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I. INTRODUCTION

It is well known that catalyst pellets in a uniform
environment can exhibit multiple steady states for parti-
cular combinations of kinetic, thermodynamic, and trans-
port parameters. The desirability or otherwise of the mul-
tiple steady states depends on the circumstances and so
the questions of predicting conditions under which unique-
ness can be guaranteed and of the stability of the steady
states have to be considered. In recent years extensive
work has been carried out in these directions and several

significant results have been obtained.

A. Symmetric Steady States

In an early paper, Weisz and Hicks46 treated the
case of a non-isothermal particle and discovered regions
of three steady states at higher activation energies.
Roberts and Satterfield43 demonstrated the existance of
three steady states in isothermal systems and for reactions
with more than one reactant for kinetic expressions of the
Langmuir-Hinschelwood type. Other workers (Hlavacek, Marek,
and Kubicek,zl Kuo and Amundson,28 Bischoff,5 McGreavy and
Cresswell,36 and Cresswelllo) have analysed different geo-
metrical shapes---slabs, cylinders, and spheres. Usually

zero, first, or second order irreversible reactions were

considered. Models with Newtonian resistances to heat and



mass at the catalyst faces together with diffusive resistances
to heat and mass flux in the interior have also been treated,
and a complete parametric study of first order reaction in

an infinite slab with zero Newtonian surface resistance was
performed by Drott and Aris.13 Five steady states were found
for zero order kinetics in a spherical particle by Hlavacek
and Marek,20 and by Hatfield and Aris18 for a single first
order exothermic reaction in an infinite slab with Newtonian
boundary resistances. Computations have been reported by
Copelowitz and Aris8 that show as many as seventeen steady
states for a single first order reaction in a sphere. Many
of these steady states are so close to one another as to be
virtually indistinguishable in practice, but the theoretical
implications are of interest in terms of what might be devel-
oped for more complex problems.

Using fixed point theory of integral operators, Gavalas:16
proved that the steady state is unique when the particle
shrinks to sufficiently small dimensions, and developed a
procedure for estimating bounds on the particle size below
which uniqueness can be guaranteed in specific cases. Luss
and Amundson,33 who considered catalyst particles of arbi-
trary shape with zero heat and mass transfer resistances
between the particle and its environment, obtained similar
uniqueness criteria using spectral theorems of Sturm-
Liouville theory. The sufficient conditions for uniqueness

were further sharpened by Luss.31 Close agreement was shown



when his predicted bounds were compared with direct numeri-
cal solutions. Recently, Jackson24 using only elementary
mathematical results, obtained uniqueness conditions for

the steady states of a catalyst slab when there are non-
negligible heat and mass transfer resistances at the bound-
aries. Jackson also speculates that sufficient conditions
for the existence of unique solutions are sufficient for the
non-existence of asymmetric solutions.

The lack of a systematic means to determine stability
of systems described by non self-adjoint partial differen-
tial equations has meant that many important stability prob-
lems of the reacting catalyst remain unsolved. Amundson and
Raymond2 examined cases with zero and non-zero mass and heat
resistances concentrated at the boundaries, and investigated
stability by linearized perturbation analysis. By the use
of oscillation theorems of Sturm theory (see Ince23),
Amundson1 devised necessary and sufficient conditions for
the stability of an empty tubular reactor with axial mixing.
This condition is very useful since it does not require the
direct calculation of eigenvalues of the eigenvalue problem
related to the linearized system, but only the solution of
a linear differential equation. Subsequently, Kuo and
Amundson28 considered the catalyst particle problem. By
using Amundson's necessary and sufficient condition, they
derived sufficient conditions for stability which avoids

the analysis of a complicated non self-adjoint eigenvalue



problem. The Galerkin method was used for estimating the
extreme eigenvalue and for a specific problem with three
steady states, they showed that the upper and lower states
were stable and the middle one unstable. Stability analy-
sis via Lyapunov functionals was used by Wei45 for a some-
what simpler model of a catalyst pellet. Berger and Lapidus?
also using Lyapunov functionals, devised sufficient condi-
tions for the stability of steady states of catalyst parti-
cles and empty adiabatic tubular reactoré. Using the maxi-
mum principle for parabolic equations ahd topological con-
cepts, Luss and Amundson32 devised sufficient conditions

for the stability of the empty tubular reactor. The methods
used are also applicable to catalyst pellets. For the case
considered they showed that steady states alternate, stable
and unstable. Luss and Lee34 considered only perturbations
which satisfied the "adiabatic” conditions, and performed
transient calculations for unit Lewis number. In a subse-
quent paper,30 they extended their work to non-unit Lewis
numbers. Using Lyapunov's direct method, Nishimura and
Matsubara39 extended Amundson's necessary and sufficient
conditions for stability in self-adjoint problems to provide

a sufficient stability condition for non self-adjoint prob-

lems.

B. Asymmetric Steady States

In all the discussions of chemical reactions

accompanied by heat conduction and diffusion in catalyst



particles, it has been tacitly assumed that the solutions
must be invariant under the symmetry operations of the dif-
ferential equations and boundary conditions describing the
system; for example, it is universally assumed that the
solutions in spherical catalyst particles with uniform
boundary conditions are spherically symmetric. In general,
this assumption is only Jjustifiable if the solution is uni-
que. It is certainly true that any solution satisfying the
differential equations and boundary conditions must trans-
form into another such solution under a symmetry operation
of the particle, but it cannot be concluded that the trans-
formed solution is identical with the original solution
unless it is known that there is just one solution, and
indeed the existence of asymmetric steady states in cata-
lyst particles has recently been demonstrated,41'40'22
indicating that the already extensive litzrature has only
uncovered a fraction of all possible steady states.

In the particular c¢ase of a nonporous catalytic heat
conducting material with Newtonian resistances to heat and
mass transfer at the boundaries, Pis'men and Kharkats41
demonstrated the existence of solutions unsymmetric with
respect to reflection across the center plane. They also
showed, by a stability analysis based on the linearized
conservation equations, that some of these asymmetric
states are stable. Similar asymmetric states were found

by Horn gg_gl.zz who considered an infinite porous catalyst



slab of finite thickness, again with Newtonian resistances

at the boundaries. Horn and Jackson26 made a theoretical
study of this problem and derived conditions which must be
satisfied by the boundary heat and mass transfer coefficients,
the effective thermal conductivity, the diffusion coefficient
in the slab, and the heat of reaction, if asymmetric solu-
tions are to occur.

Both Pis'men and Kharkats41 and Horn et gl.zz also dis-

cussed the possibility of standing wave solutions in a cata-
lytic wire surrounded by fluid of uniform composition and
temperature. Both groups suggested that this type of asym-—
metric state is unstable, and this has been confirmed by
Erwin and Luss,14 using topological results, and recently
by Jackson,25 using Amundson's criterion.

Recently Bailey3 has shown that asymmetric steady states
can be constructed in a slab with non-uniform (though sym-
metric) catalyst activity when multiple steady states exist
in a uniform slab. However, a complete analysis of asym-
metric states in a porous catalyst, comparable with the
well known znalyses of symmetric states, has not hitherto
been carried out.

Tn this work two examples of asymmetric solutions in
a symmetric system will be presented. For simplicity, con-
sideration will be restricted to the infinite slab type of
geometry, for which the symmetry operations are lateral

translation parallel to the slab faces, and reflection



across the central plane.

For algebraic simplicity, the discussion in Chapter II
will be directed to consideration of a situation in which
the catalyst slab is very thin and lateral variations may
occur in only one direction. Stability of the steady states
is investigated by the use of Amundson's necessary and suf-
ficient conditions.1 The complete set of steady states,
asymmetric with respect to reflection symmetry, for an infin-
ite slab geometry in a uniform environment, with Newtonian
resistances at the boundaries and a single exothermic reaction,
will be presented in Chapter III. It is there shown that
the asymmetric solutions contribute new branches to the
familiar Thiele-Modulus effectiveness factor plot, and these
branches are completely mapped for a particular example.
In the subsequent chapter, stability is analysed by the suf-
ficient condition of Nishimura and Matsubara,39 and by the
analysis of the linearized perturbation equations. The para-
bolic system of equations is solved by the Galerkin method

using Hermite cubics as basis functions.



II. SOLUTIONS NOT INVARIANT UNDER
LATERAL: TRANSLATIONS

A. Mathematical Formulation of the Problem

The system considered is a long thin wire, imper-
meable to diffusion of reactants and products but with
finite thermal conductivity, and with resistances to heat
and mass transfer concentrated at its boundary. A single
exothermic reaction with Arrhenius temperature dependence
is considered. The wire is thin enough that its tempera-
ture may be assumed uniform in a cross section, but heat
conduction in the longitudinal direction is taken into
account. It is surrounded by fluid at uniform temperature

Tb’ with a uniform concentration c, of reactant. Then

b

the reactant concentration and temperature satisfy the

equations

o(c, - ¢c) = ck o “E/RT (2.1)
b o ¢

c 2T si'?-+ (T. -T) + cok e B/RT xe() (2.2)
2t K 32 H Ay o .

where c is the bulk concentration of reactant which would

be in equilibrium with the adsorbed reactant, T is the
absolute temperature, <L and M are mass and heat transfer
coefficients per unit length of wire, C is the heat capacity

per unit length, Q is the magnitude of the heat of reaction



(considered positive for exothermic reactions),

KS is the

product of thermal conductivity and cross-sectional area

and {) is the x-interval occupied by the wire. Equations

(2.1) and (2.2) are subject to the following boundary con-

ditions
-1
k > = b(T - Tb)
AT _

(2.3)

(2.4)

where b is the heat transfer coefficient at the boundary

and X, and X (xl >x0) are the terminal points of ,Q, .

