembers imply those spectrally

“pure” features, such as soil, vegetation, and so forth. In mineralogy, it refers to a

mineral at the extreme end of a mineral series in terms of purity. For example, al-
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bite (NaAlSi3O8) and anorthite (CaAl2Si2O8) are two endmembers in the plagioclase

series of minerals.

If the endmember spectra or signatures are available beforehand, we can mathe-

matically decompose each pixel’s spectrum of a hyperspectral image to identify the

relative abundance of each endmember component. This process is called unmixing.

Linear unmixing is a simple spectral matching approach, whose underlying premise is

that a relatively small number of common endmembers are involved in a scene, and

most spectral variability in this scene can be attributed to spatial mixing of these

endmember components in distinct proportions. In the linear model, interactions

among distinct endmembers are assumed to be negligible [100], which is a plausi-

ble hypothesis in the realm of hyperspectral imaging. Frequently, the representative

endmembers for a given scene are known a priori and their signatures can be ob-

tained from a spectral library (e.g., ASTER [122] and USGS [123]) or codebook. On

the other hand, when endmembers are unknown but the hyperspectral data is fully

accessible, many algorithms exist for determining endmembers in a scene, including

N-FINDR [102], PPI (pixel purity index) [101], VCA (vertex component analysis)

[103], SGA (simplex growing algorithm) [104]; NMF-MVT (nonnegative matrix fac-

torization minimum volume transform) [105], SISAL (simplex identification via split

augmented Lagrangian) [106], MVSA (minimum volume simplex analysis) [108] and

MVES (minimum-volume enclosing simplex) [107].

Because of the their enormous volume, it is particularly difficult to directly process

and analyze hyperspectral data cubes in real time or near real time. On the other

hand, hyperspectral data are highly compressible with two-fold compressibility:

1. each spatial image is compressible, and

2. the entire cube, when treated as a matrix, is of low rank.
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To fully exploit such rich compressibility, a scheme is proposed in this chapter, which

never requires to explicitly store or process a hyperspectral cube itself. In this scheme,

data are acquired by means of compressive sensing (CS). As introduced in Chapter 1,

the theory of CS shows that a sparse or compressible signal can be recovered from a

relatively small number of linear measurements. In particular, the concept of the sin-

gle pixel camera [32] can be extended to the acquisition of compressed hyperspectral

data, which will be described and used while setting up the experiments. The main

novelty of the scheme is in the decoding side where we combine data reconstruction

and unmixing into a single step of much lower complexity. The proposed scheme is

both computationally low-cost and memory-efficient. At this point, we start from

the assumption that the involved endmember signatures are known and given, from

which we then directly compute abundance fractions. For brevity, we will call the

proposed procedure compressive sensing and unmixing or CSU scheme.

In fact, a prior information is not always accessible or precise. For example, the

change of experimental environment may cause fluctuation of endmember reflectance

and give rise to a slightly different signature from the one in the standard library.

Without the aid of correct or complete a priori, the unmixing problem will become

significantly more intractable. Later in this chapter, the CSU scheme is extended to

blind unmixing where endmember signatures are not precisely known a priori.

3.2 Compressive Sensing and Unmixing Scheme

In this section, we propose and conduct a proof-of-concept study on a low-complexity,

compressive sensing and unmixing (CSU) scheme, formulating a unmixing model

based on total variation (TV) minimization, and developing an efficient algorithm

to solve this model [109]. To validate the CSU scheme, experimental and numerical
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evidence will be provided in the next section. This proposed scheme directly unmixes

compressively sensed data, bypassing the high-complexity step of reconstructing the

hyperspectral cube itself. The effectiveness and efficiency of the proposed CSU scheme

are demonstrates using both synthetic and hardware-measured data.

3.2.1 Problem Formulation

Let us introduce those necessary notations first. Suppose that in a given scene there

exist ne significant endmembers, with spectral signatures wT
i ∈ Rnb , for i = 1, . . . , ne,

where nb ≥ ne denotes the number of spectral bands. Let xi ∈ Rnb represent the

hyperspectral data vector at the i-th pixel and hT
i ∈ Rne represent the abundance

fractions of the endmembers for any i ∈ {1, . . . , np}, where np denotes the number of

pixels. Furthermore, letX = [x1, . . . , xnp
]T ∈ Rnp×nb denote a matrix representing the

hyperspectral cube, W = [w1, . . . , wne
]T ∈ Rne×nb the mixing matrix containing the

endmember spectral signatures, and H = [h1, . . . , hnp
]T ∈ Rnp×ne a matrix holding

the respective abundance fractions. We use A ∈ Rm×np to denote the measurement

matrix in compressive sensing data acquisition, and F ∈ Rm×nb to denote the obser-

vation matrix, where m < np is the number of samples for each spectral band. For

convenience, 1s denotes the column vector of all ones with length s. In addition, we

use 〈·, ·〉 to denote the usual matrix inner product since the notation (·)T (·) for vector

inner product would not correctly apply.

Assuming negligible interactions among endmembers, the hyperspectral vector xi

at the i-th pixel can be regarded as a linear combination of the endmember spectral

signatures, and the weights are gathered in a nonnegative abundance vector hi. Ide-

ally, the components of hi, representing abundance fractions, should sum up to unity;

i.e., the hyperspectral vectors lie in the convex hull of endmember spectral signatures
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[103]. In short, the data model has the form

X = HW, H1ne
= 1np

, and H ≥ 0. (3.1)

However, in reality the sum-to-unity condition on H does not usually hold due to

imprecisions and noise of various kinds. In our implementation, we imposed this

condition on synthetic data, but skipped it for measured data.

Since each column of X represents a 2D image corresponding to a particular

spectral band, we can collect the compressed hyperspectral data F ∈ Rm×nb by

randomly sampling all the columns of X using the same measurement matrix A ∈

Rm×np, where m < np is the number of samples for each column. Mathematically,

the data acquisition model can be described as

AX = F. (3.2)

Combining (3.1) and (3.2), we obtain constraints

AHW = F, H1ne
= 1np

, and H ≥ 0. (3.3)

For now, we assume that the endmember spectral signatures inW are known, our goal

is to find their abundance distributions (or fractions) in H , given the measurement

matrix A and the compressed hyperspectral data F . In general, system (3.3) is not

sufficient for determining H , necessitating the use of some prior knowledge about H

in order to find it.

In compressive sensing, regularization by ℓ1 minimization has been widely used.

However, Chapter 1 has suggested shown that the use of TV regularization is em-

pirically more advantageous on image problems such as deblurring, denoising and
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reconstruction, since it can better preserve edges or boundaries in images that are

essential characteristics. TV regularization puts emphasis on sparsity in the gradient

map of the image and is suitable when the gradient of the underlying image is sparse

[2]. In our case, we make the assumption that the gradient of each image composed

by abundance fractions for each endmember is mostly and approximately piecewise

constant. This is reasonable in the sense that most applications of hyperspectral

imaging focus on characteristics (or simply described as jumps) in a scenario instead

of those smooth parts. Mathematically, we propose to recover the abundance matrix

H by solving the following unmixing model:

min
H∈Rnp×ne

ne∑

j=1

TV(Hej) s.t. AHW = F, H1ne
= 1np

, H ≥ 0, (3.4)

where ej is the j-th standard unit vector in Rnp,

TV(Hej) ,

np∑

i=1

‖Di(Hej)‖, (3.5)

‖.‖ is the 2-norm in R2 corresponding to the isotropic TV, and Di ∈ R2×np denotes

the discrete gradient operator at the i-th pixel, as described in Chapter 2. In stead

of 2-norm, 1-norm is also applicable here corresponding to the anisotropic TV, which

arouses quite similar analysis and derivation. Since the unmixing model directly uses

compressed data F , we will call it a compressed unmixing model.

It is important to note that although H consists of several related images each

corresponding to the distribution of abundance fractions of one material in a scene,

these images generally do not share many common edges as in color images or some

other vector-valued images. For example, a sudden decrease in one fraction can be

compensated by an increase in another while all the rest fractions remain unchanged,
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indicating the occurrence of an edge in two but not all images inH . This phenomenon

can be observed from the test cases in Section 3.3. Therefore, in our model (3.4),

instead of applying a coupled TV regularization function for vector-valued images (see

[17] and [18], for example), we simply use a sum of TV terms for individual scalar-

valued images without coupling them in the TV regularization. It is possible that

under certain conditions, the use of vector-valued TV is more appropriate, but this

point is beyond the scope of this study. Nevertheless, the images in H are connected

in the constraint H1ne
= 1np

.

3.2.2 SVD Preprocessing

The size of the fidelity equation AHW = F in (3.3) is m×nb where m, although less

than np in compressive sensing, can still be quite large, and nb, the number of spectral

bands, typically ranges from hundreds to thousands. Here a preprocessing procedure

is proposed based on singular value decomposition of the observation matrix F , in

order to decrease the size of the fidelity equations from m× nb to m× ne. Since the

number of endmembers ne is typically up to two orders of magnitude smaller than nb,

the resulting reduction in complexity is significant, potentially enabling near-real-time

processing speed. The proposed preprocessing procedure is based on the following

result.

Theorem 3.2.1. Let A ∈ Rm×np and W ∈ Rne×nb be full-rank, and F ∈ Rm×nb be

rank-ne with ne < min{nb, np, m}. Let F = UeΣeV
T
e be the economy-size singular

value decomposition of F where Σe ∈ Rne×ne is diagonal and positive definite, Ue ∈

Rm×ne and Ve ∈ Rnb×ne both have orthonormal columns. Assume that rank(WVe) =

ne, then the two linear systems below for H ∈ Rnp×ne have the same solution set; i.e.,
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the equivalence holds

AHW = F ⇐⇒ AHWVe = UeΣe. (3.6)

Proof. We show that the two linear system has an identical solution set. Denote

the solution sets for the two system by H1 = {H : AHW = F} and H2 = {H :

AHWVe = UeΣe}, respectively, which are both subspaces. Given that F = UeΣeV
T
e

and V T
e Ve = I, it is obvious that H1 ⊆ H2. To show H1 = H2, it suffices to verify

that the dimensions of the two are equal, i.e., dim(H1) = dim(H2).

Let “vec” denote the operator that stacks the columns of a matrix to form a vector.

By well-known properties of Kronecker product “⊗”, AHW = F is equivalent to

(W T ⊗ A) vecH = vecF, (3.7)

where W T ⊗A ∈ R(nbm)×(nenp), and

rank(W T ⊗A) = rank(W )rank(A) = nem. (3.8)

Similarly, AHWVe = UeΣe is equivalent to

((WVe)
T ⊗ A) vecH = vec(UeΣe), (3.9)

where (WVe)
T ⊗ A ∈ R(nem)×(nenp) and, under our assumption rank(WVe) = ne,

rank((WVe)
T ⊗A) = rank(WVe)rank(A) = nem. (3.10)

Hence, rank(W T ⊗ A) = rank((WVe)
T ⊗ A), which implies the solution sets of (3.7)
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and (3.9) have the same dimension; i.e., dim(H1) = dim(H2). Since H1 ⊆ H2, we

conclude that H1 = H2.

This proposition ensures that under a mild condition the matrices W and F in

the fidelity equation AHW = F can be replaced, without changing the solution set,

by the much smaller matrices WVe and UeΣe, respectively, potentially leading to

multi-order magnitude reductions in equation size.

Suppose that F is an observation matrix for a rank-ne hyperspectral data matrix

X̂ . Then F = AĤŴ for some full rank matrices Ĥ ∈ Rnp×ne and Ŵ ∈ Rne×nb.

Clearly, the rows of Ŵ span the same space as the columns of Ve do. Therefore, the

condition rank(WVe) = ne is equivalent to rank(WŴ T ) = ne, which definitely holds

for W = Ŵ . It will also hold for a random W with high probability. Indeed, the

condition rank(WVe) = ne is rather mild.

In practice, the observation matrix F usually contains model imprecisions or ran-

dom noise, and hence is unlikely to be exactly rank ne. In this case, truncating the

SVD of F to rank-ne is a sensible strategy, which will not only serve the dimension

reduction purpose, but also a denoising purpose because the SVD truncation anni-

hilates insignificant singular values of F likely caused by noise. Motivated by these

considerations, the following SVD preprocessing procedure is suggested:

Algorithm 3.2.1 (SVD Preprocessing).

Input F , W and ne.

Do the following:

compute the rank-ne principal SVD: F ≈ UeΣeV
T
e ;

overwrite data: W ← WVe and F ← UeΣe;

End Do

Output F and W .

D 
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The idea of reduction is inspired by economy SVD decomposition and the solution

set keeps the same while right-multiplying Ve on both sides. Then a nature question

is followed up: is that possible to further reduce the dimension of the problem by left-

multiplying UT
e since SVD is symmetric in form? If so, observation F ∈ Rm×nb could

be substituted for Σe ∈ Rne×ne. Unfortunately, the answer is no and the following

corollary elaborates the reason.

Corollary 3.2.1. Suppose the same assumptions hold as Thereom 3.2.1. Then solving

AHW = F is not equivalent to solving UT
e AHW = ΣeV

T
e with respect to H in general.

Proof. Denote H1 = {H : AHW = F} as before and H3 = {H : UT
e AHW = ΛV T

e }.

Similar simple arguments can still give us H1 ⊆ H3, but the other direction would

not stand any more.

As indicated in the proof of Theorem 3.2.1, AHW = F is equivalent to

(W T ⊗ A)vecH = vecF, (3.11)

and

rank(W T ⊗A) = rank(W )rank(A) = nem.

Similarly, UT
e AHW = ΛV T

e is equivalent to

(W T ⊗ (UT
e A))vecH = vec(ΣeV

T
e ), (3.12)

where (W T ⊗ (UT
e A)) ∈ R(nbne)×(nenp).

Since both U and A are full-rank and rank(Ue) < rank(A), we have

rank(W T ⊗ (UT
e A)) = rank(W )rank(UT

e A) = rank(W )rank(Ue) = n2
e.



50

It follows m > ne that

rank(W T ⊗ A) > rank(W T ⊗ (UT
e A)),

which implies

dim(H1)≪ dim(H3).

Recall that H1 ⊆H3, so we can conclude that

H1 $ H3.

Thus, solving AHW = F is not equivalent to solving UT
e AHW = ΣeV

T
e with

respect to H .

This claim indicates that letting A = UT
e A and F = Σe instead in the course

of SVD preprocessing may enlarge the solution set and result in inequivalence, even

though this action could further decrease the problem size and complexity.

3.2.3 Compressed Unmixing Algorithm

The computational experience indicates that, at least for the problems we tested so

far, to obtain good solutions it suffices to solve a simplified compressed unmixing

model that omits the nonnegativity of H ,

min
H

ne∑

j=1

TV(Hej) s.t. AHW = F, H1ne
= 1np

. (3.13)

For simplicity, the algorithm is discussed based on the above model which was ac-

tually used in numerical experiments reported in the next section. In fact, in those

experiments with hardware-measured data, the second constraint above is also omit-

D 
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ted since it would not help in the presence of sizable system imprecisions and noise.

On the other hand, the second constraint above plays a key role for blind unmixing,

which will be involved later in this chapter. It should also be emphasized that in the

compressed unmixing model (3.13), the matrices W and F are the output from the

SVD preprocessing procedure. In particular, the size of the fidelity equation has been

reduced to m× ne from the original size m× nb, a factor of nb/ne reduction in size.