Introducing the following dimensionless variables

TH p
e_oLch' S =x/ks '

t

B = 2 and T = i%—

/k}b ’

(2.1) and (2.2) gives

%9
s2

—%% = - F(§)

with boundary conditions

332 = B(8 - 8y ats

A = ko/d ’

, and eliminating c between

(2.5)

(2.6)
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—>s - -Bl g - Hb) at s = s; (2.7)

A j e/e
wh F() = ~ - = 2.8
ere F(@ 6 eb . - €0 (2.8)

B. Steady State Analvysis

The steady states @(s) are obtained by setting the
left-hand side of Equation (2.5) equal to zero. The equa-
t ions thus obtained can be reduced to a pair of first order

equations

= ¢ (2.9)

mml

QJIQ-:
|

(2.10)

Qi1
I
&
©

The form of F(é) depends on the relative values of A, Bb,
and €. The equation F(b-) = 0 can have either one, two, or
three roots. Of these the most interesting case is the one
where three roots exist. Clearly the existence of two roots
is just a limiting case of this one. In this work, two sets
of values of the parameters A, Gb, and € are considered.
These are (a) @, = 0.19; A = 2.86 x 10%, and € = 6.6;
and (b) @, =0.19, A =2.86 x 10°, and €= 7.2. For
both these sets, F(-é) = 0 has three roots which are denoted
by 91, 62, and 93. The corresponding shapes of F(E) are

shown in Figures 1 and 2, respectively. The area i under

the curve between 92 and 93 is larger in magnitude than
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the area ii under the curve between 91 and 92 for the
first set of values, while the area i is smaller than the
area ii for the second set.

The model, represented by Equations (2.9) and (2.10),
lends itself to a graphical analysis in which the dependent
variables are plotted against one another on a phase-plane.
The variables can be represented parametrically as trajec-
tories satisfying the differential equation

_ @
- F(é') (2.11)

a8

i
A unique direction for a trajectory is defined by Equation
(2.11) except where 4’ and F(-é) are both zero. Thus no
trajectories can cross except at the singular points where
both the numerator and denominator of the right-hand side
of Equation (2.11l) are zero.

The trajectories are mapped in Figures 3 and 4 for the
two sets of parameter values being considered. The separa-
trices are indicated by heavier lines. Qb >0 implies that
dé-/ds >0, so distance s increases on moving up the trajec-
tories when 43 > 0; similarly, when 4>< 0, s increases on
moving down the trajectories. Hence the arrowheads in Fig-
ures 3 and 4 indicate the direction of increase of s.

Consider an increment in s in moving from a point A to

a point B along a trajectory. From Equation (2.9)

ds = aB/$(@)



FIGURE 3: Phase trajectories in the (9, 4’)—plane
representing solutions of the wire problem
for @, = 0.19, A = 2.86x 10" and €= 6.6

14
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FIGURE 4: Phase trajectories in the (é, ¢)—p1ane represent-
ing solutions of the wire problem for eb = 0.19,
A.= 2.86 x 104 and € = 7.2
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(85

and therefore As = SB - S, =J _c_i__Q__ (2.12)
6. @&

Thus there are large increments of s corresponding to small

increments in 8 when 49 (E) is small and vice versa. The

above can also be expressed as an integral with respect to 43

$s ~
S - S, = i;— g—g— d¢ (2.13)

Qal Qs
&
1

L |
ofe

S _ap (2.14)
B ¢A F[9(4>)]

In particular the increment in s in moving along a trajec-

tory from the axis ¢ = 0 is given by

%
As = _aé (2.15)

"—

F(g)

This is finite, provided F(é) is not equal to zero anywhere
in this interval. It has been shown that unbounded incre-

ments of s corresponding to small increments in § occur

when ¢(§) is small. From the form of the functions F(é)
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and 4) (g) we see that only finite increments in s are
obtained for small increments in § when ¢ is not small.

So unbounded increments /s from a bounded segment of a
trajectory are obtained only for segments adjacent to ¢ = 0,
§ = 81 and to 4) = 0, 5 = 93. (There being no trajectory
approaching the ¢ = 0 axis at §= 92.) In the neighbor-

hood of 93, for example,

F(B) X (8- 85 (2.16)

where = is a constant, and therefore, from Equation (2.15)

¢
)
As = [ cl(ﬁgr_ N (2.17)

From Equation (2.11)
;4% = r(5rab (2.18)
2 L]

This equation can be integrated from ( 93,0) to (é,d)) to

obtain -
6
%qbz = c; (8 - 83 a@ (2.19)
63

There fore ¢> = J'E:-i ( 5- 93) (2.20)° -

and d¢p = Ja af (2.21)

Substituting Equations (2.20) and (2.21) in (2.17)
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J?i(ie _ 1 ( ~
B, c; (8- 8 ch 0,

which diverges at § = 8.,. Thus we do get an infinite

contribution for As from finite segments of trajectories

adjacent tc¢= 0, -é = 91 and¢= 0, 8= 93.

The steady state equation

2 —
329 = F(g) sef) (2.23)
S

is subject to the following boundary conditions

g—f—- ) = B (§(so) - Qb) (2.24)
S = 8
0

g_se_ _ = -B (§(sl) - Gb) (2.25)

S1

To obtain the temperature distribution in the wire, these
boundary conditions can be superposed on the phase-plane
diagram. When B = 0, the boundary conditions (2.24) and

(2.25) become

(2.26)

m}%
@]
!
(@]
0

= SorS1
This is equivalent to zero longitudinal heat flux at the
ends. The boundary condition (2.26) is represented on the

phase-plane diagram by the vertical 1ine<# = 0. Amongst

the possible solutions in this case are the temperatures
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g., 92, and 93 corresponding to the roots of F(-é-) = 0.
These represent three uniform steady states of the wire.

9—= 91 being the unignited state and §= 93 the ignited
one. In addition to these uniform solutions, some very
interesting non-uniform solutions exist in the form of
standing waves. All the closed loop trajectories encirc-
ling the intermediate uniform solution §-= 92 are possible
solutions. These trajectories represent standing wave solu-
tions which vary periodically along the wire, and, unlike
the uniform solutions are not invariant against all lateral
translations. For a wire of finite length, L, only a finite
number of solutions exist. This can be shown by the follow-
ing argument. Consider solutions corresponding to very
small loops about Cl) = 0, §= B.,. For such solutions 5
remains in the neighborhood of 92 everywhere on the wire.
]?(56 can then be approximated by the first two terms of a

Taylor series about = . Thus, from Equation (2.23)
4 2

20 —
0 _rig)+(F- 8y & (2.27)

ds dé7 EE

i.e.,
25
a<e _ 2, =
2= -5(§ - g, (2.28)
ds

where H2 = - QEF and, since 9 = 65 is a singular

de 6’2

point, F( 92)=O. Solutions of Equation (2.28)
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satisfying the boundary conditions df /ds = 0 at the ends

of the wire (i.e., at s = 0,L) are

Zi - 62 = B cos(Hs) (2.29)
where HL = 7,27 ,3T ,... Thus a continuum of wave lengths
between infinity and 2 T /H exists for the standing waves
in a wire of finite length. Since the wave lengths have
a finite minimum value, with given L, there will be a finite
number of solutions, of wave lengths o0 ,2L,L,2L/3,L/2...
Similar standing wave solutions, but infinite in number,
exist for an infinite wire.

Some of the solutions represented by the closed loop
trajectories are also asymmetric with respect to reflection
in the center point of a wire of finite length. This can
be seen quite easily by considering a closed loop. A typi-
cal closed loop is sketched in Figure 5. 1In order to satisfy
boundary condition (2.26), s = Sg must correspond to one of
the points P, Q and so must s = s,- Suppose the condition
at s = o is represented by the point P, and the condition
at s = Sy by Q, then a temperature distribution is obtained
that is asymmetfic with respect to reflection about the
center plane.

Consideration will now be directed to the form the
solutions take when B is non-zero. An infinite value of
B corresponds formally to the ends of the wire held iso-

thermally at § = Bb. The boundary conditions are then



FIGURE 5:

Sketch of the Phase Plane Diagram
With the Lines Representing the

Boundary Conditions Superposed

21
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represented by the horizontal line 5 = Qb and the profiles
for this case can be obtained by considering trajectories
which intersect this horizontal line twice. Computationally
the temperature distributions are obtained by integrating
Equation (2.23) as a pair of first order equations, from an

initial point with @= @, . The initial value of ¢ is

~

free to be chosen. The forward integration isﬂqpntinued
until a point is reached where the value of 5 is again Bb'
The corresponding value of s then gives the length of the
wire. The integration method used was the Runge-Kutta-
Merson method (see Lancezg) using variable step lengths.
The order of convergence for this method is O(hs) and
requires five evaluations of the function, with the argu-
ments in each evaluation depending on the preceding evalua-
tion. For a wire of fixed length, one or three solutions
may exist. The three typical temperature distributions

are shown in Figure 6 for € = 6.6. Although each profile
shown corresponds to a wire of different length, it is
expected that similar temperature distributions would be
obtained for a wire of given length. The profile labelled
1 is the wire at the low temperature. The profiles 2 and

3 are the intermediate and high temperature profiles,
respectively. The steady states shown are all symmetric
about s = 0 and, for this case of the wire with ends held

isothermally, all the profiles will be symmetric. If the

length of the wire is shortened, profiles 2 and 3 will
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come together as the phase trajectory corresponding to the
profile 2 enlarges and that corresponding to profile 3
shrinks. Eventually the profiles will coincide. TFor
wires shorter than this, the only surviving steady state
would be the low temperature profile.

Small values of B correspond to almost adiabatic end
conditions. Figure 5 shows a sketch of the trajectory map
with lines representing the boundary conditions superposed.
In the sketch only the inner separatrix is shown. The
straight line with positive slope corresponds to the bound-
ary condition at s = Sqge and that with a negative slope to
the boundary condition at s = s+ New forms of temperature
distributions arise when the boundary condition lines inter-
sect a trajectory more than once. The temperature profiles
are obtained by integrating Equation (2.23) with initial
conditions represented by either points A or B on Figure 5.
The integration is continued until the point C is reached.
Since this point lies on the line representing the boundary
condition at s = Sy, the profile obtained satisfies the
Equations (2.23) to (2.25). 1If the integration is further
continued, another point will be reached where the boundary
condition at s = Sq is again satisfied. This will be at
the point D, and the solution thus obtained also satisfies
the system of Equations (2.23) to (2.25). Typical profiles
are shown in Figure 7 (for € = 6.6). The steady states

shown in Figure 8 (for € = 6.6) and Figure 9 (for €= 7.2)
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are obtained in an analogous manner but are represented by
the closed loop trajectories. 1In order to satisfy the
boundary conditions, s = S0 must correspond to either points
E or F in Figure 5 and s = s; to either oints G or H in the
same Figure. More and more peaks appear in the solution as

longer wires and smaller closed loops are considered.

C. Stability of Steady States

A pertinent question in considering these steady
states is whether any of them are stable and hence whether
they can be realized in practice. A steady state is said
to be stable if, when the particle is perturbed from the
steady state, it tends to return to the same state. This
is referred to as asymptotic stability. In this work, the
transient equations are linearized about the steady state
and the effect of small perturbations is considered. 1In
order to determine the effect of large perturbations, com-
plete transient calculations must be made.

Consider small perturbations, o (s, T), of the steady

state, é'(s). Thus

B(s,Tt) = B(s) + ols, T)- (2.30)

Approximating F(@) by the first two terms of a Taylor

series

F(Q) = F(H) + g%— o (s, T) (2.31)

h=26
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Then o (s, T) must satisfy the linearized perturbation

equation
20 _ 3o _ F' (o (2.32)
ot ds? )
with
%‘: = BO s=s, (2.33)
gg = -BO" s =5, (2.34)

where the prime denotes differentiation with respect to 8.

We seek a separable solution of the form

o(s, T) = w(T) Y(s) (2.35)
Hence
2
law _ L&V 57
o dar V a2 F'(8) (2.36)

Since the left-hand side of Equation (2.36) is a function
of T only, and the right-hand side is a function of s only,

each side must be equal to a constant -) , say. Thus

-A
w(t) = we "° (2.37)
and
2 - _
:sz\p - (F'(a) - )\) Y = o (2.38)
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with

= B q;(so) (2.39)

Q)
n

g%[/_ -BY(sy) (2.40)

S=S]_

To establish stability it is necessary to determine

the signs of the eigenvalues.x . From (2.37), it is suffi-
cient for instability to show that the problem defined by
Equations (2.38), (2.39), and (2.40) has at least one nega-
tive eigenvalue. Amundson,1 using elementary results of
Sturm theory, developed a theorem giving a test which can

be performed from steady state information alone and involves
only the solution of a linear differential equation. Intro-

ducing a function v(s) which is the solution of the differen-

tial equation
d v re) -
== - (8)vy = o (2.41)

with boundary conditions

v(0) = 1 and (g—Y-) =B (2.42)
s =

Amundson shows that the system of Equations (2.38) through
(2.40) has no negative eigenvalues if and only if both the

following conditions
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v(s) >0 for s €(0,s,] (2.43)
and
1 (d_v) > B (2.44)
v(sl) ds s=s, =
hold.

When the ends of the wire are held adiabatically, three
uniform solutions and solutions that vary periodically along
the wire exist.

For the uniformly ignited state §.= f,, and it is
independent of s. Then

F'( 8 = c% >0 (2.45)

The linearized perturbation equation becomes

2
__ag_' - __2_%: - 2o (2.46)

Trying the solution

ols, T) = wl('t')eiks (2.47)
we have
2 2
W, (T) = w (o) kK +EIT (2.48)

which is always stable. By a similar argument the uniformly

unignited state @ = 81 can be shown to be stable.

O—

For the intermediate steady state 8 = @,, and
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F'( 8, = -2 < 0 (2.49)
and therefore
2 .2
w (1) = w (0)e K -HIT (2.50)

which is stable for k2>H2 but unstable for k2< H2. The
uniform solution g = 8, is therefore unstable.

The stability of the standing wave solutions was inves-
tigated by using Amundson's criterion. It is expected that
if any of the standing wave solutions are to be stable,
then the ones most likely to be so would be those repre-
sented by the largest closed loop trajectories. The follow-
ing argument, based on the application of calculus of varia-
tions to eigenvalue problems (see Courant and Hilbertg),
shows that solutions represented by small closed loops are
unstable. The eigenvalue problem for this case is defined
by Equations (2.38) through (2.40) with B = O.

Thus,

¥ (F'(é‘) --)-\) v = o (2.51)

d52
with
éii = 0 (2.52)
S
s =0
d;# =0 (2.53)
s =1L

where L is the length of the wire.
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We are interested in the smallest eigenvalue ) S

min
According to Courant and Hilbert9
L
A < (12 + 7 () V2| as (2.54)
min= v :
0
such that

L
f v2as = 1 (2.55)
0

Thus if we can find any function ¥ , properly normalized,
that makes the right-hand side of the Inequality (2.54) nega-
tive, the solution 9(s) is unstable. So a necessary condi-

tion for stability is
L
f [( v')2 + F'(0) v? ]ds >0 (2.56)
0

for all v (s) satisfying Equation (2.55). This restriction
may be dropped, since multiplying p by a scaling constant
does not alter the sign of the left-hand side of Inequality

(2.56). Therefore a necessary condition for stability is

L
f [( )2+ P (g) VP ] ds 20 (2.57)
0

for all functions y(s) which are continuous in [p,IJ and
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have piecewise continuous derivatives in (0,L). Weaker
necessary conditions can be obtained by choosing particu-
lar forms of Y (s). The simplest one is to take vis) =1

for s € ELIJ. This gives

L
/ F'() ds > 0 (2.58)
0

as the necessary condition for stability. The condition
shows that standing waves which cover ranges of 5 in which
F'( 5) < 0 everywhere are unstable. Thus all oscillatory
solutions circling ( 92,0) in the (é, ¢)—p1ane, with
emax-<- g, and emin 2 Ga are certainly unstable, where
Ba and Bb are shown in Figures 1 and 2.

Amundson's test was performed on the biggest closed
loop for both sets of parameters. For the set A = 2.86 x
104, Bb = 0.19 and €= 6.6, the first condition was vio-
lated and v (s) became negative at 5 = 0.94. For the second
set of parameters (A = 2.86 x 107, 6, =0.19 and €= 7.2),
the first condition was again violated and v(s) became nega-

tive at @ = 1.0l. This result has been confirmed by Erwin
and Luss14 using topological methods. Recently, Jackson,25
using Amundson's criterion, established the instability of
all standing wave steady states, by general reasoning, for
the case of adiabatic end conditions, or an infinite wire.

Amundson's simple criterion was also applied to the

profiles shown in Figures 6 to 9. The results are summarized
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in Table 1.

We have thus shown that, for the particular cases com-
puted, the standing wave solutions in a catalyst wire are
unstable. Instability of all of the standing wave steady

14,25 ¢, adiabatic end

states has recently been established
conditions or for wires of infinite length. 1Instability of
particular examples of steady states that are asymmetric

with respect to reflection across the center plane has also

been demonstrated in this work, and it is expected that all

the solutions exhibiting reflective asymmetry are unstable.
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TABLE 1

Profile Stable or
Number Unstable
1 Stable

Unstable
Stable
1 Stable
2 Stable
3 Unstable
4 Unstable
5 Unstable
6 Unstable
Unstable
Unstable
Stable
7 Unstable
8 Unstable

RESULTS OF AMUNDSON'S STABILITY CRITERION

Comments
v 0 at g = 0.94
v< 0 at @ = 0.94
v< 0at § = 0.94
v< 0 at § = 0.94
v< at -é 0.3
v< 0 at 8 = 0.3
v< 0 at § = 0.94

v > 0 for s € (s

v< 0 at @

0.94
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but Equation (1.41)
is violated.
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ITI. SOLUTIONS NOT INVARIANT UNDER REFLECTION

A. Mathematical Description of the Problem

We consider a catalytic slab, infinite in two direc-
tions and of finite thickness in the third, with diffusive
resistances to heat and mass flux in its interior and New-
tonian resistances to heat and mass transfer at its faces.