The main algorithm for the compressed unmixing model is based on the general

TVAL3 Algorithm 2.3.1 proposed in Chapter 2. Minimizing the constraint model

(3.13) is transferred into solving a series of unconstraint problems in virtue of the

augmented Lagrangian method, and each unconstraint problem is separated into two

tractable subproblems by introducing a new splitting variable.

To separate the discrete gradient operator from the non-differentiable TV term,

we introduce splitting variables vij = Di(Hej) for i = 1, . . . , np and j = 1, . . . , ne.

Then (3.13) is equivalent to

min
H,vij

∑

i,j

‖vij‖ s.t. Di(Hej) = vij , ∀ i, j, AHW = F, H1ne
= 1np

. (3.14)

The augmented Lagrangian function for (3.14) can be written as

LA(H, vij) ,
∑

i,j

{

‖vij‖ − λT
ij(Di(Hej)− vij) +

α

2
‖Di(Hej)− vij‖2

}

−〈Π, AHW − F 〉+ β

2
‖AHW − F‖2F − νT (H1ne

− 1np
)

+
γ

2
‖H1ne

− 1np
‖2, (3.15)

where ‖.‖F refers to Frobenius norm, λij,Π, ν are multipliers of appropriate size, and

α, β, γ > 0 are penalty parameters corresponding to the three sets of constraints in

(3.14), respectively. For brevity, we have omitted the multipliers in the argument list
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of LA.

The classic augmented Lagrangian method minimizes the augmented Lagrangian

function LA for fixed multipliers, and then updates multipliers as advised in (2.11)

at each iteration. Specifically, in this case the multipliers are updated as follows. For

all 1 ≤ i ≤ np and 1 ≤ j ≤ ne,







λij ← λij − ςα(Di(Hej)− vij),

Π ← Π− ςβ(AHW − F ),

ν ← ν − ςγ(H1ne
− 1np

).

(3.16)

To guarantee the convergence, ς should be selected in (0, 2).

Under the framework of general TVAL3,Algorithm 2.2.1 is employed to minimize

LA(H, vij) efficiently. The minimization problem with respect to vij’s is separable

and has closed-form solutions v∗ij according to the well-known shrinkage formula:

v∗ij = max

{

‖θij‖ −
1

α
, 0

}
θij
‖θij‖

, (3.17)

where

θij , Di(Hej)−
λij

α
. (3.18)

On the other hand, minimizing the augmented Lagrangian with respect to H can

be excessively costly for large-sale problems, even if it is quadratic. Fortunately,

according to Algorithm 2.2.1, all we need is to sufficiently decrease the augmented

Lagrangian function by taking only one step of steepest descent onH from the current

iterate; i.e.,

H ← H − τ G(H), (3.19)
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where G(H) denotes the gradient of LA(H, vij) with respect to H . The step length τ

in (3.19) is chosen according to Algorithm 2.2.1.

If one intends to impose the nonnegativity of H in compressed unmixing model

(3.13), the algorithm could be developed in the same way but replacing steepest

descent (3.19) by one of projected gradient methods [77, 78]. The complexity would

increase insignificantly by adding one more projection.

The derivation of G(H) is not abstruse but tedious. Let us tart with some propo-

sitions required in the course of derivation. The proof is quite basic and omitted

here.

Proposition 3.2.1. Suppose that the size of matrices X, Y and Λ are appropriate

to form matrix multiplications 〈Λ, XY 〉. Then

〈Λ, XY 〉 = tr(ΛTXY ) = tr(Y ΛTX) = 〈ΛY T , X〉.

Furthermore,

∂(〈Λ, XY 〉)
∂X

= ΛY T .

Here, “tr” denotes the trace of a matrix.

Proposition 3.2.2. Suppose that the size of matrices X, Y , Z and Λ are appropriate

to form matrix multiplications XΛTY ΛZ. Then it follows Proposition 3.2.1 that

∂(tr(XΛTY ΛZ))

∂Λ
= Y ΛZX + Y TΛXTZT .

Proposition 3.2.3. Suppose that the size of matrices X, Y and Λ are appropriate

to form matrix multiplications XΛY . Then

vec(XΛY ) = (Y ⊗XT )T vec(Λ) = (Y T ⊗X)vec(Λ).
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Furthermore,

∂(XΛY )

∂Λ
= Y ⊗XT .

Proposition 3.2.4. Suppose that x and y are column vectors and Λ is matrix with

appropriate size to form matrix multiplications xTΛy. Then it follows Proposition

3.2.3 that

∂(xTΛy)

∂Λ
= xyT .

Except for Proposition 3.2.3, other three propositions derive the gradients of some

scalar functions. Therefore, their gradients can be simply written in the form of matrix

multiplications instead of the tensor or Kronecker products.

In order to derive G(H), the objective function LA(H, vij) is divided into four

parts and the gradient with respect to H is obtained part by part. Define

P0(H) =
∑

i,j

‖vij‖,

P1(H) =
∑

i,j

{

−λT
ij(Di(Hej)− vij) +

α

2
‖Di(Hej)− vij‖2

}

,

P2(H) = −〈Π, AHW − F 〉+ β

2
‖AHW − F‖2F ,

P3(H) = −νT (H1ne
− 1np

) +
γ

2
‖H1ne

− 1np
‖2.

Obviously, P0 vanishes when computing the gradient with respect toH . According

to Proposition 3.2.4,

∂
(
λT
ij(Di(Hej)− vij)

)

∂H
=

∂
(
(λT

ijDi)Hej
)

∂H

= DT
i λije

T
j , (3.20)
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and according to Propositions 3.2.1 and 3.2.2,

∂ (α/2‖Di(Hej)− vij‖2)
∂H

=
∂(α/2〈DiHej − vij , DiHej − vij〉)

∂H

=
∂(α/2(〈DiHej , DiHej〉 − 2〈vij, DiHej〉+ 〈vij , vij〉))

∂H

=
∂
(
α/2tr(eTj H

TDT
i DiHej)

)

∂H
− ∂(α〈vij , DiHej〉)

∂H

= αDT
i DiHeje

T
j − αDT

i vije
T
j

= αDT
i (DiHej − vij)e

T
j (3.21)

It follows (3.20) and (3.21) that

∂P1

∂H
=

∑

j

∑

i

{
−DT

i λije
T
j + αDT

i (DiHej − vij)e
T
j

}
. (3.22)

Applying Propositions 3.2.1, 3.2.2 and 3.2.4 as well, we have

∂ (〈Π, AHW − F 〉)
∂H

=
∂
(
〈ATΠ, HW 〉

)

∂H

= ATΠW T , (3.23)

and

∂ (β/2‖AHW − F‖2F )
∂H

=
∂ (β/2〈AHW − F,AHW − F 〉)

∂H

=
∂ (β/2(〈AHW,AHW 〉 − 2〈F,AHW 〉+ 〈F, F 〉))

∂H

=
∂
(
β/2tr(W THTATAHW )

)

∂H
− ∂(β〈F,AHW 〉)

∂H

= βATAHWW T − βATFW T

= βAT (AHW − F )W T . (3.24)
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Sequentially, combing (3.23) with (3.24), we get

∂P2

∂H
= −ATΠW T + βAT (AHW − F )W T . (3.25)

Similar derivation can be applied to P3, which gives

∂P3

∂H
= −ν1T

ne
+ γ(H1ne

− 1np
)1T

ne
. (3.26)

Combining the results from (3.22), (3.25), and (3.26), we obtain the gradient of

LA(H, vij) as follows:

G(H) =
∑

i,j

{
−DT

i λije
T
j + αDT

i (DiHej − vij)e
T
j

}
−ATΠW T

+βAT (AHW − F )W T − ν1T
ne

+ γ(H1ne
− 1np

)1T
ne
. (3.27)

Bringing (3.27) back to (3.19), we obtain the one-step update formula for H . To-

gether with the shrinkage formula (3.17) for updating vij , the augmented Lagrangian

function (3.15) can be efficiently minimized under the framework of Algorithm 2.2.1 —

a modified alternating direction employed the nonmonotone line search and Barzilai-

Borwein methods.

In summary, the algorithm for solving the compressed unmixing model (3.13)

implements a combination of the SVD preprocessing (see Algorithm 3.2.1) and the

general TVAL3 method (see Algorithm 2.3.1). More specifically, it can be depicted

as follows:

Algorithm 3.2.2 (Compressed Unmixing).

Input data A, F and W .

Preprocess F and W by Algorithm 3.2.1;
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Initialize multipliers λij,Π, ν, penalty parameters α, β, γ > 0, and other constants.

While “not converge” Do

Update vij and H following Algorithm 2.2.1, with the aid of (3.17) and (3.19);

Update multipliers λij ,Π, ν by formulas in (3.16) and non-decrease α, β, γ;

End Do

Output H.

With the presence of nonnegativity H ≥ 0 as in (3.4), a similar algorithm deriva-

tion would still apply, but an additional splitting variable would be necessary along

with its own multiplier. This extra splitting would generally slow down the speed of

convergence. Another alternative is to use a projected gradient method to enforce

nonnegativity. However, our rather extensive computational experiments indicate

that at least for the test cases we solved in this paper, enforcing the nonnegativity

would not improve the resulting quality of solutions. Therefore, the reported results

in this paper were all obtained using Algorithm 3 without enforcing nonnegativity on

H .

The complexity of Algorithm 3.2.2 at each iteration is dominated by two matrix

multiplications involving W T ⊗A and its transpose, respectively. Here W T refers to

the one being reduced size by SVD preprocessing and A could be implemented by

some fast transform, so the algorithm is computationally low-cost as well as memory-

efficient. In the next section, we will demonstrate the effectiveness of the algorithm

in several sets of numerical experiments.

In Algorithm 3.2.2, the outer stopping criteria can be specified based on either

relative change of variables or the optimality conditions of the compressed unmixing

model (3.13). While the latter is more rigorous, it is also more costly. In experi-

ments reported in the next section, we used relative change of variables in both outer
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and inner stopping criteria. Particular parameter settings and initial values will be

specified in the course of descriptions of experiments.

3.3 Numerical Results on CSU Scheme

To demonstrate the feasibility, practicality and potential of the proposed CSU scheme,

numerical results is presented based on applying the proposed CSU scheme to two

types of data. Firstly, results are obtained on simulated or synthetic datasets. Then

we provide results from much more realistic simulations where compressed hyperspec-

tral data were directly measured by a hardware apparatus.

3.3.1 Setup of Experiments

We implemented the CSU scheme in a Matlab code which is still at an early stage

of development. All numerical experiments reported in this paper were performed

on a SONY VGN-FZ290 laptop running Windows 7 and MATLAB R2009b (32-bit),

equipped with a 1.5GHz Intel Core 2 Duo CPU T5250 and 2GB of DDR2 memory.

In both types of experiments, we used randomized Walsh-Hadamard matrices as

measurement matrices, A, considering that they permit fast transformation and easy

hardware implementation. A Walsh-Hadamard matrix was randomized by choosing

m random row from it and applying a random permutation to its columns.

In Algorithm 2.2.1 for handling subproblems, η was nailed to .9995 so as to attain

high degree of nonmonotonicity; other constants δ, ρ and ζ were set to 10−4, 5/3,

and 104, respectively. In Algorithm 3.2.2, the multipliers λij , Π and ν were always

initialized to 0; the weight for updating multipliers ς was fixed at 1.6; the penalty

parameters α, β and γ were selected from a range of 25 to 29, according to estimated

noise levels. Despite of a lack of theoretical guidance, we observe that it is not
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particularly difficult to choose adequate values for these penalty parameters since

the algorithm is not overly sensitive to such values as long as they fall into some

appropriate but reasonably wide range. It takes a bit experience, and often a few

trial-and-error attempts, to find good penalty parameter values, judged by observed

speed of convergence or required computing times, for a given class of problems.

3.3.2 Experimental Results on Synthetic Data

Nontronite Ferroaxinite

Trona Molybdenite

Figure 3.1: Synthetic abundance distributions.

In the first test, we generated compressed data according to data acquisition model

(3.3). We selected 4 endmembers from the ASTER Spectral Library [122]: nontronite,

ferroaxinite, trona and molybdenite, whose spectral signatures have been shown in

Figure 3.2. A total of 211 bands were selected in the range of 0.4 to 2.5 micrometers.

The distributions of abundance fractions corresponding to 4 endmembers were given
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Figure 3.2: Endmember spectral signatures.

in Figure 3.1 with a spatial resolution of 64 × 64. Figures 3.1 and 3.2 gives the

“true” H and W , respectively, from which we generated an observation F = AHW

in virtue of the measurement matrix A. In addition, to test the robustness of the

CSU scheme, in some experiments we added zero-mean Gaussian random noise with

standard derivation 0.8 to the observation matrix F .

In Figure 3.3, we plot relative errors in computed abundance fractions versus

measurement rate of compressed data on 100 distinct testing points, with or without

additive noise. The average elapsed time for these runs is less than 10 seconds. We

observe that the CSU scheme attains relative error less than 1% when measurement

rate is greater than 20% in both noisy and noise-free cases. This test empirically

validates the feasibility of the proposed CSU scheme. More specifically, it shows that

the abundance fraction can be unmixed directly from the compressed hyperspectral

data by solving the proposed compressed unmixing model. The success on synthetic

data sets has inspired us conducting further tests on larger and more realistic data.
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Figure 3.3: Recoverability for noisy and noise-free cases.

In the second test, we generated a compressed data matrix F by applying the

data acquisition model (3.2) to the publicly available HYDICE Urban hyperspectral

data [124], which contains 163 bands in a range from 0.4 to 2.5 micrometers, after

some water absorption bands, each having a 307 × 307 resolution. According to the

analysis of this Urban data cube in [110], there are 6 significant endmembers in the

scene — road, metal, dirt, grass, tree and roof, as shown in Figure 3.4. The spectral

signatures for these 6 selected endmembers are plotted in Figure 3.5.

Our computed unmixing result from 25% measurements are given in Figure 3.6,

where six subfigures depict the computed distributions of abundance fractions for

the six endmembers, respectively. It took about 215 seconds to run the algorithm.

Qualitatively, we survey that the features in the original image such as roads, plants

and buildings have been properly segmented by a visual comparison with Figure 3.4.

For example, a hunk of roof marked by number 6 in Figure 3.4 appears prominently

I== I 
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Figure 3.4: “Urban” image and endmember selection.

in the lower-right subfigure of Figure 3.6 for the abundance fractions of roof.

Figure 3.7 shows the least squares solution from directly solving AHW = F for

H with 100% data, which becomes an overdetermined linear system in this case.

Comparing Figure 3.6 with Figure 3.7, we observe that the proposed CSU scheme,

using 25% of the data, is capable of keeping important features and most details,

even though the overall quality in computed abundance fractions by the CSU scheme

is slightly lower than that of the least squares solution using 100% of the data.