It is surrounded by gas at uniform temperature Tb with a
uniform concentration Sy, of reactant. For simplicity, we
consider a single, irreversible, Ffirst order, exothermic
reaction with Arrhenius temperature dependence and assume
that the thermal and mass diffusivities are constant. The
conservation equations needed to describe reaction and dif-

fusion in the slab are

2
gi =D ; 3 - Ckoe—E/RT X €(x5,%x7), t>0 (3.1)
X
2
Py ——gz = X s 3+ ook e R ye(xi,x), >0 (3.2)
X

where x is a coordinate measured normal to the slab faces
and Xq and Xy are the coordinates of the slab faces, the
suffix 0 referring to the left-hand face and 1 to the right-
hand face. D and K are the effective diffusion coefficient
and thermal conductivity, respectively; and Q is the heat of
reaction, considered positive for an exothermic reaction.

Equations (3.1) and (3.2) are subject to the following
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boundary conditions

D (—.—?ﬁ) = E(c(xo) - cb) | (3.3)
%0

D (%) = —z(c(xl) - cb) (3.4)
%1

and

K (%;E).- = m(T(xo) - Tb) (3.5)
)

K (—g—f{) = -m(T(xl) - -rb) (3.6)
X1

where Q-and m are the mass and heat transfer coefficients,
respectively, at the boundaries.
It is convenient to make the equations dimensionless

by introducing the following variables

%
koe—y
2 =c¢/C y=T/Ty, Y=E/RT, §=|%5—| =
QDC c. D
_ % I 4 - PP
B = RT, T=ke ' t, Le = —¢
The above system then becomes
2
2z _ 2%z _ L. Yly-1)/y € e Eo' fl),r>o (3.7)

T 362

dy _ (vy-1)/y
Le 331’_- ag’z + Bze ¥ e €, &), T>0 (3.8
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with boundary conditions

d

az* = P(z( &) - 1) (3.9)
3

== = -p(z( £ - 1) (3.10)

&

and
p-)
%) - b
€o
%1 - _q(y(gl) - 1) (3.12)
33
1
where
£ L m
g — (3.13)

b = F———F== qa=
/ Dkoe )4

B. Steady State Analysis

The steady states z(s) and y(s) are obtained by
setting the left-hand sides of Equation (3.7) and Equation
(3.8) equal to zero.

The conservation equations then become

2 = 7 exp| LOEL) € €&, &) (3.14)
y
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Ee(&, &) (3.15)

_ o | XD
Yu = _BZ i; )

with boundary conditions

@ g =x(7 €y - 1) (3.16)

(z')

—p(E( £ - 1) (3.17)
'3 !

and

<
]

q (?( &) - 1) (3.18)

<
i}

~q ('37( &) - 1) (3.19)

where the primes denote differentiation with respect to é'.
In the usual manner we may define the effectiveness
factor 17 as the ratio of the total rate of reaction in the
slab to the total reaction rate which would be obtained if
the reactant concentration and temperature retained the
values y and Tb' respectively, throughout the slab. Then,

in terms of the dimensionlss variables introduced here

%——g_——f(z—ago) -E(gl))

ak e
o)

n =

where a is the half-thickness of the slab. Furthermore, the

Thiele modulus A is defined by
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= 1| o -
>\ - 2 (xl xo)
or, in terms of the dimensionless distance f

N =3 (& -&) (3.20)

showing that the Thiele modulus is simply the dimensionless
half-thickness of the slab. Using (3.20) the expression for

the effectiveness factor may be reduced to

n = %——%(2-2(50)-2(‘51)) : (3.21)

This may also be written

(170 + 771) (3.22)

N

n =
where
A =~%(1 -z ‘fo)) and T, =—1§\—(1 - z( fl)) (3.23)

will be called the one-sided effectiveness factors corre-
sponding to the left and right-hand faces of the slab,

respectively.

C. Solution Procedure

Linear combination of Equations (3.14) and (3.15)

gives:
B Zz" + y" = 0 (3.24)

whence, after integrating twice
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Bz +y = + & (3.25)

where 0(1 and CKZ are integration constants. Equation (3.25)
may be used to eliminate either y or z from (3.14) to (3.19);:

‘thus, eliminating ;, these equations reduce to

Y, + #,& -Bz - 1)
o, + o, & -z

—Z-"= Z exp (3.26)

with the boundary conditions

z) , = p(?z'( &) - 1) (3.27)

N= B-a)z(§) + alelj+, E-1)-A,-Bp = 0 (3.28)

(z"') < —p('z"( &) - 1) (3.29)

3

and

M=Bp-a)z( &) + a(H+%, € -1)+o,-Bp =0  (3.30)
When c12 = 0 solutions of (3.26) are symmetric about a mini-
mum where z' = 0, while values of ciz # 0 lead to solutions
which are asymmetric about a minimum. If these asymmetric
solutions can be made to satisfy the boundary conditions
(3.27) to (3.30), they generate asymmetric steady states.
Indeed, it is easily checked that, if E(f') satisfies

Equations (3.26) to (3.30) and y(&) is generated from z(§)
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using Equation (3.25), then the pair y(§),z( §) satisfies
the original Equations (3.14) to (3.19).

Equation (3.26) is a second order differential equa-
tion containing two undetermined parameters (0‘1 and C%z),
and four boundary conditions are to be satisfied. Many
possible approaches to the solution of such a problem sug-
gest themselves and no claim is made that the one to be
adopted here is the most efficient numerical procedure. It
was selected for two reasons; firstly, when Ciz = 0, it
reduces to a well known method of generating the symmetric
steady states, so the relation of the unsymmetric to the
symmetric solutions is particularly clear, and secondly, it
demonstrates in a very direct way that solutions of Equation
(3.26) with C*Z # 0 can be made to satisfy the boundary con-
ditions, and hence that asymmetric steady states exist.

For fixed values of the physical parameters p, d, [3,
and y'(which are all independent of the slab thickness),
the solution is initiated by choosing a value for C12, which
remains fixed throughout the calculation. The origin for E
is chosen as the minimum of the function z( g), so that
z=2(0), z' =0 at € =0. Guessing values for z(0) and

X Eguation (3.26) can then be integrated forward from

1'
E = 0 and, since z' increases monotonically from zero, a
value of E is eventually reached where (3.29) is satisfied.

However, condition (3.30) is not, in general, satisfied at

this point, and it is necessary to adjust the guesses of
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z (0) and/or Cil until both conditions (3.29) and (3.30) are
satisfied at some positive value El of £. 1In this way a
set of pairs of values of z(0) and cil can be found for which
conditions (3.29) and (3.30) are simultaneously satisfied
and, if we regard each pair as defining a point in the
(E(O),<11)—p1ane, the set defines a curve in this plane,
which we will refer to as the M=0 curve.
Similarly, integrating backward from §E=O, one may
seek points in the (EXO),<X1) - plane such that conditions
(3.27) and (3.28) are simultaneously satisfied for some nega-
tive value €0 of E - Once again, the set of all such points
defines a curve, which we will refer to as the N=0 curve.
Then any intersection of the M=0 curve with the N=0
curve defines a pair of values Z(O),ckl which generate a
solution of (3.26) satisfying all the boundary conditions,
and hence an asymmetric steady state. From the values of
EO and £l the Thiele modulus follows using Equation (3.20),
and the values of z( fo) and z ( fl) then permit the one-
sided effectiveness factors to be calculated from Equations
(3.23), and hence the overall effectiveness factor from
Equation (3.22). Thus, corresponding to each intersection
of the M=0 curve with the N=0 curve, for given CXZ, there
corresponds a point in the ('q, X) - plane or, if 170 and
n 1 are plotted separately, two points with a common abscissa.
The M=0 curve may intersect the N=0 curve in several points,

in which case we obtain an equal number of points in the
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(M, N) - plane (or twice this number if 7, and m, are
plotted separately) from the solutions generated with a
single value of Ciz. However, to complete the representa-
tion of all steady states in the (17, A) - prlane, the whole
computation must be repeated for a sequence of values of
Ciz, which we may restrict to non-negative values without
loss of generality, since replacing 012 by —¢¥2 merely
replaces the temperature and composition profiles by their
mirror images in the center plane of the slab, and does not
generate an essentially new solution.