3.3.3 Hardware Implementation

This section contains experimental results using hardware-measured data. Figure 3.8

shows the schematic of a compressing sensing hyperspectral imaging system based on

a digital micro-mirror device (DMD). This system incorporates a micro-mirror array

driven by pseudo-random patterns and one spectrometer. Similar to the single-pixel
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Figure 3.5: Spectral signatures with water absorption bands abandoned.

camera setup [32], it optically samples incoherent image measurements as dictated by

the CS theory; then the Compressed Unmixing Algorithm 3.2.2 is applied to recover

the the abundance fractions directly from the hardware-measured compressed data,

bypassing the high-complexity of reconstructing the whole hyperspectral cube. The

spectral information can be obtained from some library, codebook, or an independent

experiment. If needed, the hyperspectral cube could be simply estimated by product

of the estimated abundance fractions and endmember spectral signatures afterwards.

The spectrometer (on the right) we employed is a USB4000 by Ocean Optics

which features a 3648-element linear array detector responsive from 200-1100 nm.

The spectrometer and DMD (at the top) are synchronized to take data when the

pseudo-random pattern switches. For each such a pattern, the measured data from

the spectrometer is represented as a linear vector with the length of 3648. The target

(at the bottom) is illuminated by two 35W daylight lamps from 45 degrees on both

sides in order to achieve sufficiently uniform illumination.
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Road Metal Dirt

Grass Tree Roof

Figure 3.6: Estimated abundance: CS unmixing solution from 25% of measurements.

3.3.4 Experimental Results on Hardware-Measured Data

here we use compressed hyperspectral data collected by the hardware apparatus de-

scribed above with the same type of measurement matrices A as in the previous

experiments. Since the light shined on the object was distributed into over 3600

spectral bands, the intensity was significantly weakened in each channel, a relatively

high level of noise became inevitable in the experiments. In many aspects, this rep-

resents a realistic and revealing setting to illustrate the concept of the proposed CSU

scheme.

In the first test, our target image is an image of “color wheel”, as shown in Figure

3.9, which is composed of various intensity levels of three colors: yellow, cyan and

magenta. We selected 175 uniformly distributed bands in the range of 0.4 to 0.75

micrometers, and resolution at each band was 256 × 256. For convenience, we also
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Road Metal Dirt

Grass Tree Roof

Figure 3.7: Estimated abundance: least squares solution.

chose yellow, cyan and magenta as the three endmembers, though different choices are

certainly possible. In a separate experiment, we measured the spectral signatures for

the three colors which are plotted in Figure 3.10. The parameters and initial values

used in this test by Algorithm 3.2.2 are the same as those specified in Subsection 3.3.1.

The abundance fractions corresponding to the three endmembers were computed

from 10% measured data, and are shown in Figure 3.11. The elapsed time to process

the compressed unmixing was about 26 seconds. As we can see, our model and

algorithm detected, quite accurately, the areas corresponding to each color at various

levels of brightness.

Figure 3.12 gives 4 slices of the computed hyperspectral cube, obtained by mul-

tiplying the estimated abundance fractions H with measured signatures W , corre-

sponding to four different spectral bands or wavelengths. Specifically, “cyan” be-
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Figure 3.8: Single-pixel camera schematic for hyperspectral data acquisition.

comes bright around 490 ∼ 520 nm; “yellow” becomes bright around 520 ∼ 680 nm;

“magenta” becomes bright around 680 nm. This result is consistent to the peak areas

of three endmember spectral signatures plotted in Figure 3.10.

For comparison, Figure 3.13 gives four slices, corresponding to the same four

spectral bands in Figure 3.12, of a computed hyperspectral cube that were computed

from the same 10% of the measured dataset, one slice at a time, by the 2D TV solver

TwIST [85, 86]. Similarly, Figure 3.14 contains corresponding results by the solver

TVAL3 [125], and Figure 3.15 by NESTA [84]. In each of these three sets, the slices

were reconstructed without using the information on the endmember signatures that

leads to the (approximate) low-rankness in the CS compressed data matrix F .

It is evident that the results in Figure 3.12 are much cleaner and have stronger

contrast than those in Figures 3.13, 3.14, and 3.15. This remarkable quality of the
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Figure 3.9: Target image “Color wheel”.

CSU obtaind results should the consequence of two factors: 1) a proper exploitation

of both low-rankness and sparsity in 3D hyperspectral data, 2) the denoising effects of

SVD preprocessing. Besides the higher recovery quality, we mention that the amount

of time required by the proposed CSU scheme to recover the hyperspectral cube (by

first computing H then multiplying it with the signature matrix W ) is more than one

order of magnitude faster than those required by the state-of-the-art 2D TV solvers

TwIST, TVAL3, and NESTA which perform the slice by slice recovery. This efficiency

of the CSU scheme is the direct consequence of having to process a far less amount

of data than the whole hyperspectral image cube.

In the second test, we kept all settings unchanged but the target image was re-

placed by a more complicated “subtractive color mixing”, as shown in Figure 3.16.

The three primary colors or endmembers here are still yellow, magenta and cyan. In

subtractive mixing of color, the absence of color is white and the presence of all three

primary colors is black corresponding to the central area of Figure 3.16. Similarly,

175 uniformly distributed bands were selected in the range of 0.4 to 0.75 micrometers,

and resolution at each band was 256×256. The signatures of three endmembers have

been plotted in Figure 3.10.
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Figure 3.10: Measured spectral signatures of the three endmembers.

Figure 3.17 demonstrates the recovered abundance fractions based on 10% mea-

sured data with 32 seconds elapsed time. We observe that the area corresponding to

pure colors has been accurately recognized, but the color-mixing area has not been

perfectly distinguished. Specifically, the unmixing between yellow and cyan, and

between magenta and cyan is evident. However, the unmixing between yellow and

magenta is barely discernible in Figure 3.17. Ideally we should perceive 50/50 mixing

of every two colors. The significant level of noise involved in measured data, which

is also observable in slice-by-slice recovery results in Figures 3.19, 3.20 and 3.21, was

most likely responsible for this loss of interpretability. Hopefully, a more accurate

unmixing could be achieved by reducing the noise in the process of collecting data,

with an improved hardware setup.

From the perspective of recovered cube, the proposed scheme (Figure 3.18) was

also compared with 2D slice-by-slice recovery scheme using TwIST (Figure 3.19),

TVAL3 (Figure 3.20), and NESTA (Figure 3.21), respectively. Similar to the results
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Figure 3.11: Estimated abundance: CS unmixing solution from 10% measurements.

in the first test, we can observe the remarkable improvements in both quality and

efficiency using the proposed CSU scheme.

So far the CSU scheme has been well demonstrated in terms of its feasibility,

efficiency and robustness. The numerical experiments have indicated that the scheme

is promising and worth further investigations. It is certainly desirable to extend

this work to more practical situations where knowledge about endmember spectral

signatures are either very rough, highly incomplete, or partially missing, leading to

a much more difficult task of compressive sensing and blind unmixing. In particular,

the optimization models for this task become non-convex. However, some recent

successes in solving non-convex matrix factorization models, such as [111] on matrix

completion, offer hopes for us to conduct further research along this direction.

3.4 Extension to CS Blind Unmixing

The previous two sections proposed and studied a new unmixing framework using

compressive sensing, consisting of a data acquisition method, hardware setup, and a

CS unmixing scheme directly working on the compressed observations. The numerical

results have shown its promises in the application of large-scale hyperspectral unmix-
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Figure 3.12: Four slices computed by the proposed approach.

ing. The experiments covered scenarios both with and without noise, demonstrating

the robustness of CSU scheme as well as its remarkable denoising effects in existence

of noise.

So far we have only considered cases where spectral signatures are given with a high

accuracy. Usually the spectral signatures of endmembers can be obtained from three

sources: libraries, codebooks and measured by hardware. The quality of hardware-

measured spectra may be influenced by many factors, such as the precision of the

equipment and experience of the personnel involved. All these factors could inevitably

introduce noise into the measured spectra. Signatures extracted from a library or

codebook are commonly considered as noise-free, but measured spectral data can

still vary with measurement conditions and environments. In practice, obtaining
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Figure 3.13: Four slices computed slice-by-slice using 2D TV algorithm TwIST.

exact signatures are unrealistic.With minor noise in signatures, CSU scheme can

still estimate the corresponding abundance approximately. However, if noise level in

spectral signatures is too high and stays uncorrected, the CSU scheme would generally

fail. It is desirable to broaden the scope of CSU scheme to the situations where

signatures are corrected at the same time of unmixing (named CS blind unmixing).

Under the same assumption of negligible interactions among endmembers, the

data acquisition model (3.3) is still valid. To extend CSU scheme to blind unmixing,

we consider the folllowing compressed blind unmixing model with respect to both W

and H :

min
W,H

ne∑

j=1

TV(Hej) s.t. AHW = F, H1ne
= 1np

, H ≥ 0, (3.28)
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Figure 3.14: Four slices computed slice-by-slice using 2D TV algorithm TVAL3.

or the simplified model:

min
W,H

ne∑

j=1

TV(Hej) s.t. AHW = F, H1ne
= 1np

. (3.29)

We will derive an algorithm for (3.29), which can be easily extended to the case with

the extra nonnegativity constraint. On the surface, (3.29) appears to be quite close

to the compressed unmixing model (3.13). Although the same objective function is

used in both models, (3.13) is convex with a linear constraint whereas (3.29) becomes

non-convex with a non-linear equality constraint.

Non-convex optimization is usually difficult to solve for a global minimum due to

the existence of many local minima. The recent research on matrix completion [111]
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Figure 3.15: Four slices computed slice-by-slice using 2D TV algorithm NESTA.

proposed an ADM-type method on a non-convex minimization problem, which was

shown to be effective and efficient. The purpose of matrix completion is to fill in the

missing entries of a low rank matrix. In that paper, the matrix completion problem

was reformulated using low-rank approximation, which is also one way to interpret

the hyperspectral data model

X = WH.

Alternating direction method (ADM) is an extension of the classic augmented

Lagrangian method and has been reviewed in Chapter 2. ADM minimizes the aug-

mented Lagrangian function of the underlying problem with respect to each variable,

and then update the multiplier. Unlike the augmented Lagrangian method, ADM

I
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Figure 3.16: Target image “Subtractive color mixing”.
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Figure 3.17: Estimated abundance: CS unmixing solution from 10% measurements.

avoids minimizing the augmented Lagrangian function exactly.

It follows the idea of ADM that for fixed Π we consider

min
W,H∈Ω

QA(W,H) ,

ne∑

j=1

TV(Hej)− 〈Π, AHW − F 〉+ β

2
‖AHW − F‖2F , (3.30)

where Ω = {H ∈ Rnp×ne : H1ne
= 1np

}, and QA(W,H) is non-convex and non-

differentiable. Fortunately, QA(W,H) is convex with respect to each separate variable

W and H and the global minimizer corresponding to either of them can be computed.
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Figure 3.18: Four slices computed by the proposed approach.

To be specific, for fixed H , minimizing QA(W,H) is equivalent to

min
W
−〈Π, AHW − F 〉+ β

2
‖AHW − F‖2F , (3.31)

which is differentiable and quadratic. In fact, (3.31) can be written as

min
W

β

2

∥
∥
∥
∥
AHW − F − Π

β

∥
∥
∥
∥

2

F

, (3.32)

Since AH ∈ Rm×ne with m > ne, this system is over-determined. Simple derivation

gives the following closed-form minimizer of (3.32):

W ∗ = (AH)†(F +Π/β), (3.33)
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Figure 3.19: Four slices computed slice-by-slice using 2D TV algorithm TwIST.

where S† denotes the Moore-Penrose pseudoinverse of a given matrix S, which is a

generalization of the inverse matrix and defined as the unique matrix satisfying

SS†S = S, S†SS† = S†, (S†S)T = S†S, and (SS†)T = SS†.

On the other hand, for fixed W , minimizing QA on H ∈ Ω is relatively difficult.

Mathematically, we want to solve the subproblem

min
H∈Ω
QA(W,H) s.t. H1ne

= 1np
, (3.34)

In Section 3.2.3, the Compressed Unmixing Algorithm 3.2.2 — a particular imple-

mentation of the general TVAL3 method — has been proposed and investigated on
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Figure 3.20: Four slices computed slice-by-slice using 2D TV algorithm TVAL3.

solving an almost identical problem (3.13). Specifically, by introducing new splitting

variables, (3.34) is equivalent to

min
H,vij

∑

i,j

‖vij‖ − 〈Π, AHW − F 〉+ β

2
‖AHW − F‖2F , (3.35)

s.t. Di(Hej) = vij , ∀ i, j; H1ne
= 1np

.

The augmented Lagrangian function of (3.35) possesses exactly the same form as

(3.15), except that Π and β are given and fixed here. Therefore, under mild mod-

ifications, the Compressed Unmixing Algorithm 3.2.2 can be applied to obtain the

minimizer of (3.35). The modifications are two-fold:

1. the SVD preprocessing is not applicable any more, and

\:: ---·~ 
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Figure 3.21: Four slices computed slice-by-slice using 2D TV algorithm NESTA.

2. there is no need to update Π and β.

After having obtained the minimizers of two subproblems, we can update the

multiplier following (2.12); i.e.,

Π ← Π− ςβ(AHW − F ). (3.36)

So far the necessary subroutines have been derived in accordance to (2.12), and the

ADM-type method can be employed to handle the compressed blind unmixing model

(3.29). Moreover, to deal with the situation of selecting the most likely signatures from

a large group of candidates, we propose the following preprocessing and postprocessing

procedures:

l •c 
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Algorithm 3.4.1 (Selection Preprocessing).

Input F and W = [w1, . . . , wne
]T , and choose the threshold ε.

Compute the economy SVD: F = UΣV T , where Σ = diag(σ1, . . . , σnb
),

and V = [v1, . . . , vnb
].

Determine s ≤ ne to satisfy σs ≥ ε and σs+1 < ε.

Choose {ℓ1, . . . , ℓs} ⊂ {1, . . . , ne}, such that {v1, . . . , vs} and {wℓ1, . . . , wℓs}

span the same space (or as close as possible).

Overwrite data: ne ← s and W ← [wℓ1, . . . , wℓs]
T .

Output ne and W .

Algorithm 3.4.2 (Selection Postprocessing).

Input W = [w1, . . . , wne
]T and H = [ĥ1, . . . , ĥne

], and choose the threshold ǫ.

For j = 1, . . . , ne Do

If ‖ĥj‖ < ǫ‖H‖F/
√
ne Do

Decrease ne by 1, and delete ĥj and wT
j from H and W , respectively;

End Do

End Do

Output W and H.

The selection preprocessing procedure is based upon the fact that the rank of

compressed observation F should be equal to the number of effective endmembers in

the absence of noise. Moreover, suppose that the rank-ne principal SVD is applied

on F ; i.e.,

F = UeΣeV
T
e .

Then the space spanned by Ve should be identical to the space spanned by signatures

of the effective endmembers. When noise exists, similar claims are also valid with a

-
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carefully chosen threshold. On the other hand, the selection postprocessing procedure

is built on the fact that the abundance fractions corresponding to the non-existing

endmembers should be close to zero or significantly smaller than others. Ideally,

either one of two suggested procedures could successfully screen out the effective

endmembers. However, the threshold criteria may be difficult to select under the

influence of noise. A combination of both procedures as described in Algorithms

3.4.1 and 3.4.2 is recommended to enhance the accuracy of the selection. This is

particularly important when developing a robust compressed blind unmixing method

and algorithm.