Though each non-zero value of c(z generates, at most,
a small number of points in the Pn,.k) - plane represent-
ing asymmetric steady states, the complete set of symmetric
steady states is obtained from the single value C12 = 0.
To see why this is so, note that the symmetry of the solu-
tions in this case implies that whenever conditions (3.29)
and (3.30) are satisfied for some positive €1f conditions
(3.27) and (3.28) are also satisfied for E = fo = -fl.
Thus the M=0 curve and the N=0 curve coincide when CLZ = 0,
sO every point on the curve M=0 (or N=0) is an intersection
point of the two curves, and hence gives values of z(0) and
0%1 which generate a symmetric solution satisfying the boun-
dary conditions at both faces. In this case our method has
degenerated into a familiar procedure for generating the

set of symmetric steady states and the corresponding curves

in the (M, A) - plane.
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It is seen that the construction by this method of the
new branches of the (77, \) plot, corresponding to asymme-
tric states, is a much more formidable computational under-
taking than the construction of the symmetric branches, and
it may occur to the reader that the burden of iterative cal-
culation could be greatly reduced by starting the integration
of Equation (3.26) from the left-hand face of the slab rather
than the minimum of z(§). For a given value of Cﬁz it
would be necessary only to guess a value for E(&}ﬂ. Boun-
dary conditions (3.27) and (3.28) would then determine
z'( fo) and c£1, and Equation (3.26) could be integrated for-
ward to a value of f where condition (3.29) was satisfied.
By iterative adjustment of the guessed value of z( Eo) one
could ensure that condition (3.30) was satisfied simulta-
neously, yielding a solution satisfying all the boundary
conditions. Unfortunately this attractive procedure fails
because of the extreme sensitivity of the solution of (3.26)
to the value of z( EO)' as a result of which it is impossible
to obtain solutions for Thiele moduli large enough to permit

asymmetric states.

D. Numerical Results and Discussion

All the computations were performed with values of
the physical parameters fixed at [3= 0.0667, Yy = 29.5,
p = 40.0, and g = 4.0. The necessary condition for the
existence of asymmetric states derived by Jackson and Horn26

is satisfied by these values of p and g. 1In their survey
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on realistic parameter ranges, Mercer and Aris38 cite work
in which a value of [ as high as 0.95 has been reported,
although McGreavy and Creswell37 believe the realistic
upper bound for ﬁ; to be 0.07. The Mercer-Aris survey puts
the range of values of Y to be between 0 and 60.

Considering first.c’L2 = 0, Figure 10 shows the curve
M=0 (or N=0) in the (EXO),O(I) - plane. Note that in this
and subsequent diagrams of this type, the scale on the
E(O) - axis is logarithmic and reversed in direction, so
that z(0) decreases on passing to the right along the axis.
The corresponding (m, A) - plot is shown in Figure 11,
which demonstrates the existence of three states for all
sufficiently large values of A. 1In this respect it dif-
fers from earlier studies of the symmetric states,18 which
find an interval of multiplicity bounded both above and
below. This difference arises from the fact that our cal-
culations are performed at constant values of p and q,
which means that the heat and mass transfer coefficients
at the surfaces do not change with the slab thickness,
while the earlier computations were performed at constant
Sherwood and Nusselt numbers, in which case the transfer
coefficients are inversely proportional to the thickness.
Thus the apparent difference merely reflects a different
mode of presenting the results.

For different values of the physical parameters, the

peak on the lower curve in Figure 11 could develop to the
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point that the curve reflexes, thus having an interval in
which there are five symmetric steady states, as reported
by Hatfield and Aris.18

Figure 12 shows the M=0 and N=0 curves for Ciz = 0.02,
and it is seen that there are just four intersection points
(numbered 1 to 4), each corresponding to an asymmetric
state. Note that there is a substantial change of scale
on the z(0) axis at z (0) = 10! in order to accommodate on
a single diagram both the intersection points and the behav-
ior of the curves for large values of z(0). The great dis-
parity in scale between the different regions of interest
is a major problem in unravelling and depicting the behavior
of the system as <¢2 increases. To clarify this, Figure 13
shows sketches of the M=0 and N=0 curves for successively
increasing values of 042, distorted to avoid the scale prob-
lem, but otherwise true representations of the interrela-
tion of the curves.

Figure 1l3a corresponds to Figure 10, with °(2 = 0, and
Figure 13b to Figure 12. As 612 increases, the shapes of
both curves change, as can be seen from Figure 14, which
shows the computed curves for Clz = 0.09. However, no major
qualitative change occurs until the central salient of the
N=0 curve retracts far enough to eliminate the intersection
points 2 and 4 as shown in Figure 13c. A further increase

in 042 causes the salient to retract so far that intersec-

tions 1 and 3 are also eliminated, as shown in Figure 134.
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Thus, there is a maximum value of CKZ beyond which no asym-
metric states may exist. Figure 15 shows the computed curves
for Ciz = 0.11, when the situation corresponds to the sketch
of Figure 13d.

Note that the portion of the M=0 curve indicated by a
broken line in Figures 13b, 13c, and 134 is speculative.
Computations were not carried out in this region, since it
encompasses no intersections of the curves, and the corre-
sponding parts of the M=0 curve are therefore absent from
Figures 12, 14, and 15.

Figure 16 shows the one-sided effectiveness factors for
the asymmetric states, and they are seen to fall into three
branches, one indicated by a continuous curve, one by a
broken curve, and one by a chain-dotted curve. As A\ —> o0
the continuous curves approach the effectiveness factors of
the upper and middle symmetric states, as can be seen by
comparing Figure 16 with Figure 1l. It is therefore appro-
priate to refer to the branch represented by the continuous
curve as the hm (high-medium) branch of asymmetric states.
Similarly, the branch represented by the broken curve will
be referred to as the hl (high-low) branch, and the branch
represented by the chain-dotted curve as the ml (medium-low)
branch. Referring to the numbering of the intersection
points of M=0 and N=0 curves in Figure 13, points 1 and 3
always generate solutions belonging to the ml branch, point

2 gives solutions on the hl branch and point 4 gives solutions
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on the hm branch.

The ml branch is seen to extend to lower values of the
Thiele modulus than the hm and hl branches, and it terminates
by joining itself to form a loop. At the closure of the
loop the one-sided effectiveness factors are identical, so
the solution is symmetric; indeed, comparison of Figures 11
and 16 shows that this point belongs to the middle branch of
symmetric states. 1In contrast, the hm and hl branches termi-

nate by joining each other, so the corresponding solutions do

not become symmetric where these branches terminate.
Combining the one-sided effectiveness factors to give
the overall effectiveness factor and plotting the overall
effectiveness factors for both symmetric and asymmetric
states on a single diagram, we obtain Figure 17, the com-
plete (7, A) - diagram for the particular values of B v,
P, and g chosen. Recalling that each asymmetric solution
corresponds to two steady states, mirror images of each other
in the center plane, it is seen that the A - axis divides
into four intervals with differing multiplicities of states.
when A< >\1, there is a unique symmetric state. when
A 1< A< )\2, there are three states, all symmetric. When
)\2< A< )\3, there are five states, three symmetric and
two asymmetric, the asymmetric states being mirror images.
Finally, when )\3< A , there are nine states, three of which
are symmetric while the remaining six can be grouped into

three pairs of mirror images.
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A comparison of our results with those of Pis'men and
Kharkats41 reveals that the branching of asymmetric states
is the same in both cases. Furthermore, Pis'men and Kharkats
found that two of their asymmetric branches contained unstable
states while the third was stable. Their stable branch corre-
sponds to the hl branch in the present work, and it is
intuitively reasonable that states of this branch should be
stable, at least for sufficiently large A . A formal analy-
sis of stability for the solutions presented here is carried
out in the next chapter.

Figure 18 shows E(f) and ir-(f) for one particular asym-
metric state, namely that corresponding to the intersection
point labelled 1 in Figure 14. This belongs to the ml branch
of solutions. 1Indeed, referring to Figure 13 intersection
points labelled 1 and 3 in all cases generate solutions
belonging to the ml branch. The intersection point labelled
2 gives solutions of the hl branch, and the corresponding
z(&) and v(€) are mapped in Figure 19. The steady states
profiles, E(f') and ;(E'), shown in Figure 20, correspond
to the point labelled 4, which gives solutions of the hm
branch.

Finally, in Table 2 values of Cll and 109105(0) of the
intersection points and their corresponding effectiveness

factors and Thiele moduli are tabulated for a range of 042.
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=40, g =4, B = 0.0667

042 points 0(1 1og102(0) Mo 7, A

0.02 1 1.2772 -43.69 0.472 3.255 5.679
0.02 2 1.4659 -283.32 0.242 2.968 11.067
0.02 3 1.3254 -10.35 24.614 28.308 0.649
0.02 4 1.4787 -245,13 2.623 5.397 6.099
0.04 1 1.2902 -24.72 1.139 6.939 2.945
0.04 2 1.4555 -129.16 0.622 6.208 5.214
0.04 3 1.3286 -11.22 21.400 28.667 0.689
0.04 4 1.4676 -115.63 4.817 10.583 3.059
0.06 1 1.3042 -18.82 2.068 11.120 1.894
0.06 2 1.4440 =77.47 1.210 9.823 3.237
0.06 3 1.3326 ~-11.60 18.766 29.567 0.712
0.06 4 1.4545 -70.24 6.504 15.469 2.055
0.08 1 1.3204 -16.35 3.401 15.950 1.412
0.08 2 1.4307 -50.96 2.172 14.038 2.212
0.08 3 1.3389 =12.46 15.616 29.804 0.755
0.08 4 1.4390 -47.08 7.575 19.949 1.557
0.09 1 1.3299 -15.79 4.361 18.766 1.244
0.09 2 1.4230 ~-41.76 2.932 16.548 1.848
0.09 3 1.3434 ~13.16 13.692 29.471 0.792
0.09 4 1.4297 -39.09 7.774 21.916 1.395
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052 points OC]_ 10910-2-(0) M n, A

0.10 1 1.3417 -15.62 5.775 22.076 1.101
0.10 2 1.4139 -33.84 4.169 19.684 1.523
0.10 3 1.3490 ~-14.22 11.222 28.452 0.854
0.10 4 1.4182 -32.46 7.477 28.405 1.281
0.1056 1 1.3511 ~15.45 7.988 25.687 0.970
0.1056 2 1.4088 -29.40 5.988 22,776 1.296
0.1056 3 1.3518 -15.40 8.348 26.106 0.955
0.1056 4 1.4092 -29.28 6.314 23.144 1.276
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Iv. STABILITY ANALYSIS FOR STEADY STATES ASYMMETRIC WITH
RESPECT TO REFLECTION ACROSS CENTER PLANE

A. Introduction

In the previous chapter a numerical study of the
complete set of steady states with surface resistances was
undertaken. Symmetry about the center plane was not assumed
and the existence of asymmetric steady states in the porous
slab was demonstrated.

An obvious question that arises is one of stability,
as the physical significance of the steady states depends
on this. The most common method of stability analysis for
the distributed system is to confine attention to small per-
turbations about the steady state. From the resulting sys-
"tem of linear partial differential equations, an eigenvalue
ordinary differential equation problem can be obtained by
separation of variables. Instability can then be established
by considering the signs of the real parts of the eigenvalues
of the non-self adjoint eigenvalue problem so generated. A
systematic means for the analysis of the eigenvalue equations,
such as Sturm theory or topological methods, is lacking for
non-self adjoint problems, and the eigenvalues are usually
estimated by the Galerkin method. The question of complete-
ness of the set of eigenfunctions for this problem is still
a matter of investigation. Thus there is no guarantee that
the critical eigenvalue is a member of the set being approxi-

mated. 1In contrast, the self adjoint eigenvalue problem has
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real eigenvalues and the Galerkin procedure reduces to the
Rayleigh-Ritz method. For this self adjoint problem, the
eigenvalues are approximated successively starting with the
largest one (see Sagan44).

Another approach that has been used is to integrate
the linearized perturbation equations numerically, forward
in time. It is hoped that these equations model the sys-
tem accurately for small initial perturbations of the steady
state. Though the failure to find a perturbation that grows
is no guarantee of stability, since it is not possible to
consider all conceivable initial perturbations, the exis-
tence of a perturbation that grows is a good indication of
instability.

In this work, stability of the steady state will be
analysed by applying some sufficient conditions given by

Nishimura and Matsubara,39 and by numerically integrating

the linearized perturbation equations.

B. Method of Nishimura and Matsubara

We linearize the unsteady state Equations (3.7) to
(3.12) about the steady state using the first two terms of

the Taylor series. Let ul(f,'f) and uz(f,'r) represent

the concentration and temperature perturbations from the

steady states. Thus,

z2(§,7) = z(§) +u (£, T) (4.1)
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v(€,.T) = v(&) +uy(§,T) (4.2)
where E(f) and 1_/(5) are the steady state dimensionless con-
centration and temperature, respectively. Let

Y(y-1) (4.3)

f(z,y) = 2z exp v

Linearizing about the steady state

f(z,y) = f + (%-zg) u, + (—g—;) u, (4.4)
e e

where

£ = f£(z,y) (4.5)
Rf) _ Of (z,¥)

) - 2 .6
_B_f_) _ £ (z,9)

(3) - % .7

From the unsteady state Equations (3.7) to (3.12), uy and

u, satisfy the following equations

2
Bul = 2 71 - (Bf) u, - (E—f-) u (4.8)
DT 362 oz e 1 r-3% e 2 -
ou, o Uy Of of
Le 31 = 362 + B(—é—;)e ul + B (-sy)e u, (4.9)

>0, £ € (&, €7



with
du
1 =
(BE ) = pu, ( fo) (4.
&o
du
( ag‘z) = quy( &) (4.
&o
du
1 -
( af ) - ""pu]_( fl) (4-
3
Euz
>E = —qu, ( &) (4.
3
In a compact matrix notation this becomes
LU = 31_1 ° P BI_I_ Qu=2~0 (4
=2t ¢ Y3 - )
0 €&, &)
with
ou
PBg " 512 = ° ¢ =& .
22U
P—=-S,U0 = 0 € =¢, (4.

ol
o
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10)

11)

12)

13)

14)

15)

16)



where

and

ic

by Nishimura and Matsubara.3

1
0
(35)
oz
e

a symmetric matrix
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(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

These matrices can easily be identified with those used

It is convenient to introduce
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~ 1 T

Q = 5 (Q +0) (4.22)
where QT is the transpose of matrix Q. The matrices P, Sl'
and S, are already symmetric. A sufficient condition for
the stability of the steady state has been given by Nishimura
and Matsubara.39 Introducing an auxilliary matrix V(§')

defined by the differential equation

%6 g—‘é— v = o (4.23)
together with

vV = 1 at § = &, (4.24)
and

P g—‘é—- - S5V = 0 at E = fo (4.25)

where I is the identity matrix, they show that a sufficient
condition for the steady state to be asymptotically stable

is that both the following conditions hold simultaneously:

(1) 'V(f) is nonsingular on [ 0’ £¥] , and (4.26)
(ii) the matrix |P %y__v-l - S,| is positive definite at
& =&, (4.27)

For the problem under investigation the size of the matrix

V is 2 x 2. Equation (4.23) represents four second order
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ordinary differential equations with initial conditions
given by Equations (4.24) and (4.25). Computationally, the
system was solved as a set of eight first order equations

by the Runga-Kutta-Merson method. The automatic step change
mechanism was not used because it was found to be too con-
servative. The test was applied to high, medium, and low
symmetric steady states, and to high-low, medium-low, and
high-medium asymmetric steady states. The asymmetric steady
states used were those represented by the intersection points
2, 3, and 4 on Figure 14 and which are mapped in Figures 18,
19, and 20.

In all cases considered, the first condition, namely
that the matrix V(ﬁW be non-singular was violated. However,
since the criterion developed by Nishimura and Matsubara is
merely sufficient for stability, no positive conclusion can
be drawn from these results.

Thus the use of Nishimura and Matsubara's sufficient
conditions for stability leaves the question of stability

of the steady states open.

C. Continuous Time Galerkin Approximation to Linearized

Perturbation Egquations

Stability can be investigated by the direct numeri-
cal integration, forward in time, of the linearized perturba-
tion Equations (4.8) to (4.13). The discovery of any small
perturbation of the steady state which grows is an indica-

tion that the steady state is unstable. Since it is impossible
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to consider all conceivable perturbations, the failure to

find a perturbation that grows does not guarantee stability.
The method used to integrate Equations (4.8) to (4.13)

(or the system of Equations (4.14) to (4.16)) numerically

7 and Kantorovich and

was the Galerkin method (see Collatz
Krylov27). Hermite cubic polynomials were used as basis
functions. A brief description of these follows. Let

A: x5 = X1<{ X< ... <x . = L denote any partition of

E%V ] with grid points X; . The Hermite cubic polynomials
are a collection of real piecewise polynomial functions w (x)
defined on [xO,L] such that w(x) € Cl([xo,L]) and the poly-

nomial is of degree three on each subinterval [;i’xi+i]'

The defining equations are

2 3
~ X=X, X=X,
1 - 30— -2 = xl_lsx$x-_L
¥i i1 X1 ™1
2 3
CTURYRID SR B R (e <x < (4.28)
2i-1(x) = - e T | X%;%*x Sx, .
Xip17¥i Xi17%4 1 i+1
L 0 x € E‘O'L] - E‘i 1'Xi+1]
2
XX,
x=x3) | 1+ 550 ) Xi-1€ X 2%
1 7i-1
2
J i (4.29)
W, (%) = (x-x.) 1 - — X: € x €x, .
2i i X;017%i i i+l
- 0 XG{[XO'I] - [Xi—l'xi+1]
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These functions are graphed in Figure 21. At any node point
X, the value of the function Woio1 igs 1 and the slope of the
function Wos is 1. We can thus assign values to the coeffi-
cients of WZi-l(xi) and w2i(xi) at each node X;, SO that the
piece-wise cubic polynomials agree with the value of the func-
tion being approximated at each node point, and also with

the slope of the function at each node.

We define the Galerkin approximation g(f, T) to the
solution of (4.14) to (4.16) by requiring that G lie in a
finite dimensional space of functions and be such that LU
(as defined by Equation (4.14)) is orthogonal to this space
for each T . This type of Galerkin approximation can be
determined by a system of ordinary differential equations.
Using Hermite cubic polynomials as basis functions, Douglas
and Dupont12 have shown that the order of convergence is
O(h3 +-At2), where h is the mesh size and At the time step.
Recently, Wheeler47 has shown that the method is, in fact,
fourth order with respect to h. This is a considerable
improvement over the finite-difference methods. The use of
the Hermite functions also ensures that the solution is a
smooth function which is piecewise polynomial, and this
means the smooth graphical representation of the results
can be obtained.