In conclusion, the ADM algorithmic framework for solving the compressed blind

unmixing model (3.29) can be depicted as follows:

Algorithm 3.4.3 (Compressed Blind Unmixing).

Input data A and F , and initial guess W0.

Preprocess W0 and overwrite ne by Algorithm 3.4.1.

Scale W0 to an appropriate region.

Initialize the multiplier Π = 0, the penalty parameter β > 0, the selection threshold ǫ,

and other constants.

While “not converge” Do

Compute the minimizer Hk+1 of QA(W
k, H) on Ω based on Algorithm 3.2.2;

Compute the minimizer W k+1 of QA(W,Hk+1) by the formula in (3.33);

Update multiplier Π according to (3.36) and update β;

End Do

Postprocess W and H by Algorithm 3.4.2.

Output W and H.

Several remarks are made here to further clarify the description of CS blind un-
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mixing scheme and Algorithm 3.4.3:

Remark 1. Since the non-convexity of the problem, the initial guess should be some-

what “close” to the global minimizer to avoid being stuck at a local minimum. An

initial guess without any valid priori information, such as a random or zero matrix,

would fail the blind unmixing. Fortunately, some prior information is usually avail-

able in practice, even if it might be incomplete, corrupted by severe noise, or deformed

by environments.

Remark 2. As indicated in Section 3.2.3, the linear constraint H1ne
= 1np

is some-

times negligible in the course of CSU scheme, since W is given and assumed to be

accurate. However, it seems helpful to impose H1ne
= 1np

in the blind unmixing

model (3.29), otherwise (̺W ∗, H∗/̺) may give smaller objective function value than

the minimizer (W ∗, H∗), for any ̺ > 1.

Remark 3. The algorithmic framework remains almost the same even if imposing the

nonnegativity on H. Particularly, projected gradient [77, 78] can be used when updat-

ing H. However, imposing the nonnegativity would further complicate the non-convex

model and slow down convergence. Presumably, as a form of prior information, tak-

ing nonnegativity into account may be beneficial in case that other forms of prior

information are insufficient. Our computational experience indicates, however, that

at least for the scenarios we tested so far, nonnegativity has not been an critical factor

in those experiments.

Remark 4. In Algorithm 3.4.3, properly scaling the initial guess W0 before the loop

would make the initial guess closer to the global optimum, and then improve the
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accuracy. A simple way to do the scaling is as follows:







H̃ = argmin
H
QA(W0, H),

κ ≃ avg(H̃),

W0 = κW0,

(3.37)

where avg represents the average of all entries.

Numerical results are reported in the next section for different scenarios of blind

unmixing.

3.5 Experiments for CS Blind Unmixing

The test platform is the same as the one described in Section 3.3.1 — a SONY VGN-

FZ290 laptop running Windows 7 and MATLAB R2009b (32-bit), equipped with a

1.5GHz Intel Core 2 Duo CPU T5250 and 2GB of DDR2 memory.

In these experiments, randomized Walsh-Hadamard matrices were used as mea-

surement matrices to take advantages of fast transformation and easy hardware im-

plementation. The nonnegativity constraint was left out unless noted otherwise.

In Algorithm 3.2.2, the multiplier Π was initialized to 0; the weight for updating

multipliers ς was fixed at 1.6; the selection thresholds ε and ǫ were both set to

1e − 3; the penalty parameter β was selected from a range of 25 to 29, according

to estimated noise levels. The settings of other parameters for solving subproblems

could be found in Section 3.3.1. As mentioned before, even though the algorithm is

not overly sensitive to the choice of penalty parameters, it still takes a few trial-and-

error attempts to find suitable values for a fast convergence.



83

3.5.1 Denoising Tests
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Figure 3.22: Endmember spectral signatures.

For ease of comparison, all tests demonstrated here were extended from the first

synthetic test in Section 3.3.2. Four materials including nontronite, ferroaxinite,

trona and molybdenite were selected and their signatures were obtained from ASTER

spectral library as shown in Figure 3.22. The corresponding abundance fractions

were constructed as shown in Figure 3.23. The endmembers were mixed by the

multiplication of the signatures and the abundance, giving the hyperspectral cube

which is used to synthetically acquire the compressed observation. In real world,

compressed data would be collected directly from a scene and no hyperspectral cube

would be needed by our approach. Constructing the hyperspectral cube in such

synthetic experiments provides ground truths and helps the assessment of computed

results. Six slices extracted from the original cube are exhibited in Figure 3.24,

each corresponding to an image of a specific wavelength. The spatial resolution was
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Figure 3.23: Synthetic abundance distributions.

set to 64 × 64; the number of total bands was set to 211 which were uniformly

distributed between 0.4 and 2.5 micrometers according to the library specifications

for the signatures.

The purpose of tests here is to study the impact of distinct types of noise to the

proposed compressed blind umixing method. Specifically, Gaussian, periodic and im-

pulsive noise are tested in the experiments. The noise-free compressed observation is

always generated by F = AHW , whose size depends on the number of measurements

taken. In particular, all tests were done using 20% measurements and the detailed

results of each one were reported in Table 3.1.

In the first test, we demonstrate the robustness of Algorithm 3.4.3 under Gaus-

sian noise. The signatures of four endmembers were corrupted by zero-mean Gaussian

random noise with standard derivation 22.7 and then input as the initial guess. From

Figure 3.25(a), we can see that the signatures have been severely impaired and the
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Figure 3.24: Hyperspectral imaging under specific wavelengths.

corresponding endmembers are hardly recognizable from these corrupted signatures.

Figure 3.25(b) shows the plot of recovered signatures by Algorithm 3.4.3. A signifi-

cant improvement is unmistakable in contrast to the initial guess in Figure 3.25(a).

Clearly, the four endmembers could be easily identified from the recovered signatures.

Numerically, the relative error in the signatures has been decreased from 43.8% to

3.6%, while the induced hyperspectral cube has a 2.39% relative error.

Gaussian noise is unavoidable in the course of collecting data in practice. In

hyperspectral data acquisition, a spectrometer is usually employed to distribute the

light into hundreds or even thousands of channels, and the power in each channel is

dissipated by orders. In this case, Gaussian noise becomes even more significant, and

a robust algorithm capable of denoising is advantageous.

In the second test, we consider the impact of periodic noise. The noise was con-
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structed using a sinusoidal function with a period of 0.422 and an amplitude of 22.7.

The corrupted signatures are shown in Figure 3.26(a). Starting with the corrupted

signatures as initial guess, we applied Algorithm 3.4.3 to remove the periodic noise as

well as to unmix the compressed data. Figure 3.26(b) shows the recovered signatures,

from which the endmembers could be recognized despite some minor deviations from

the true signatures plotted in Figure 3.22. Numerically, the relative error in the sig-

natures decreased from 32.7% to 4.1%, and led to an estimated hyperspectral cube

with only 0.98% relative error.

Another type of possible noise is impulsive noise, which refers to total loss of

signature values in some bands. Unlike either Gaussian or periodic noise, impulsive

noise is discrete and the true values are substituted, with some probability, by random

values from a noise source. Visually the outbursts caused by impulsive noise are

observable as discrete high-contrast points, which explains why it is also called pepper-

and-salt noise. In the test with impulsive noise, the probability of noise occurrence

was set at 25%, and impulsive noise was imposed uniformly random at positions.

The corrupted signatures were plotted in Figure 3.27(a) as the starting point for

Algorithm 3.4.3. Similarly, the recovered signatures are depicted in Figure 3.27(b),

with a 6.5% relative error. In addition, the resulted hyperspectral cube has a less

than 1% relative error.

In the forth test, we still imposed impulsive noise on the signatures of four end-

members with 25% probability of occurrence. However, we kept the same distance

between every two adjacent corrupted positions in stead of randomly selecting po-

sitions, and all four signatures were corrupted at the same positions, as shown in

Figure 3.28(a). We could observe a similar successful reconstruction as indicated in

Figure 3.28(b). Specifically, the relative error of signatures dropped from 33.9% to

3.8%, which leads to a 1% relative error in hyperspectral cube.
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Table 3.1: Numerical results of denoising tests

m
n

‖W0−W ∗‖
‖W ∗‖

‖West−W ∗‖
‖W ∗‖

‖Hest−H∗‖
‖H∗‖

‖Xest−X∗‖
‖X∗‖

t− t0

Test 1 (Gaussian) 20% 43.802% 3.624% 15.416% 2.390% 53.68s

Test 2 (periodic) 20% 32.710% 4.133% 19.574% 0.980% 57.53s

Test 3 (impulsive) 20% 30.266% 6.517% 19.995% 0.987% 60.91s

Test 4 (impulsive) 20% 33.926% 3.798% 8.044% 1.009% 64.22s

These numerical results, as reported in Table 3.1, suggest that the proposed com-

pressed blind unmixing algorithm could remove severe noise of these four kinds from

poor signature estimation. Overall speaking, recovered results by Algorithm 3.4.3

preserved most, if not all, critical characteristics of the true signatures such as waves

and spikes, from just 20% measurements. These experimental results on a variety

of noise scenarios substantiate the claim that the proposed scheme is able to handle

noisy compressed data directly acquired by hardware and perform blind unmixing.

3.5.2 Further Scenario Tests

Other than noise, a number of factors may result in biased or even misleading prior

information. In this part, we test robustness of proposed compressed blind unmixing

method by simulating several scenarios. The basic setup of testing is the same as

what we described at the beginning of Section 3.5.1: nontronite, ferroaxinite, trona

and molybdenite, whose signatures were plotted in Figure 3.22, were chosen as end-

members and their corresponding abundance fractions were constructed as shown in

Figure 3.23. Statistics of computational results are given in Table 3.2.

In some cases, signatures may be measured not as reflectance but as energy or

intensity instead. This may alter the scale of the signatures. We start with a simple

test to demonstrate that the compressed blind unmixing algorithm can restore the
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correct scale in signatures. In our test, the signatures of four endmembers were

amplified by tenfold and then input as the initial guess W0 into Algorithm 3.4.3.

Figure 3.29 compares the recovered signatures shown in (b) with the initial guess

shown in (a). Compared to the true one shown in Figure 3.22, we observe that

the amplitude has been successfully restored. The relative error of the recovered

signatures is 0.18%. The estimated hyperspectral cube, generated by the recovered

H and W , has a relative error of 0.15%.

This test confirms that the proposed compressed blind unmixing method can

effectively deal with different scales in measured signatures. This would become

particularly appealing for real data acquisition, since acquiring the compressed data

and measuring the signatures of participated endmembers are normally carried out

by two independent experiments under different experimental conditions. In such

circumstances, differences in scales are likely to occur.

In the second test, we simulated the scenario that the number of endmembers was

not supplied but we were aware of the range of candidates which might be present in

a scene. In unmixing, we tried to find the contributing endmembers with the aid of

the preprocessing and postprocessing described in Algorithms 3.4.1 and 3.4.2, both

of which have been incorporated into the Compressed Blind Unmixing Algorithms

3.4.3. More specifically, four other materials were picked from the library including

chalcopyrite, talc, illite and lepidolite. Their signatures together with the signatures of

nontronite, ferroaxinite, trona and molybdenite were drawn in Figure 3.30(a). These

eight endmembers were viewed as candidates for Algorithm 3.4.3. Figure 3.30(b)

shows that only four out of the eight candidates have been selected as contributing

endmembers. Further comparison with Figure 3.22 indicates that the selections are

correct.

The following two experiments studied the scenarios where a given set of signatures
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contains one or two wrong endmembers.

In the third test, we considered the case where one endmember out of four is

wrong. More specifically, the presence of nontronite was incorrectly replaced by illite.

As illustrated in Figure 3.31(a), the signature of illite together with signatures of the

other three original endmembers were provided as initial guess to Algorithm 3.4.3.

It is notable from the plot that the signature of illite is totally unrelated to the one

of nontronite, which implies that priori information on nontronite is missing. From

Figure 3.31(b), we observe that the recovered signatures matched the characteristics

of nontronite, ferroaxinite, trona and molybdenite (see Figure 3.22) very well whereas

the signature of illite has vanished.

This result indicates that the compressed blind unmixing method is capable of re-

trieving one missing signature. However, the method may fail if too much information

is missing.

Next we repeated the last test but assuming two endmembers were misidentified,

which further increased the difficulty of blind unmixing. Figure 3.32(a) plots the

signatures of illite, ferroaxinite, trona and lepidolite which were fed as initial guess

instead of the original four endmembers. From the plot of the recovered signatures

shown in 3.32(b), we can barely recognize the missing two endmembers — nontronite

and molybdenite, which implies the failure of blind unmixing. Even if we imposed

nonnegativity for extra information, the unmixing result still hardly improved. The

relative error of recovered signatures remains over 30% but the relative error of in-

duced hyperspectral cube drops to less than 3%. This result reveals that the reason for

this failure in this test is not the lack of enough measurements, but the non-convexity

of the problem.
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Table 3.2: Numerical results of scenario tests

m
n

‖W0−W ∗‖
‖W ∗‖

‖West−W ∗‖
‖W ∗‖

‖Hest−H∗‖
‖H∗‖

‖Xest−X∗‖
‖X∗‖

t− t0

Test 1 20% 900% 0.176% 0.987% 0.153% 58.29s

Test 2 20% 123.816% 0.647% 3.721% 0.290% 66.29s

Test 3 20% 21.972% 6.849% 25.170% 5.028% 69.53s

Test 4 20% 38.965% 30.190% 116.405% 2.965% 79.60s

3.5.3 Remarks on Compressed Blind Unmixing

From our experience, the number of measurements used for reconstruction is not

necessarily correlated with the success of blind unmixing. Since the blind unmixing

problem is non-convex, the success of unmixing depends heavily on the information

content of initial guess. Generally, with poor initial guess increasing the number

of measurements can reduce the error in estimated hyperspectral cube, but not help

find better signatures or corresponding abundances. Due to non-uniqueness in matrix

factorization, it is likely that both signatures and abundances are completely wrong

but their product gives a well-estimated hyperspectral cube (see results in Section

3.5.2).

Our extensive experiments have shown the effectiveness and robustness of the

proposed compressed blind unmixing method. The algorithm can not only remove

several types of noise but also correct wrong scales. It can also remove extra endmem-

bers not present on a scene. Moreover, the algorithm can handle the cases where one

endmember has been totally misidentified. However, we should by no means minimize

the difficulty of blind unmixing. The success of our approach relies on the availabil-

ity of sufficient prior information on endmember signatures. The “blind unmixing”

approach is not totally blind.

On the other hand, hyperspectral cubes can usually be well estimated by the
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compressed blind unmixing method with or without quality prior knowledge, as long

as the number of measurements is sufficient in the sense of compressive sensing. The

induced cube can be analyzed by other methods or techniques, which may or may

not require optimization.

3.6 Conclusion

In a nutshell, the proposed scheme has been empirically, and rather convincingly, val-

idated using both synthetic data and measured data acquired by a hardware device

similar to the single-pixel camera [32]. The numerical results clearly demonstrate

that compressively acquired data of size ranging from 10% to 25% of the full size can

produce satisfactory results highly agreeable with the “ground truth”. The remark-

able denoising effects against various types have been justified by solid evidence. The

process speed achieved so far, which can certainly be further improved, seems to fall

within a promising range. Furthermore, both the framework and the algorithm have

been successfully extended to the case of blindly unmixing the compressed hyperspec-

tral data.
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(b) Recovered signatures.