The practical implementation of the Galerkin method for
the problem under consideration is based on Douglas and

Dupont12 and Douglas.ll The basis functions Wy oWoueoe,Wo



(a)

(b)

75

xl-l xi xl-l-l
FIGURE 2la: Hermite Cubic Polynomial-value Function,
Wa . (%)

2i-1

FIGURE 21b: Hermite Cubic Polynomial-Slope Function,
W, (X)
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are linearly independent. Denote by W\ the subspace spanned

by WyrWoseodWy where r is the number of grid points. That

r
is,

W\ = sp iwl,wz,...,wzr} (4.30)

The variables uy and u, of Equations (4.8) to (4.13) are
approximated by the functions U(g , T) and W(E, T), respec-

tively, where

2r

w(g,T) = Z o (T) W (€) (4.31)
i=1
and or
w(§.,T) = Z Bi(r) w; (&) (4.32)
i=1
bul Buz du, Buz

and are specified by

BE ) "\ e 1 g 3¢ e
0 0 1 1
Equations (4.10) to (4.13), hence the coefficients of w2(§)
and w2r(§) can be calculated. We are left with (2r-2)
unknowns lgi(T') and (2r-2) unknowns O}('t). The Galerkin
method gives relations that can be used to calculate these
ot (T) and Bi(r).

Consider first the Equation (4.8)

2
Bul _ aul_

2T 352

A(€) u; - B(§) u, (4.33)
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where

a(g) = (%é)e and B(§) = %)e (4 34)

Define an inner product by

&
<w,v> = w(x) v(x)dx (4.35)

&

we have

du 'Bzu
1 _ 1
Syl w.l> = < 362 , wi>—<Aul,wi> —<Bu2,wi> (4.36)

i# 2,2r

Using the approximation for uy and u,

<%%_, Wi> _662 ,wl> -<au,w, > - <BW,w, > (4.37)

i#2,2r
w € WL

Integrating the first term of the right-hand side by parts

g 3
< 5—%—,wi> = _%ELW (4.38)
Now
&
gg ws = 0 for i # 1,2r-1 (4.39)
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Since w; = 0 at § = {0 and at f = El for i # 1,2r-1, and

QU 1
20U = -pol(T) (4.40)
ag ¢
3
QU = p Tl (1) (4.41)

Using the expansions for U and W and Equation (4.37), the

continuous time Galerkin approximation becomes

2r 2xr 5 2r
Z <wpwy> 3 Z Sujoup> ol + D, <avgwpdec)

(4.42)

i# 2,2r

where the primes denote differentiation with respect to f .

The boundary conditions (4.10) and (4.12) give

pol (T) (4.43)

o (T)

2T(T) = plE (T (4.44)

By a similar analysis, Equation (4.9) becomes
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Z<w,w> Z<w,w>'8 BZ<BW,W>B

2r . El
-B z <ij,wi> o = _‘aaflwi i # 2,2r (4.45)
=1 &
where
&
dw . ,
-SE—Wi = 0 i#1,2r-1 (4.46)
&o
> S
imcflwl = _qﬁl(r) (4.47)
&o
3
%—E‘i—wzr_l = -qﬁzr'l(r) (4.48)
3
while the boundary conditions (4.11) and (4.13) give
B2ty = ap(T) (4.49)
BTy = —ag¥ T (T) (4.50)
Defining
C,ij = <Kwyw> (4.51)
€ij = <wi,wj‘> (4.52)
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aij = <ij,wi> (4.53)

b 5 <Bwj,w; > (4.54)

the continuous time Galerkin approximation to Equations (4.8)

to (4.13) 1is

2y 3 2y 2r €
dou j j 1
gij ar * z (€55+a35) X7 + Z P158° = -aa—Uwi
=1 =1 =1 ¢ e
0
i# 2,2r (4.55)
2y : 2r 2r
a3’ j j
Le z Clj ar— * (€:5-B*)B°- B ij X
j=1 j=1 1=1
> “
W .
= = . i$2,2r (4.56)
al g,
with
LC(T) = pod(T) (4.57)
Bty = aptT) (4.58)
CE(T) = -p 2T (T) (4.59)
BZr(T) - _ BZr—l(T) (4.60)
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Equations (4.55) and (4.56) represent (2r-2) equations each,

and together with Equations (4.56) to (4.60), we have 4r

equations in the 4r unknowns o4 and [31.

Let qotg') and ql(g ) represent the initial perturba-

tions uy and u,, respectively. That 1is,

u, (£,0 = q; (&)

(4.61)

(4.62)

Thus initial coefficients o&(O) and 131(0) can be

evaluated from the following equations

2r
5=1
2r
z s @ = Lay(&rw>  i#2,2r
5=1
with
o?(0) = polt(0)
B?w) = qB0)
oCE(0) = -pot?T L(0)

(4.63)

(4.64)

(4.65)

(4.66)

(4.67)

(4.68)



82

D. Numerical Considerations and Results

There are several practical problems that arise in
the solution of the continuous time Galerkin approximation
equations. The first is the question of evaluation of the
coefficients aij and bij' It is important to establish a
procedure for treating these quadratures that is efficient,
otherwise the calculations required to complete a time step
become so extensive that it may not be feasible to use the
Galerkin method with a Hermite basis. The coefficients A(§')
and B(€) are approximated in the subspace W\ and the inte-
grations are then carried out explicitly by formula.

Consider the approximation of A(£ ). (The approximation

of B(§') is carried out in an analogous manner. )

Let
Y
a(g) = Z A& Wy 1 (E)+A (& Wy (&) (4.69)
k=1
2r
=z Xy (€) (4.70)
k=1
where
Xox-y = 2(&)) and Xy =2a' (&)
for k =1,2,...,r (4.71)
aij = <:Awi,wj:> is then approximated by

a; 5 <Awi,wj> (4.72)
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2r
ag; = Skij Xy (4.73)
k=1
3
where Skij = W (X)W ()W (x) ax (4.74)

€o

The values of Skij are calculated only once per problem.
Most Skij are zero, and, in fact, for a given (i,j) there
are at most six non-zero Skij for the Hermite cubic poly-
nomials. Since the wi's are polynomials on each interval
(gi—l’ €i+l)' Skij can be evaluated by performing the inte-
gration by polynomial multiplication and polynomial integra-
tion routines, or, by hand. The values of the integrals
Skﬁj' Cij, and eij are. tabulated in Appendix I.

Similarly, bij is approximated by

2r
b.. = Z Ve &, ., (4.75)

1] kij
k=1
where
i o ] ——
Vo1 = B(&) and Y, =B' (&) k = 1,2,...,r(4.76)

The time-discretization of the system of ordinary dif-
ferential Equations (4.55) and (4.56) can be acomplished by
the Crank-Nicolson procedure. Let T, =mAT, cl; = cil('rm)

i _ i . .. .
and A;m = ﬁ; ('rm) and by using the finite difference

formulas:
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J I~ o]
dl ~ c>(n-l—l °‘n (4.77)
aTtT AT :
J I _pd
d,B ~ Bn+1 B n (4.78)
art AT .
J §
: =K +
o) o —ndl _ n (4.79)
J J
. +
Bj ~ Bn+l . Bn (4.80)

the Equations (4.55) and (4.56) become

2xr 2r
AT j DT 3 - 41
Z gij T (€47a) °‘n+1+( 2) Z b:sBa+1 = $n
j=1 j=1
i #2,2r (4.81)
and
2

j=1 j=1
i# 2,2r (4.82)
where El 27
i QU a&T J
¢n_Arb€wi + 13—2(6 ta;4) ooty
fo J=1
2r
(253 o, a2



i_ arow_ _bT
‘)7n T W, + Z Le Cij
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(€;5-B%; 523

(4.84)

The boundary conditions (4.57) to (4.60) become

0'L1i+1 = pc¢i+l
Br21+1 = qBr11+1
dfxil - ‘Pdiiil

fxf—l - ‘qBrzliIl

(4.85)

(4.86)

(4.87)

(4.88)

Using the notation of Douglas and Dupont we call the

system of Equations (4.81) to (4.88) the Crank-Nicolson-

Galerkin approximation. Let

1 ~1 ,2 .2 2 2r T
dn = (o(n,Bn,o(.n,Bn,...,O(nr,Bnr)

-0-
o}
]

1 .1 ;2 2 2r . 2r.T
L (¢n'nn'¢n’77n"”’ n"r]n)

(4.89)

(4.90)

The system of Equations (4.81) to (4.88) can then be repre-

sented by

Dc(n+1 _ qbn

(4.91)
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where D ig a matrix with at most 12 non-zero elements per
row. The initiaj conditions for the pProblem are obtained
from Equations (4.63) to (4.68). Matrix D can be considered
as either a 15 band matrix with 7 sub-diagonal elements ang
7 super-diagonal elements or as a block tridiagonal matrix,
the size of each block being 4 x 4.

Gaussian elimination can be readily employed to solye

the Equation (4.91). 1f D is treated as a band matrix, then

Wilkinson35 and by Bowdler, Martin, peters, and Wilkinson.6
Treating D ag a block-tridiagonal matrix also economizes the
storage requirements, The solution brocedure in thig case
is analogous to the solution of 3 tridiagonal system, (the
algorithm for which appears in Henrici19), exXcept that divi-
sion by a scalar quantity ig replaced by multiplication by
the inverse of the corresponding matrix.

The system represented by Equation (4.91) was solved by
two methods: one treating p ag g3 band matrix and the other

treating p ag a block—tridiagonal matrix. Computationally

by treating p as 3 block—tridiagonal matrix, Rachford42 has

Suggested that for Systems with bigger blocks (16 x 16 or
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or greater) the block-tridiagonal method would be faster.