(c) Recovered abundance distributions.

Figure 3.25: Removing the Gaussian noise involved in endmembers.
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(b) Recovered signatures.

(c) Recovered abundance distributions.

Figure 3.26: Removing the periodic noise involved in endmembers.
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(b) Recovered signatures.

(c) Recovered abundance distributions.

Figure 3.27: Removing the impulsive noise involved in endmembers (random positions corrupted).
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(b) Recovered signatures.

(c) Recovered abundance distributions.

Figure 3.28: Removing the impulsive noise involved in endmembers (same positions corrupted).
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(b) Recovered signatures.

(c) Recovered abundance distributions.

Figure 3.29: Correcting the wrong scale involved in endmembers.
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(b) Recovered signatures.

(c) Recovered abundance distributions.

Figure 3.30: Selecting endmembers from candidates.
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(c) Recovered abundance distributions.

Figure 3.31: Unmixing from one endmember missing.
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(b) Recovered signatures.

(c) Recovered abundance distributions.

Figure 3.32: Unmixing from two endmembers missing.



Chapter 4

Scalable Video Coding

The merits of compressive sensing have been demonstrated in many fields including

the hyperspectral imaging covered in Chapter 3. It is well known that the sparsity

plays a key role in compressive sensing. By exploring the temporal redundancy among

adjacent frames, video data should be well sparsified. In this chapter, a framework of

compressive video sensing (abbreviated CVS) is discussed and a new way to construct

the sensing matrices is proposed, which together lead to a novel scheme of scalable

video coding. An algorithm based on the general TVAL3 method is suggested for the

purpose of decoding.

4.1 Introduction

Generally speaking, video is composed by a sequence of still images in order to depict

scenes in motion, and each still image is known as a frame. It includes recording,

processing, storing, transmitting, and reconstructing a series of frames. Two funda-

mental concepts of a video are frame rate and display resolution: frame rate refers

to the number of frames per second, which ranges from 20 to 30 normally; display

100
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resolution refers to the number of pixels in each dimension, and may vary over a wide

range due to various applications.

In video distribution applications, a video source may be transmitted to multiple

clients with different characteristics. The clients in the video network have different

channel capacities, different display resolutions, and different computing resources.

For example, a video source may be transmitted through a network to a high-end

computer with a high resolution monitor in a residential home, and at the same

time, to a mobile device with a low resolution screen and a battery powered CPU.

In other words, the quality of video which a client device can render is constrained

by the channel conditions as well as the client’s computing capabilities. Optimal

video quality is achieved if the encoder is tuned specifically for those constraints.

However, in typical video networks a video source is transmitted to multiple clients

with different characteristics. Furthermore, the properties of the channels, especially

wireless ones, may change over time, sometimes abruptly. Therefore, it is desirable

to have a scalable video coding scheme — one in which the source is encoded once,

the same code is used for transmission to all clients and each client can decode it to

achieve a near-optimal viewing experience, subject to its own constraints, as depicted

in Figure 4.1.

Figure 4.1: Diagram of a video network.

Standard video coders such as AVC [113] are not scalable. An encoded video can

Video 
Source Channel 1 Decoder 1 Display 1 

Packetization, 
Video channel Channel2 Decoder2 Display 2 
Coding coding & 

Transmission 

Channel3 Decoder3 Display 3 
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be decoded only at one resolution, with a fixed complexity (not considering post-

processing such as resizing, or enhancement, after decoding). If the channel capacity

is lower than encoded data rate, or if the decoding complexity exceeds the client’s

capability, video decoding would fail. On the other hand, if the channel capacity

exceeds the encoded bit rate and the client has ample computational resources and

a high resolution display, there is no way to get a better viewing experience which is

commensurate with the available resources. This phenomenon is known as the cliff

effect — no video is available unless some threshold is met and no improvement is

achievable with extra capacities.

Scalable video coding (SVC) [114] introduces some scalability by encoding video

into ordered layers, where each higher layer provides a refinement to the encoding by

the lower layers. In this way, the resolution or quality of the decoded video increases

progressively while higher layers are added. However, the loss of a lower layer in the

transmission makes the higher layers useless, even when they are received error-free.

Since decoding of lower layers is a prerequisite for the decoding of higher ones, the

lower layers need a higher level of protection in transmission. In broadcast applica-

tions each layer may be transmitted as a separate stream, with different protection

levels, e.g. by using hierarchical modulation [115]. In point to point applications

a feedback from the client usually implies how many layers to be transmitted. In

these situations, providing a different protection to each layer is usually difficult and

inefficient; hence all layers get the same protection, which severely limits the scal-

ability. Practical limitation of SVC necessitates a relatively small number of layers

(due to compression efficiency considerations) which makes the scalability achieved

by SVC rather limited. Typically one can maintain the same video quality by using

a more complex encoder/decoder while reducing the bit rate, or vice versa. However,

increasing the number of decoded SVC layers increases both the data rate and the
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decoder complexity. Furthermore, SVC features no scalability in resolution — either

spatial or temporal. There have been attempts to introduce scalability in decoding

resolution [116] and to achieve scalability by joint source and channel coding [121].

However, the problem of scalability of video coding is far from being solved.

In the wake of recent advances in compressive sensing as reviewed in Chapter 1,

video coding using compressive measurements is rapidly emerging [33, 118]. Compres-

sive video sensing represents the video as a set of independent measurements, each of

which carries an equal amount of information about the source. The video may be

decoded from any subset with a minimum number of the equally important measure-

ments. Ideally, the reconstruction is exact as long as the number of measurements

exceeds a theoretical bound. However, most video clips are not strictly sparse under

any basis and exact recovery is unrealistic. Usually, the quality of rendering improves

as more measurements are added [6], but is independent of the choice of specific mea-

surements. Therefore, the transmitted data rate may be continuously adapted to the

channel capacity. Furthermore, special protection is unnecessary for measurements in

the sense that if one is lost in transmission it may be replaced by any other measure-

ment. In addition, decoding is no longer the simple inverse process of encoding, but

done by solving an optimization problem. Therefore, compressive sensing offers the

scalability desired in video network [119, 118], allowing each client to receive as many

measurements as its channel capacity allows and to use the best decoding method

which its computational resources can sustain. As networks conditions change the

decoded video quality may change, but the cliff effect vanishes.

In Section 4.2, we propose a framework for video coding using compressive mea-

surements in which an encoded video is scalable with the channel capacity and with

decoding complexity. Several algorithms, with different complexities, can be employed

or extended for decoding, and we focus on the one implementing a TVAL3 method.
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The quality of the decoded video depends only on the number of measurements and

not on the particular measurements used. Therefore, if network conditions dictate

a smaller number of measurements, we get graceful degradation with few objection-

able artifacts. The effectiveness of compressive sensing is based on representing the

signal at hand in a domain in which it is sparse. By exploring temporal redundancy,

we present a novel sparse representation for video — spatial Total Variation (TV)

combined with temporal Discrete Cosine Transform (DCT), TVS-DCTT , or simply

TV-DCT, and show its effectiveness in simulations [96].

In order to meet the needs of large high-definition television screens, video has to

be encoded at a high resolution. However, if the receiver is a small mobile device, the

rendered resolution may be much smaller. For such small devices it is undesirable to

decode the video at the original resolution and then down-sample it to the display

resolution. In order to get a decent decoded quality in a high resolution, one needs

many more measurements than would be necessary for a low resolution, and in a

wireless network that amount of measurements may exceed the channel capacity.

Furthermore, high resolution decoding requires more computational resources. In

Section 4.3, a novel way to build sensing matrices by means of Kronecker products is

suggested to achieve scalability. Built on this technique, a scalable resolution coding

method is described [112], which allows encoding at a high resolution and direct

decoding at a lower resolution.

Multi-resolution should not be confused with format conversion. Often a source

video need to be converted into the client’s display format, e.g. from VGA to CIF or

from cinema frame rate to PAL or NSTC. These conversions are at non-integer but

fixed ratios and they are performed after the decoding by a dedicated graphic proces-

sor. These issues are not discussed here. This chapter is concerned with reducing the

video resolution as a part of the decoding process, in order to overcome the limited
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bandwidth or limited computational resources.

4.2 Compressive Video Sensing

A source video consists of a sequence of frames, each comprising three arrays of pixel

values for the three color components (either YUV or RGB). To simplify the notation

and description we only consider a single color component, say luminance, making it

a black and white video source. The other two components may be treated similarly.

In this setting a pixel position is represented by a three dimensional index vector

i = (i1, i2, i3), where i1, i2, i3 are vertical and horizontal offsets, and the frame number,

respectively. For higher efficiency, the video source is divided into volumes, which

are contiguous, non-intersecting sets of pixels, and compressive sensing encoding is

performed independently on each volume. For simplicity we assume that each volume

is a cube of pixels of size n = (n1, n2, n3) which occupies pixel positions {i : o ≤ i <

o+n}, where o is the top-left-oldest corner of the cube and inequality signs between

index vectors indicate inequality for each component. The total number of pixels in a

volume is denoted by n , n1n2n3. This framework can be easily extended to volumes

of non-regular shape, which could be utilized, for example, for the purpose of motion

estimation and compensation.

Except for dealing with boundaries of adjacent volumes, the processing of each

volume is independent of the others and we can assume that o is the origin. Thus the

cube is defined by its pixel values P ∈ Rn1 × Rn2 × Rn3 , where Pi is the pixel value

at position i ∈ Zn1 × Zn2 × Zn3 where Zn denotes the set {1, . . . , n}.
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4.2.1 Encoding Using Compressive Sensing

Compressive sensing encoding, as depicted in Chapter 1, is a straightforward linear

operation. Nevertheless, some caution is necessary in dealing with the conversion of

the 3D volume into the 1D signal from which the measurements are taken.

Let T : Z→ Zn1 ×Zn2 ×Zn3 be a one-to-one mapping of the 1D indices 1, . . . , n

into 3D pixel indices. Let S : Rn1 ×Rn2 ×Rn3 → Rn be a mapping from the volume

into a 1D signal performing a column-by-column scan of a cube. Mathematically,

S(P )i = PT (i). (4.1)

Furthermore, let

x = S(P ), (4.2)

and then the measurement vector y is given by

yi =
n∑

j=1

aijPT (j), for 1 ≤ i ≤ m, (4.3)

or equivalently, by

y = Ax. (4.4)

This process is illustrated in Figure 4.2.

As indicated in Chapter 1, the measurement matrix A should be incoherent with

the sparsity basis of the video volume. A large number of matrices meet this require-

ment, including randomly generated ones. Considering the advantages of easy imple-

mentation on hardware, fast transformation, and satisfactory recoverability, randomly

permutated Walsh-Hadamard (abbreviated WH) matrices are used in our tests.

It is noteworthy that if n is sufficiently large, generated measurements behave
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Figure 4.2: Video coding using compressive sensing.

similarly to uncorrelated Gaussian random variables. We consider the entries of a

random matrix to be independent random variables, and therefore, each measure-

ment is a weighted sum of these random variables with weights being the pixel values

of the volume. According to the central limit theorem in statistics, the sum has

approximately the Gaussian distribution if the number of terms in the sum is large

enough. Since the rows of A are uncorrelated, the measurements are uncorrelated as

well. This distribution of the measurements enables efficient encoding and quantiza-

tion for transmission.

4.2.2 TV-DCT Method for Decoding

Traditional video coding methods, such as MPEG-1 and MPEG-2, decode a video by

inverting the encoding process. However, it is no longer the case for compressive video

sensing. The task of the decoder becomes to estimate x from the underdetermined

system (4.4) given the measurement vector y and sensing matrix A, afterwards the

pixel values in the video volume can be obtained by back-projecting P ∗ = S−1(x∗),

where x∗ is the approximation of true x. In light of compressive sensing, x∗ can be
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found by solving the constrained minimization problem

min
x

Φ(x), s.t. Ax = y, (4.5)

where Φ(x) stands for a regularization term. Due to quantization at the encoder

or network errors, the measurements received by the decoder may contain noise;

hence forcing the equality constraint would be unnecessary. Instead, we consider an

unconstraint minimization problem to recover x∗:

min
x

{

Φ(x) +
µ

2
‖Ax− y‖2

}

, (4.6)

where the second term penalizes the violation of the fidelity term with a balancing

parameter µ.

In compressive sensing, the regularization term is in the form of the following:

Φ(x) = ‖Lx‖1, (4.7)

where L is a linear transformation which yields the coefficients of a sparse represen-

tation of x according to the selected sparsity basis. Typical choice of L leads to the

extensively used ℓ1 or TV regularization, which has been introduced in Chapter 1.

Especially in the realm of imaging, the merits of TV regularization has been indicated

in former chapters, as well as some other literature. The transformation suggested

here for video decoding consists of a temporal DCT followed by spatial total variation.

Typically there is a high correlation between pixels in the same spatial position of

different frames. For example, the still background in a video clip signifies the same

pixel value in the same position of distinct frames. We apply the temporal DCT to

all pixels which share the same spatial position. Former notation gives i = T (i), and

-
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then

x̃i = P̃i

=

n3∑

j=1

Pi1,i2,j cos

[
π

n3 − 1

(

j − 1

2

)]

=

n3∑

j=1

xT−1([T (i)1,T (i)2,j]) cos

[
π

n3 − 1

(

j − 1

2

)]

. (4.8)

After the DCT transform, the first frame represents the component which is un-

changed over time and subsequent frames represent components of increasing time

variability. If there are no temporal changes in the video volume, as the example men-

tioned above, only the first transformed frame is non-zero. Therefore, the temporal

DCT generally enhances the sparsity or compressibility of the video source.

If each frame consists of a small number of regions with uniform pixel values, then

it could be sparsely represented by the boundaries between the regions and the pixel

differences. This information can be extracted by applying a gradient operator

(∇x)i ,
[
PT (i)+[1,0,0] − PT (i), PT (i)+[0,1,0] − PT (i)

]
, (4.9)

with carefully chosen boundary conditions, such as periodic or Neumann. Real DCT-

transformed video frames may only be approximated by such models, hence their

gradient is only nearly sparse. However, as explained before, this may suffice for

adequate reconstruction.

Similar to the regular TV used in former chapters, the spatial total variation

(abbreviated TVs) is defined by

TVs(x) =
n∑

i=1

‖(∇x)i‖p, (4.10)
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where p = 2 corresponds to the isotropic TVs and p = 1 corresponds to the anisotropic

TVs. Total variation has been widely and successfully used in image processing

[14, 6, 46], and recently in hyperspectral imaging as investigated in Chapter 3. In the

process of decoding, spatial TV is applied to the temporal DCT of the signal; hence

Φ(x) , TVs(DCTt(x)) =
n∑

i=1

‖(∇x̃)i‖p, (4.11)

with x̃ defined in (4.8). Intuitively, the proposed TV-DCT regularization is illustrated

in Figure 4.3.

Figure 4.3: TV-DCT regularization.

For simplicity, let Ti ∈ R2×n denote the linear transformation satisfying

Tix = (∇x̃)i, (4.12)

for 1 ≤ i ≤ n. Then the decoding model (4.5) becomes

min
x

n∑

i=1

‖Tix‖p, s.t. Ax = y. (4.13)

It is noteworthy that (4.13) is the same type as the instance we discussed in Section

2.3.1 and can be efficiently solved by means of the general TVAL3 algorithm. As
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a reminder, the augmented Lagrangian function of (4.13) is split into two parts by

introducing a set of new variables wi = Tix for 1 ≤ i ≤ n. One part is separable

with closed-form minimizer whereas the other part is quadratic. The general TVAL3

method employs the alternating direction in an inexact way to minimize the aug-

mented Lagrangian function, and attains the global minimizer of (4.13) eventually.

In the presence of noise involved in measurements, one can employ the same algorithm

to solve the unconstraint model (4.6) with TV-DCT regularization.

So far we have proposed a so-called TV-DCT method to decode a video stream.

A general TVAL3 algorithm is suggested to handle the model with TV-DCT regu-

larization to achieve scalability on rendering quality and complexity. Furthermore,

compressive video sensing has the virtue of simple encoding without requiring special

protection and open-ended decoding — the decoding algorithm is not limited to the

suggested one but a variety of others. A better reconstruction algorithm potentially

developed in the future would lead to a stronger performance of TV-DCT method.

4.3 Multi-Resolution Scheme

An advantage of using a random-like matrix, such as a permutated Walsh-Hadamard

matrix, as the measurement matrix is that the measurements of the video are equally

important, so that the quality of the reconstructed video only depends on the number

of measurements available, but independent of the availability of any particular mea-

surement. This is the property that makes the coding inherently scalable. Besides,

there is still more to be desired. Suppose the measurements described in Section 4.2.1

are transmitted, and due to a low channel capacity, only very few measurements are

correctly received at the decoder. The number of received measurements may be too

small to reconstruct a video of the original resolution with an acceptable quality. It is
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possible to use the received measurements to reconstruct a video of the original reso-

lution, and then resize it to a lower resolution, but the quality of the downsized video

is inherently limited by that of the reconstructed video, although the smaller size of

the downsized video may make some undesirable artifacts less obvious. Therefore, an

alternative method is proposed in the following in which a video of lower resolution

is reconstructed directly using those few measurements that are correctly received.

Suppose x̃ = Rx,R ∈ Rr×n, r < n is a signal of length r which, in some sense,

is an approximation of x ∈ Rn. R is the reduction matrix and it may be based on

interpolation, filtering, or any other well known techniques of rate reduction [120].

The low resolution may be spatial (fewer pixels per frame), temporal (lower frame

rate) or a combination of both. Low resolution decoding refers to estimating x̃ from

available measurements y directly, that is, without recoverying x first. Typically

low resolution decoding is attempted either in order to reduce the number of mea-

surements needed for reliable decoding or in order to reduce the required amount of

computation. Before showing how low resolution decoding may be done, let us first

examine if and when the number of required measurements can be decreased. The

reduction of required computation will become clear along with further discussions.

4.3.1 Theoretical basis of Low Resolution Reconstruction

Based on the theory of compressive sensing [2], the theoretical bound of measurements

required for reconstructing a signal is

m0 = cεk logn,
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where cε is some constant corresponding to the given accuracy ε and k is the sparsity

of x. After reducing the resolution from n to r, the theoretical minimum becomes

m̃0 = c̃εk̃ log r,

where k̃ is the sparsity of the low resolution signal. Replacing n by r < n reduces the

bound but the impact is small because of the logarithm. The key of having m̃0 smaller

than m0 is to have k̃ ≤ k. However, this is by no means guaranteed in general, if

assuming no connection between the sparsity basis and the rate reduction procedure.

The following sufficient condition ensures that rate reduction will at least maintain

the same level of sparsity:

Proposition 4.3.1. Let b1, . . . , bn be a sparsity basis in Rn and let C̃ = {Rb1, . . . , Rbn}−

{0} be the set of non-zero vectors in the low resolution image of the sparsity basis vec-

tors. If the vectors in C̃ are linearly independent, then k̃ ≤ k.

Proof. Due to the linear independency, C̃ can be extended into a basis B̃ ⊃ C̃ in the

low resolution space. Let x be a k-sparse vector with a representation in the sparsity

basis; i.e.,

x =

k∑

j=1

αjb
ij .

Then

Rx =
k∑

j=1

αjRbij .

If we eliminate zero summands in the right hand side, if any, we get a representa-

tion of Rx by no more than k different basis vectors. In other words,

k̃ ≤ k.
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At the beginning of Section 4.2.2, we posed two decoding models to handle both

noise-free and noisy situations respectively. The unconstraint model (4.6) is adopted

here because the gap between an approximation of lower resolution and the signal

of original resolution is mostly unavoidable. The penalty term in the unconstraint

model may prohibit the occurrence of overfitting. In order to solve the minimization

problem (4.6) for a lower resolution signal x̃ decoding, we need to replace the original

signal x by introducing an expansion matrix E ∈ Rn×r which is designed so that Ex̃

would be a good approximation of x. Then (4.6) becomes

min
x̃

{

Φ(x̃) +
µ

2
‖AEx̃− y‖2

}

. (4.14)

This is also equivalent to

min
x̃

{

Φ(x̃) +
µ

2
‖Ax− y‖2 + µ

2
‖A(Ex̃− x)‖2

}

, s.t. x̃ = Rx. (4.15)

Thus a noise induced penalty term, ‖A(Ex̃−x)‖2, arises in the minimization. In the

reconstructed video of lower resolution, the error caused by this noise is proportional

to the noise level [3], which is proportional to error associated with the reduction to

lower resolution. Therefore, the detrimental effect of this noise term on (4.14) is at

the same level as the unavoidable degradation of a low resolution.

Note that the sufficient condition has been defined in term of the reduction matrix

R, yet it is E, not R which appears in (4.14). However, R is constrained by E because

of the requirement RE = I. A well constructed reduction matrix R has the full rank,

and therefore, the expansion matrix E can be obtained, for example, from the one-

D 
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sided inverse of the reduction matrix R, as

E = RT (RRT )−1. (4.16)

4.3.2 Illustration of Low Resolution Reconstruction

Equations (4.4) and (4.14) constitute a basis for video coding in which one encoding

fits a variety of channels and display resolutions in accordance with specific require-

ments. This is illustrated in Figure 4.4(a).

In Figure 4.4(a), the source video is encoded using a random measurement ma-

trix. The encoded video is transmitted, for example, in a broadcast system, and the

correctly received measurements are used to reconstruct video of a desired resolution

by using an appropriate expansion matrix E. More precisely, decoder i ∈ {1, 2, 3}

with channel capacity Ci may use an expansion matrix Ei to reconstruct a video of

certain resolution by substituting E = Ei in (4.14).

An alternative, but unfavorable, encoding and transmission scheme is shown in

Figure 4.4(b). In Figure 4.4(b), to transmit the source video to decoder i ∈ {1, 2, 3}

with channel capacity Ci, the source video is first down-sized to a resolution suitable

for the display of the i-th decoder by using a reduction matrix Ri. The down-sized

video is encoded using a random matrix Ai. The compressive measurements are

transmitted and the correctly received measurements are used to reconstruct the

video of the same resolution as the down-sized video by substituting A = Ai in (4.4)

and (4.6). Clearly, the system in Figure 4.4(a) is more preferable in the sense that

no separate encoding is demanded and the same piece of measurements is capable of

decoding at various resolutions. More importantly, Figure 4.4(a) indicates no need of

a prior knowledge on decoding side.
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Figure 4.4: Flowchart of two schemes: encoding, transmission and reconstruction.

4.3.3 A Novel Idea to Build Scalable Sensing Matrices

The implementation of the framework described above may result in a very high

complexity because of the evaluation of AEx̃. Unless the matrices are constructed

with some special structures, either the complexity of AEx̃ is proportional to that

of the original resolution if the computation is performed as A(Ex̃), or a large mem-

ory (to store the matrix AE) and a matrix-matrix multiplication are required if the

computation is performed as (AE)x̃. Therefore, it is highly desirable to simplify the

computation of AEx̃ for video applications due to the limited resources available at

decoders. In this part, a new way to construct sensing matrices is proposed by means

of Kronecker products. The special structure of this type provides much lower com-

plexity as well as multi-resolution reconstruction. The discussion here is restricted to

lowering the spatial resolution.

For any two matrices A = [aij ]p×q and B = [bij ]r×l, the Kronecker product of A

(a) 

~Yi~t!I 
~ Y2-@)-ffi-{j? 

A3 Y3 ~ oJ' 
(b) 
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and B is defined as

A⊗ B =












a11B a12B . . . a1qB

a21B a22B . . . a2qB

...
...

...
...

ap1B ap2B . . . apqB












pr×ql

.

A fundamental property of Kronecker product is the following:

Proposition 4.3.2. Suppose that A ∈ Rm×n is given by

A = A1 ⊗ A2,

where A1 ∈ R(m/p)×(n/q) and A2 ∈ Rp×q. m and n are chosen such that m and n are

divisible by p and q, respectively. Then matrix-vector multiplication can be computed

by 





Ax = vec(A2mtx(x)AT
1 ),

ATy = vec(AT
2mtx(y)A1),

(4.17)

where “vec” represents the operator that stacks the columns of a matrix into a vector,

and “mtx” represents the inverse operator of “vec”.

Generally speaking, the complexity of computing Ax for A ∈ Rm×n is 2mn. In

light of Proposition 4.3.2, the complexity decreases to 2(p+m/p)n, due to the struc-

ture of Kronecker product. Besides, the physical storage of A can be reduced from

mn down to pq+mn/pq. In addition, if both A1 and A2 are implemented using some

fast transforms this proposition points out a way to efficiently evaluate Ax without

acquiring A explicitly.

Another well-known property of Kronecker product is the following:
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Figure 4.5: Recursive construction of vectorized permutation matrices.

Proposition 4.3.3. Suppose that A1, A2, A3 and A4 are matrices with proper sizes.

Then

(A1 ⊗A2)(A3 ⊗A4) = (A1A3)⊗ (A2A4). (4.18)

After going through these preliminaries, we elaborate on the construction of new

sensing matrices suitable for multi-resolution schemes. Specifically, the measurement

matrix A comes from the Kronecker products of small sensing matrices and structured

permutation matrices. First, a predetermined number of decoding resolutions is spec-

ified. Each resolution will be called a “level”. Then A is constructed for the specified

number of decoding levels. The video is encoded by the compressive measurements

of video cubes using this A. The same measurements may be used to reconstruct a

video of any one of the resolution levels. The process of building the measurement

matrix A can be divided into four steps:

1. Specify an integer k > 0 as the encoding level, which determines the lowest

resolution a video can be reconstructed from the encoded video. Specifically,

the encoded video of the spatial resolution n1×n2 can be decoded to one of the

resolutions (n1/2
l)× (n2/2

l), for l = 0, . . . , k.

For the convenience of description, we assume the dimensions n1/2
l and n2/2

l

are always integers. For non-divisible cases, the scheme is still applicable with

mild modifications.

P,4 
1 

~ 
r,16 p 16 

1 ~ 2 ~ 
P, 64 p 64 p 64 

1 2 3 

··············· ... 
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Figure 4.6: Demo of the initial permutation matrix: perform permutations on a 4× 4 block.

2. Construct a series of permutation matrices P n
1 , P

n
2 , . . . , P

n
k , named block-wise

vectorized permutations, by recursion:

P n
i = P

n/4
i−1 ⊗ I4, for i = 2, 3, . . . , k (4.19)

where P s
i ∈ Rs×s and I4 represents the 4 × 4 identity matrix. This recursive

reconstruction is illustrated in Figure 4.5.

For all s = 4, 16, 64, . . . , P s
1 is a permutation matrix following a particular

build-up scheme based on 2 × 2 blocks. For example, P 16
1 is the permutation

matrix that works in the way illustrated in Figure 4.6. In other words, let

u = [1, 2, 3, 4, 5, 6, 7, 8, . . . , 13, 14, 15, 16]T be the column vector formed by con-

catenating the columns of the matrix on the left hand side of Figure 4.6. Then

P 16
1 u = [1, 2, 5, 6, 3, 4, 7, 8, . . . , 11, 12, 15, 16]T . In general, for a square matrix U

of dimension n, u is the column vector formed by concatenating the columns

of the matrix U , and P n
1 u is the column vector formed by first dividing the

matrix U into blocks of four elements ( 2 × 2 blocks), and then, concatenating

the columns of each 2×2 block followed by concatenating all these 2×2 blocks

column by column.

From this point on, we will omit the superscript of P s
i for simplicity. Its size

can be determined by properly forming the matrix product.

3. Select a series of small sensing matrices A0 ∈ Rm0×(n/4k) and Ai ∈ Rmi×4 for

1 5 9 13 

2 6 10 14 

3 7 11 15 

4 8 12 16 



120

1 ≤ i ≤ k which satisfy
k∏

i=0

mi = m. (4.20)

The choice of m0, m1, . . . , mk is definitely not unique based on (4.20). One

feasible way is to choose m0 close to n/4k or as large as possible, and meanwhile

choose 4 ≥ m1 ≥ · · · ≥ mk ≥ 1. The underlying reason is that m0 decides

the number of valid measurements corresponding to the lowest resolution, and

bigger m0 gives higher quality of reconstruction at the lowest resolution. Similar

argument explains the reason for choosing m1 ≥ · · · ≥ mk. The upper bounds

of m0, m1, . . . , mk are chosen to avoid overcompleteness. Here we just pointed

out one strategy, and other strategies require further research along this road.

4. Let

Qk = PkPk−1 · · ·P1, (4.21)

and

A = (A0 ⊗ A1 ⊗ · · · ⊗ Ak)Qk, (4.22)

which gives the measurement matrix scalable for multi-resolution purpose.

On the encoding side, it follows from (4.4) and (4.22) that

y = (A0 ⊗ A1 ⊗ · · · ⊗Ak)Qkx. (4.23)

Since Qk acts as a permutation matrix, Qkx can be regarded as a reordering of x. For

any 0 ≤ k̃ < k, the Kronecker products in (4.23) can be decomposed into two parts:







A′ = A0 ⊗ · · · ⊗Ak̃,

A′′ = Ak̃+1 ⊗ · · · ⊗ Ak,

(4.24)
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whose orders are m′ × n′ and m′′ × n′′ respectively. We partition the vectors Qkx

and y into segments xi for i = 1, . . . , n′ and yi for i = 1, . . . , m′ of lengths n′′ and m′′

respectively; i.e., 





xi
j = (Qkx)in′′+j for j = 1, . . . , n′′,

yij = yim′′+j for j = 1, . . . , m′′.

(4.25)

Then (4.23) is equivalent to









(y1)T

...

(ym
′′

)T









= A′









(A′′x1)T

...

(A′′xn′′

)T









(4.26)

If we consider each xi as representing a local neighborhood in the signal, then

(4.26) implies that the measurement can be performed in two stages:

1. first local measurements are computed on each locality xi separately, using the

sensing matrix A′′;

2. then the final measurement vector is generated by applying A′ to the local

measurements.

This structure explains why Kronecker products can carry out low resolution decod-

ing, where each local neighborhood needs to be replaced by a low resolution approx-

imation.

If we want each xi to represent a local neighborhood in the video volume, the index

mapping T , as defined in Section 4.2.1, has to map the indices of each segment to

neighboring voxels. More specifically, if the video cube is partitioned into n′ sub-cubes

of n′′ pixels, then one has to map the indices of each sub-cube onto the indices of one

segment xi as illustrated in Figure 4.7. However, x is a vector originally composed by
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Figure 4.7: Diagram of the mapping T : a segment is mapped into the indices of a cube such that
each sub-segment is mapped into the indices of a sub-cube.

stacking pixel values of a video cube column by column, and then, frame by frame.

Thus we need to reorder x to cluster pixels according to neighborhoods. This is done

by constructing permutation matrix Qk and performing it on x first.

Next, let us now look at the computational aspects of rate reduction from a de-

coding perspective. Minimizing (4.14) is an iterative process which requires repeated

calculation of AEx̃. Typically calculating AE once and storing it in memory is neither

efficient nor practical because of the large sizes of these matrices. In the following we

show how the multi-resolution structure can greatly simplify this calculation. Some

notations will be introduced before getting into details.

Level l (l ≤ k) decoding refers to the resolution of the reconstructed video cube

being (n1/2
l) × (n2/2

l) and Ul ∈ R(n1/2l)×(n2/2l)×r denotes the level l resolution ap-

proximation of a video cube U . In other words, Ul is the video having a resolution

of (n1/2
l) × (n2/2

l) reconstructed from the compressive measurements made from

the original video cube U of the resolution n1 × n2. Vectors x and xl represent the

vectorizations of U and Ul, respectively, by concatenating the pixels of video cubes
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column by column, and then, frame by frame. For convenience, 1s×t represents a s× t

matrix whose entries are 1 everywhere. The second dimension of subscript t can be

omitted if t = 1. For instance, 14 denotes [1, 1, 1, 1]
T while I4 denotes a 4× 4 identity

matrix. Furthermore, B◦j denotes the j-degree power of Kronecker products, i.e.,

B◦j = B ⊗ · · · ⊗ B
︸ ︷︷ ︸

j

. (4.27)

Given a low resolution representation Ul, one straightforward way to approximate

U of original resolution is to copy each pixel to its neighborhoods; i.e.,

U ≃ Ul ⊗ 12l×2l, (4.28)

Due to the way of constructing permutation matrices {Pi}k1, (4.28) implies

Pl · · ·P1x ≃ xl ⊗ 14l = xl ⊗ 1◦l
4 . (4.29)

Therefore, we can define the expansion matrix E for level l (l ≤ k) decoding as

follows:

Exl = P T
1 · · ·P T

l (xl ⊗ 1◦l
4 ). (4.30)

Then, we have

AExl = A(P T
1 · · ·P T

l (xl ⊗ 1◦l
4 )). (4.31)
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Given Pk = Pk−l ⊗ I◦l4 , it follows from (4.31), (4.22) and (4.21) that

AExl = (A0 ⊗ A1 ⊗ · · · ⊗ Ak) ·Qk(P
T
1 · · ·P T

l (xl ⊗ 1◦l
4 ))

= (A0 ⊗ A1 ⊗ · · · ⊗ Ak) · Pk · · ·Pl+1(xl ⊗ 1◦l
4 )

= (A0 ⊗ A1 ⊗ · · · ⊗ Ak)((Pk−l ⊗ I◦l4 ) · · · (P1 ⊗ I◦l4 )(xl ⊗ 1◦l
4 ))

= (A0 ⊗ A1 ⊗ · · · ⊗ Ak)((Pk−l · · ·P1xl)⊗ (I◦l4 · · · I◦l4 1◦l
4 ))

= ((A0 ⊗ · · · ⊗ Ak−l)⊗ Ak−l+1 · · · ⊗Ak) · ((Pk−l · · ·P1xl)⊗ 1◦l
4 )

= ((A0 ⊗ · · · ⊗ Ak−l)Pk−l · · ·P1xl)⊗ (Ak−l+114) · · · ⊗ (Ak14).

Let ∆l
k = (A0 ⊗ · · · ⊗ Ak−l)Pk−l · · ·P1 and aj = Aj14 for 1 ≤ j ≤ k. Then the

above derivations can be simply written as

AExl = (∆l
kxl)⊗ ak−l+1 ⊗ · · · ⊗ ak. (4.32)

Noting that the size of ∆l
k is

∏k−l
i=0 mi × (n/4l) which is proportional to the decoding

resolution instead of the encoding one, and the size of aj for 1 ≤ j ≤ k is mj which

is chosen to be no larger than 4, it implies that a significant reduction on evaluating

AExl in terms of either computation or storage. More specifically, both computation

and storage directly correspond to the decoding resolution. The lower resolution one

demands, the less resources the decoder need. Furthermore, if ∆l
k involves some fast

transform or efficient implementation as a result of Proposition 4.3.2, the reduction

could be even more remarkable.

It follows (4.32) that the minimization problem (4.14) is equivalent to the following

level l decoding model :

min
xl

Φ(xl) +
µ

2
‖(∆l

kxl)⊗ ak−l+1 ⊗ · · · ⊗ ak − y‖22. (4.33)-
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The low resolution video cube xl can be obtained by solving the minimization problem

(4.33). In light of former discussions on decoding models, a TV-DCT regularization

is adopted here to help obtain a desirable solution.

As indicated in Chapters 2 and 3, the general TVAL3 method is quite efficient

and robust for TV regularized minimization. Within the framework of the general

TVAL3, the decoding model (4.33) can be solved similarly to other TV regularized

problems as described before. In more specific terms, the Kronecker products in the

fidelity term lead to a different gradient in form while employing Algorithm 2.3.1 and

minimizing the corresponding augmented Lagrangian function. Besides this minor

modification, the previously derived algorithm is completely applicable.

The complexity of this algorithm is dominated by two matrix-vector multipli-

cations at each iteration, which is proportional to the size of ∆l
k, or, equivalently,

decoding resolution of a video clip. Therefore, the proposed multi-resolution scheme

using structured sensing matrix is able to reduce the computational costs as the de-

coding resolution decreases. The structure of this type of sensing matrices is the

key to achieve scalability, but also decreases the degree of randomness at the same

time. This trade-off may result in the degradation of reconstruction at the original

resolution compared to using totally random sensing matrices without structures. In

short, both the complexity and elapsed time are scalable with the resolution of the

reconstructed video by means of the proposed scheme, at the cost of less randomness.

The full scalability of this multi-resolution scheme will be exhibited by examples in

the next section.
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4.4 Numerical Experiments

Simulations are performed on two formats of video clips, CIF (352 × 288) and HD

1080p (1920 × 1080), with a frame rate of 30 frames per second (fsp). In the simu-

lations, a source video is encoded with the compressive measurements as described

previously by using a permutated Walsh-Hadamard matrix as the measurement ma-

trix. Each video volume consists of 8 full CIF frames, i.e., the total number of

pixels in each video volume is either n = 352 × 288 × 8 = 811, 008 for CIF or

n = 1920 × 1080 × 8 = 16, 588, 800 for HD 1080p. Recovered video quality is mea-

sured using peak signal-to-noise ratio, abbreviated PSNR. A higher PSNR normally

indicates that the reconstruction is of higher quality.

The parameter settings for the decoding algorithm were similar to what we de-

scribed in Section 2.3.1 and we avoid restatement herein.

The results will be presented from two aspects. First, we focus on analysis of

the TV-DCT method, the recoverability and the impact of Gaussian noise and quan-

tization. Graceful degradation can be observed from these results. Secondly, we

demonstrate the multi-resolution scheme and show the significant improvement as

compared to the traditional compressive sampling methods or 3D DCT transform.

4.4.1 Graceful Degradation of TV-DCT Method

In this part, tests were primarily conducted on two standard CIF test video clips,

News.cif and Container.cif, including demonstration of recoverability, comparison of

various regularizations, and degradation caused by noise or quantization. Figure 4.8

shows one frame of each clip.

The first test studies the recoverability of compressive video sensing, or partic-

ularly TV-DCT method. Figure 4.9 shows the recovered quality of two test videos
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Figure 4.8: CIF test videos: Frames from (a) News and (b) Container.

! Figure 4.9: Recoverability for the noise-free case.
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using different number of measurements, m, received as a percentage of n. Specifi-

cally, the PSNRs of the video clips reconstructed by TV-DCT method are measured

as a function of the percentage of the measurements received (m/n).

It is clear from Figure 4.9 that the quality of video is progressively increasing as

the number of correctly received measurements increases. This demonstrates that

compressive video sensing is scalable with the channel capacity. It provides graceful

degradation and avoids the cliff effect found in the traditional video coding methods

such as MPEG2 or H.264. This advantage would become notably preferable in the

realm of wireless communications.
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Figure 4.10: PSNR comparison using different regularizations.

Within the framework of compressive video sensing, several types of regulariza-

tions could be adopted other than the TV-DCT one. The proposed TV-DCT regu-

larization has been theoretically discussed in Section 4.2.2 and claimed as an appro-

priate decoding method for video compression and transmission. In order to empir-

ically confirm this argument, three commonly used regularizations involving TV or

ℓ1 are described and plugged into (4.5) in comparison to TV-CT method. For each

amount of the correctly received measurements, four different regularizations are used

IT IT 
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to reconstruct the same video clip, and then the PSNRs of reconstructed videos are

reported and compared. To fairly compare the results, reconstruction algorithms for

different regularizations were all implemented in accordance with the general TVAL3

algorithm. The definitions of four regularization terms are given below.

1. 2D TV+pointwise DCT (TV-DCT): This is the method proposed and described

in Section 4.2.2.

2. 2D TV: This is the method minimizing the sum-up of 2D TV of every frame.

In other words, the video cube is treated as individual frames, and no temporal

relations are explored. Mathematically, let X denote the original 3D cube of x

before vectorization, and 2D TV regularization is defined as

Φ(x) =
∑

i,j,k

(|Xi+1,j,k −Xi,j,k|+ |Xi,j+1,k −Xi,j,k|) .

3. 3D TV: This is the method minimizing the 3D TV of the whole cube, assuming

the sparsity of gradient in both spatial and temporal directions. Mathematically,

under the same notation, 3D TV regularization is defined as

Φ(x) =
∑

i,j,k

(|Xi+1,j,k −Xi,j,k|+ |Xi,j+1,k −Xi,j,k|+ |Xi,j,k+1 −Xi,j,k|) .

4. ℓ1+3D DCT: This is the method minimizing the ℓ1-norm of the 3D DCT coef-

ficients of the source cube. That is, a 3D DCT transform is performed on the

video cube, and the ℓ1-norm of the resulting coefficients is minimized. Mathe-

matically, let DCT3(x) denote the vectorization of 3D DCT of the cube X , ℓ1
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regularization under 3D DCT basis is defined as

Φ(x) = ‖DCT3(x)‖1.

In all four models, the same permutated Walsh-Hadamard matrix is used as the

sensing matrix, and the received measurements used for reconstruction are randomly

chosen. The PSNR values are reported in Figure 4.10.

2D TV + pointwise DCT

Ratio: 15.00%   PSNR: 36.50

2D TV

Ratio: 15.00%   PSNR: 27.00

3D TV

Ratio: 15.00%   PSNR: 32.36

L1 + 3D DCT

Ratio: 15.00%   PSNR: 27.05

Figure 4.11: A typical frame from recovered clips Container.

Two observations can be made from these results. First the compressive sampling

methods — TV-DCT, 2D TV, 3D TV and ℓ1+3D DCT — all have the scalability
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2D TV + pointwise DCT

Ratio: 15.00%   PSNR: 40.15

2D TV

Ratio: 15.00%   PSNR: 30.11

3D TV

Ratio: 15.00%   PSNR: 36.24

L1 + 3D DCT

Ratio: 15.00%   PSNR: 27.48

Figure 4.12: A typical frame from recovered clips News.

property desired in wireless transmission, namely, the PSNR of the reconstructed

video increases progressively with the number of measurements received. This con-

forms to the result implied by the first test. The second observation is that the

TV minimization based methods are more superior to the ℓ1 minimization under 3D

DCT basis. Among all methods simulated, TV-DCT method which minimizes 2D

total variation of frames composed of pointwise DCT coefficients is clearly better

over other three. A typical frame in the recovered videos for both News and Con-

tainer clips for each of the four tested methods is shown in Figure 4.12 and Figure

4.11, respectively. The ones on the upper left which were reconstructed by TV-DCT
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method obviously showed stronger contrast (observable in Figure 4.12) and preserved

more details (observable in Figure 4.11). Numerically TV-DCT method could provide

higher PSNR than the other three from the perspective of distinct regularizations.

Due to a major improvement on recovered quality in contrast with other conventional

regularizations, TV-DCT method is adopted in the following tests.
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Figure 4.13: PSNR as a function of additive Gaussian noise (CNR).

Next, simulations are performed when channel noise is present. In the simulation,

the selected measurements are injected with Gaussian noise, and the resulting noisy

measurements are used for reconstruction. In other words, the reconstruction is

performed by minimizing (4.6) with y replaced by ŷ = y + n, where ŷ is the received

measurements with additive Gaussian noise n. The PSNR of the reconstructed video

as a function of the noise level which is measured by carrier-to-noise ratio, is shown for

different percentages of measurements used in reconstruction, as indicated in Figure

4.13. The carrier-to-noise ratio, often written CNR, is a measure of the received carrier

strength relative to the strength of the received noise. A higher CNR indicates better

quality of reception, and generally higher communications accuracy and reliability.

The results demonstrate that our model and reconstruction algorithm are reliable

-->f- -

- -x-- - -

--x------X---
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even when noise is present in measurements. Furthermore, for any given amount of

noise the quality of video may be improved by using more measurements.

In some broadcasting schemes the number of received measurements is the same

for all channels and the quality of the reconstructed video is determined solely by

the channel’s noise level [121]. These results demonstrate that our coding method is

scalable with the transmission channel conditions as well.
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Figure 4.14: Impact of quantization on CIF videos.
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Figure 4.15: Impact of quantization on HD videos.

Finally, we examine the impact of quantization on the performance of the recon-

I _I 
I 

I 

I 

n -

-

I 

- - -X- - - - * - - - -

--- .x- - - - ~- - - - - -X- - - -

- - - ~ - _ , _ -X- - - - * - - - -

_.- -·* - - - ---¥-- - - -X- - - -

_,,. ~ - - - -X- - - -·* - - - ~-- - - -

I 

I 

I 
_I I 

_I I 

I I 

I I 

I I 

/ / 

/ I 

-x-

I 

*"- - - - -K - - - - ·*- - - -

- - - ~ - - - -X- - - - * - - - -

*- - - - ~-- - - -x- - - -

I ------~---~----

I; 

/, 

I 
I I 

I I 

I I 

I; 

- - - ·* - - - -X- - - - - x- -



134

struction. Quantization is a lossy compression technique achieved by representing the

real-value measurements by integers, or equivalently, a number of bits. For wireless

networks, it is a series of bits instead of real numbers to be transmitted and received

over the air. In the following tests, each received measurement is quantized to bits

before being used in the reconstruction. For the sake of higher accuracy, we suggest

to double the number of bits for measurements of magnitude exceeding a threshold in

the quantization. The threshold decides the ratio between the number of double-bits

quantized measurements and the total number of received measurements. To balance

the tradeoff between the average number of bits for each measurement and recovered

quality, this ratio is chosen to be around 1 : 10, 000. The PSNR of the reconstructed

video is measured as a function of the average number of bits in the quantization. In

addition to two CIF video clips, we ran the tests on two video clips of HD format,

Life.1080p and Rush hour.1080p, to indicate these quantization results are typical

and not limited by the video format or resolution. One frame of each HD video is

displayed in Figure 4.16(a) or Figure 4.17(a). The results, for different percentages

of measurements used in reconstruction, are shown in Figure 4.14 and Figure 4.15.

It can be concluded that the reconstruction is not sensitive to quantization. There

is no observable degradation above 8−10 bits per measurement on average. Further-

more, for a given quantization level, the quality may be improved by increasing the

number of measurements used in the reconstruction.

4.4.2 Scalability of Multi-Resolution Scheme

The multi-scale coding method described previously is implemented in simulations

using an encoding matrix that is capable of providing four levels of decoded reso-

lution. Those small sensing matrices for the construction of A are extracted from

-
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Figure 4.16: Reconstruction at different resolutions for HD video clip Life.

the permutated Walsh-Hadamard matrices. Results for two standard HD test video

sequences will be presented, and they are Life.1080p and Rush hour.1080p. Similar

to former settings, the two source video sequences have frame rate of 30 fsp. For each

source video, the same measurement matrix as described previously is used to encode

the video. Each video volume consists of 8 entire frames.

Decoding of four resolutions was performed: 1920×1080 (the original resolution),

960 × 540, 480 × 270 and 240 × 134. A different amount of measurements are used

in the reconstructions of video with a different resolution. More specifically, recon-

structed videos of 4 distinct resolutions were decoding from 35%, 9%, 2% and .5% of

measurements, respectively. Figure 4.16 and Figure 4.17 show the typical results of

multi-resolution scheme.

Normally, compressive sensing is not capable of any reasonable reconstruction with

only .5% or even 2% of measurements since it is much lower than theoretical lower

(a) Original 1920 x 1080 (b) 1920 x 1080; PSNR: 39.58 

(c) 960x 540; PSNR: 40.08 (d) 480x 270; PSNR: 40.02 (d) 240x 134; PSNR: 39.06 
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Figure 4.17: Reconstruction at different resolutions for HD video clip Rush hour.

bound. However, Figure 4.16 and Figure 4.17 suggest that the new proposed multi-

resolution scheme can significantly reduce the lower bound of number of measurements

for successful recovery at lower resolutions. This scheme may also be considered as a

general sensing matrix construction scheme and applied to other applications which

require fewer measurements or have limited bandwidth.

The complexity of reconstruction is scalable with the decoded resolution. This is

evident from the elapsed time it takes to decode the video of different resolutions.

When the average time it takes to decode a video of original resolution is normalized

to 1, the average times it takes to decode videos at lower resolution are 0.22, 0.055

and 0.016, respectively.

Next, the accuracy of reconstruction will be measured by calculating PSNR in the

reconstructed video. In order to measure the PSNR, a reconstructed video must be

compared with an original video of the same resolution. To accomplish this, reference

(a) Original 1920 x x1080 (b) 1920 x x1080; PSNR: 42.16 
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Figure 4.18: Three methods used for low-resolution reconstruction: (a) multi-resolution scheme,
(b) conventional compressive video sensing reconstruction followed by resizing to lower resolution
and (c) 3D DCT transform followed by resizing to lower resolution.

videos are made by properly interpolating from the source video using MATLAB

function imresize. The decoded video has the same resolution as the reference video.

Finally, the PSNR of the decoded video as compared to the reference video is measured

and reported. In order to exhibit the improvement gained by multi-resolution scheme,

it is compared to other two methods in the simulations and the PSNRs of decoded

videos from the three methods will be evaluated. The sketches of these methods are

illustrated in Figure 4.18.

The first method is the proposed multi-resolution scheme as shown in Figure

4.18(a). The lower resolution decoded video xL is obtained directly as part of re-

construction from correctly received measurements y by solving 4.33. The second,

shown in Figure 4.18(b), is a conventional compressive sensing reconstruction. The

measurement matrix A is a permutated Walsh-Hadmard matrix. The correctly re-

ceived measurements y are used to reconstruct a video x′ of the same resolution as

the source video by solving (4.5). Then the reconstructed video is resized to the

lower resolution xL by downsampling. The last, shown in Figure 4.18(c), is utilizing

the 3D DCT transform. The source video x is encoded by 3D DCT transform on a

video volume. The DCT coefficients are transmitted. The correctly received y are

(a) (J1AY~Jtl 
(b) (J17Y-<D-{IJ-t!Jl-; ;ti 

(c) tJlncTY~-t!Jl-;!tl 
Keep largest 
coefficients 
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the largest coefficients of DCT transform. In other words, the coefficients are sorted

in descending order according to their amplitudes. For example, if 10% coefficients

are received, it is assumed that the first 10% of the sorted coefficients (the largest

10% in amplitudes) are received correctly. This, of course, places a huge advantage

to the third method, because in the compressive sensing methods of Figure 4.18(a)

and Figure 4.18(b), the correctly received measurements are randomly chosen and no

particular protection is needed. In all methods, the PSNR is calculated by comparing

xL with the reference video xR which is the resized frames of the original video. The

PSNR values as a function of the percentage of measurements received for the video

clip Life and Rush hour are plotted in Figure 4.19, respectively.

! (a) Life ! (b) Rush Hour

Figure 4.19: PSNR comparison for low-resolution reconstruction: the source video x is 1080p and
the decoded video xL is at lower resolution of 240× 134.

In Figure 4.19, the source video clips Life and Rush hour of 1080p resolution are

encoded and transmitted as previously described. The decoded videos have a lower

resolution of 240 × 134, which have approximately 1/8 as many pixels as the source

videos have in both horizontal and vertical directions. The dashed blue curve is the

PSNR for the multi-resolution scheme and the red curve with crosses is the PSNR

for the conventional compressive sensing reconstruction, and the green curve with
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squares is the PSNR for 3D DCT transform.

The results in Figure 4.19 show that the method proposed in Section 4.3 has much

higher accuracy on average than the traditional compressive sensing method in which

a video of the original resolution is reconstructed and then resized to a lower reso-

lution. Compared to 3D DCT transform, our proposed method has relatively lower

quality at the beginning, which is reasonable since it first receives the largest 3D DCT

coefficients and then receives those relative small ones. Those large measurements

contain more information than the small ones, which put this method advantageous

at the very beginning. However, the obvious drawback of this method is that we

cannot afford to lose the large measurements, which ineluctably generates the redun-

dancy in reality. Overall, the newly proposed multi-resolution scheme outperforms

both methods after approximately 0.8% of measurements, though it may vary a little

case by case.

4.5 Discussions

The purpose of this chapter is to bring scalability into video coding from different

aspects by means of compressive sensing. We first discussed the framework of com-

pressive video sensing and proposed a TV-DCT method for decoding a compressed

video. Then a multi-resolution scheme was theoretically analyzed and implemented

in light of a new way to construct sensing matrices using Kronecker products. The

multi-resolution scheme is capable of the same encoding but various decoding accord-

ing to available resources. By means of this scheme, low resolution reconstruction

becomes possible and preferable even if the measurements are severely deficient for

regular reconstruction of the original resolution. The proposed sensing matrix con-

struction method is not limited within the field of video compression, but should be
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regarded as a general CS technique to build sensing matrices in order for multiscale

or multilayer reconstruction. However, the tradeoff of multiscale or multilayer recon-

struction using this type of sensing matrices is the slightly decreased recoverability

of reconstructing at original resolution in contrast with using non-structured sensing

matrices. To effectively and efficiently solve several decoding models such as (4.5),

(4.6), (4.14) and (4.33), we employed the general TVAL3 algorithm which has been

thoroughly analyzed and widely applied.

To be brief, these work is mainly concerned with compressive video coding that

is scalable with channel capacity, which is of particular interests in wireless broad-

cast since the mobile clients experience vastly different channel conditions. We have

shown that compressive video sensing is a promising technique for video transmission.

However, there are challenges remaining to be resolved before this technique becomes

practical. First, further work is needed for compressive video sensing to achieve a high

compression ratio, comparable to mature techniques such as H.264. To that end, mo-

tion estimation and motion compensation need to be integrated with compressive

video sensing. Secondly, in spite of convenient encoding process, the complexity of

reconstruction in compressive video sensing is still too high for real time decoding in

practical systems with today’s technology. Development of more efficient optimiza-

tion algorithms and advancement of hardware technology will help make real time

decoding feasible. By demonstrating the desirable properties of compressive video

sensing that are fundamentally lacking in the traditional video coding, we hope that

a motivation is created to address the remaining issues in the future research.



Chapter 5

Conclusions and Remarks

In recent years, compressive sensing has been intensively investigated from differ-

ent perspectives and applied to applications in diverse areas. This thesis is centered

around developing efficient algorithms mainly for TV and ℓ1 minimizations and ex-

tending the idea of compressive sensing to the field of 3D data processing which

traditionally requires tremendous computation and resources.

5.1 Contributions

The major algorithmic contributions of this thesis are three-fold:

1. a general TVAL3 algorithm has been both computationally and theoretically

studied which is capable of solving many TV minimization problems effectively;

2. a new hyperspectral data sensing and unmixing scheme has been presented,

successfully bypassing the high complexity of recovering the whole hyperspectral

cube;

3. a framework of compressive video sensing using TV-DCT regularization has

141
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been proposed, and a novel multi-resolution scheme has been devised which

achieves high scalability in many aspects.

The TVAL3 algorithm was first introduced in the author’s master thesis with a

description limited to 1D or 2D TV regularized minimization and without a theoret-

ical convergence analysis. In Chapter 2, we extend the algorithmic framework to a

general form of linearly constraint minimization problems. Specifically, the general

TVAL3 method is based on the classic augmented Lagrangian multiplier method af-

ter a proper variable splitting and an alternating direction approach. To accelerate

the convergence, a nonmonotone line search procedure with Barzilai-Borwein initial

step is employed in the alternating steps. The convergence of this method has been

proven. This work provides a springboard for further analysis on 3D data processing.

In the aspect of 3D data processing, this thesis focuses on hyperspectral imag-

ing and video compression. The work in hyperspectral imaging in Chapter 3 is a

proof-of-concept study on a compressive sensing and (blind) unmixing scheme for

hyperspectral data processing that does not require forming or storing any full-size

data cube. This scheme consists of three major steps:

1. data acquisition by compressive sensing,

2. data preprocessing using SVD, and

3. data unmixing by solving a new unmixing model with total variation regular-

ization on abundance distributions.

In the first-stage study covered in Sections 3.2 and 3.3, we considered the situation

where the spectral signatures of the endmembers are either precisely or approximately

known. After performing the SVD preprocessing, data sizes to be processed become

much smaller and independent of the number of spectral bands. An efficient algorithm
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is constructed to unmix the corresponding abundance fractions under the framework

of the general TVAL3 method, while the signatures are fixed.

In the second-stage study covered in Sections 3.4 and 3.5, we considered blind

unmixing where both abundance fractions and signatures are recovered at the same

time. An ADM type-method has been proposed to handle the non-convex compressed

blind unmixing model. Due to the non-convexity of the problem, some prior infor-

mation is necessary to avoid local minima. Rather extensive numerical experiments

have been conducted to demonstrate the feasibility and efficiency of the proposed ap-

proach, using both synthetic data and hardware-measured data. Experimental and

computational evidences obtained from this study indicate that the proposed scheme

possesses a high potential in real-world applications.

In addition to hyperspectral imaging, we researched on another type of 3D data

processing — video coding, where traditional coding methods such as MPEG2 or

H.264 could no longer offer the scalability desired by today’s network. In Chapter 4,

a framework for video coding using compressive sensing is studied. In the framework,

a source video is divided into video volumes, and random measurements are taken

using a random sensing matrix. The video is reconstructed by minimizing the spatial

total variation of the temporal DCT coefficients, or abbreviated TV-DCT regulariza-

tion. In the general TVAL3 framework, the TV-DCT regularized problem for video

decoding could be handled in a similar way as the TV regularized problem for 2D

image processing.

Furthermore, taking advantage of Kronecker product, we have presented a new

way to construct the sensing matrices. This type of sensing matrices implements a

novel multi-resolution scheme in which the same encoded video stream may be used

to reconstruct videos of distinct resolutions with distinct complexities. Unlike those

methods based on downsampling or downsizing, the multi-resolution scheme recon-
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structs the video of lower resolution directly from measurements of the source video

at the original resolution. This scheme is especially applicable when the received mea-

surements are much fewer than the minimal requirement to reconstruct the original

video clip or when the receiver has a limited capacity. Numerical experiments have

shown that a HD video clip encoded using this scheme can be decoded at a lower res-

olution from as little as .5% of total measurements which used to result in failures of

decoding. In virtue of these progresses, video coding using compressive video sensing

has exhibited many characteristics such as graceful degradation and multi-resolution

decoding that are desirable for transmission in a video network. In particular, the

coded video is highly scalable with channel capacity, decoding complexity, display res-

olution and quality. Moreover, the new sensing matrix construction method can be

useful beyond the realm of video coding. It represents a multilayer sensing paradigm,

which allows different resolutions with compatible complexity.

5.2 Remarks and Future Work

This thesis has addressed several topics involving compressive sensing and 3D data

processing. It is important to discuss the issue of applicability related to some of the

models and algorithms proposed and studied in the thesis.

The TVAL3 method is presented for a general form of linearly constraint minimiza-

tion problems. However, its efficiency relies on how easy the non-smooth subproblems

can be solved, and how effective the smooth subproblem can be attacked by the non-

monotone gradient descent scheme. In all the calculations performed in the thesis,

the non-smooth subproblems are solved by closed-form formulas, while the smooth

ones are quadratic minimization problems. From our experience, the TVAL3 method

is particularly efficient and robust for situations when data are noisy and, as a result,
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only a moderate accuracy is required.

TVAL3 does not require users to supply or tune many algorithmic parameters with

possibly one exception — the penalty parameter for linear equality constraints. When

noise level varies, the penalty parameter value need to vary in order to maintain near-

optimal performance. It takes a little experience, and sometimes a few trial-and-error

attempts, to select good parameter values. This issue of penalty parameter selection

certainly deserves further investigations.

The proposed compressive sensing and unmixing scheme requires a sufficient

amount of endmember spectral signature information in order to successfully recover

the corresponding abundance distributions. Our blind unmixing scheme, which solves

a non-convex minimization model, cannot be totally blind in the following sense.

Synthetic data simulations have suggested that the scheme can succeed under various

scenarios where the endmember spectral signature information are either severely cor-

rupted, deformed, or partially missing. On the other hand, the numerical procedure

would usually get stuck at a local minimum when it is started from a set of totally

random guesses for spectral signatures.

As for the compressive sensing scheme for video compression, despite its various

advantages discussed in the thesis, the scheme requires solving a minimization prob-

lem for decoding, which is still too costly to be practical under today’s technological

conditions. Another primary drawback is that the compression ratio of the proposed

scheme may not be as high as that of MPEG2 or H.264 in general. The compres-

sion ratio could be improved by taking motion estimation and compensation into the

account of the framework at the cost of reduced scalability in capacity. There re-

main some fundamental difficulties and tradeoffs that require a great deal of further

research.
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