All computations were performed with the Lewis number,
Le, equal to 1. The numerical method described above was
used in all computations. For all the transients, a grid
of 13 points was used. A small grid spacing was employed
at the ends of the slab where the concentration and tempera-
ture changes were rapid. 1In the interior of the slab, where
the changes were slight, a larger grid spacing was used.
Typically, four steps of size h were used at each end of
the slabs and four steps of sizes varying from 6h to 20h
in the middle of the slabs. The grid spacing used is tabu-
lated in Appendix II.

The effect of a small perturbation of the high, medium,
and low symmetric steady states was considered. In all
these cases, the same initial disturbance of the steady
state was employed. The concentration and temperature
responses are shown in Figures 22 and 23 for the low symme-
tric steady state, in Figures 24 and 25 for the medium
steady state, and in Figures 26 and 27 for the high steady
state. Since symmetric perturbations of the steady states
were considered, it is expected that the transients will be
symmetric and this is indicated in Figures 22 and 23. 1In
the following four figures, the transients for only half
the slab are shown.

As expected, the perturbations of the medium steady

state grow in time indicating that this steady state is
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T, < 0
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Symmetric Steady State
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unstable. Both Figures 24 and 25 show maximum value of uy
and u, of about 0.11, although computations have been carried
out to values of vy and u, of about 1. The form of the
growth was maintained in both cases.

After a slight overshoot, the disturbances of the high
and low steady states decayed in time, indicating that these
steady states are stable for the perturbations considered.
Since the primary purpose of this work is to consider the
asymmetric steady states, the effect of different distur-
bances was not considered. However, based on these results,
and the results of previous work, it can be conjectured that
the high and low symmetric steady states are stable.

The effect of a small disturbance on the asymmetric
steady states was also investigated by solving the Crank-
Nicolson-Galerkin approximation. The asymmetric steady
states considered are those corresponding to the intersec-
tion points in Figure 14 for ciz = 0.09 and those in Figure
12 for elz = 0.02. The former set represents slabs of small
thicknesses while the latter represents slabs of large thick-
nesses.

Considering the smaller slabs first, Figures 28 and 29
show the concentration and temperature responses of the
medium-low asymmetric steady state to a small positive dis-
turbance. Instability is indicated by the growth of the per-
turbation in time. 1Instability of the high-medium steady

state is also indicated by the growth of small positive
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disturbances in time and these are graphed in Figures 30 and
31. In both cases computations were carried out beyond the
dimensionless time shown and the form of the growth was main-
tained.

The effect of the small positive disturbances on the
high-low steady state was also investigated. Figures 32
and 33 show these concentration and temperature responses.
It is seen that the disturbances decay with time, after an
overshoot, indicating the stability of the high-low steady
state to the disturbance considered. Two other forms of
initial disturbances were then considered: one a straight
line satisfying u,(§,0) = u,(§,0) = [o.oz/( €,- EO)](E &P
+ 0.01, and the other approximating an asymmetric step func-
tion. 1In both cases, the disturbances decayed in time, again
after an overshoot. These responses are shown in Figures 34,
35, 36, and 37. As has been indicated earlier, it is impos-
sible to establish stability with the method being used
since it is impossible to consider all conceivable pertur-
bations. However, from the computational results presented
here, and by considering the results of Pis'men and Kharkats,41
it is reasonable to conclude that the high-low steady state
is stable.

Perturbations of the three types of asymmetric steady
states in larger slabs were also investigated. The responses
are shown in Figures 38 to 43 where the horizontal scale has

been split up in order to indicate the behavior of the
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responses at the ends of the slab more clearly. The behav-
ior of the small positive initial disturbances in time is
analogous to that encountered above. Figures 38 and 39
show responses to the disturbances of the high-low steady
state that decay in time, while Figures 40 to 43 show
responses to the disturbance of the high-medium and medium-
low steady states that grow in time.

The machine time required for each set of these transi-
ent responses varied from about 15 minutes to 45 minutes on
a Burroughs B5500 computer.

Initially, when the changes in uy and u, were rapid,
small time increments AT (of the order of 10_4) were used.
As the dimensionless time increased, the changes in Uy and
u, became less rapid and this permitted larger AT 's to be
used without affecting the accuracy of the numerical solu-
tions. The Crank-Nicolson-Galerkin approximation method
used here appears to be very versatile in its ability to
approximate the sharp peaks obtained in the concentration
responses. The slight drawback of the method is that it
is more difficult to program than finite difference methods
but the higher order of convergence and the smaller number
of grid points required more than offset this difficulty.
The method could also be used to solve non-linear parabolic
equations by the use of the predictor-corrector approxima-

tion as suggested by Douglas and Dupont.1
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It can thus be concluded that both the high-medium and
the medium-low asymmetric steady states are unstable with
respect to small perturbations. The high-low steady state
was shown to be stable with respect to three different ini-
tial disturbances, and it is therefore reasonable to suppose

that it is, in fact, a stable steady state.
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V. CONCLUSIONS

The results and conclusions stated in the preceding
chapter may conveniently be divided into two groups: those
related to solutions not invariant under lateral transla-
tions, and those related to solutions not invariant under
reflection.

Solutions whose symmetry operation is translation par-
allel to slab faces take the form of standing waves, and
exist whenever multiple uniform temperature steady state
solutions occur. These have, however, been shown to be
unstable against small perturbations for a single exother-
mic reaction. Frank-Kamenetskii15 mentions the existence of
biological rhythms in living organisms and suggests that this
may be connected with periodic chemical processes. He also
considers the appearance of self-excited oscillations in
industrial systems which involve exothermic chemical pro-
cesses. In both considerations the possibility of the exis-
tence of non-uniform states arises and stable standing waves
may exist. 1In a recent book, Glansdorff and Prigogine17 dis-
cuss systems of complex chemical reactions which describe
metabolic processes and demonstrate that symmetric steady
states in these systems may become unstable against small
perturbations in the form of exponentially growing standing
waves. The existence of non-uniform steady states, which

they call dissipative space structures, is then assumed.
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They speculate that this type of instability might be respon-
sible for the periodic structure of cellular biological
material.

The existence of steady states that are asymmetric with
respect to reflection across the center plane was demon-
strated in an infinite slab of catalyst of finite thickness.
A word about the model used is, perhaps, in order. No real
slab is infinite in two directions and finite in the third.
The only case that can be described by the model is one
where four sides of the catalyst are sealed with a chemically
inert, perfectly insulating material. The main reason for
considering this model is mathematical simplicity.

A complete set of asymmetric steady states in a symme-
tric catalyst particle is presented. The relations between
these asymmetric steady states and the symmetric states are
established and new branches that they contribute to the
Thiele modulus effectiveness factor plot are mapped for one
particular example. The high-medium and medium-low states
are shown to be unstable with respect to small perturbations,
while there is good indication that the high-low state is
stable to small perturbations.

As this is an early work dealing with asymmetric pro-
files, a small part of the topic has been covered and much
work remains to be done. Only the slab type of geometry
has been considered. Catalyst particles of cylindrical and

spherical geometries are more realistic and the possibility
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of asymmetric steady states in these geometries needs to be
considered. Methods of estimating lower bounds of slab
thicknesses for existence of asymmetric steady state need to
be looked at. Systems with finite boundary resistances which
can be reduced only to non-self adjoint eigenvalue problems
present special difficulties when the question of stability
arises, since general theories do not exist for this type of
problem. A very important step in the stability analysis of
real systems would be to formulate these general theories.

In practice, the mass and thermal diffusivities exhibit a
temperature dependence and the effect of this on the steady
states would be of interest. 1In this study only unit Lewis
number was used and so another area of investigation would be
the effect of Lewis number on the stability of the asymmetric
steady states. Lee and Luss30 have carried out an extensive
numerical study to determine the effect of Lewis number on
the stability of the symmetric steady state in a porous cata-
lyst. They discovered some interesting phenomena including
the occurance of a unique unstable steady state with a peri-
odic appearance of a very hot spot during a limit cycle.

The major objectives of this work, which were to demon-
strate the existence of asymmetric steady states and to make
comments on the stability of these, have been fulfilled. 1In
addition, a Galerkin integration method, which has not been
used previously for problems of this type, has been tested

and shows much promise.
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NOMENCLATURE

catalyst slab half-thickness
<Awi,wj>
ko/ci

( ‘bf/'az)e

approximation of A(§ ), defined by Equation
(4.69)

mass transfer coefficient at wire boundary
<:Bwi,wj:>

ey

(®£/ dy)

concentration of reactant

constant defined by Equation (2.16)

concentration of reactant outside catalyst
particle

specific heat of catalyst slab
thermal capacity of wire per unit length

effective diffusion coefficient in catalyst
slab
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activation energy

function defined by Equation 4. 3)
£(z,Y)

Of (z,¥)

oy

of (z,y)
oz

function defined by Equation (2.8)
constant defined by Equation (2.45)

space increment

dr

a@r EE:GE

identity matrix

thermal conductivity
pre-exponential factor in velocity constant

effective thermal conductivity in catalyst
slab

mass transfer coefficient at slab surface

length of wire

D
=
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heat transfer coefficient at slab surface
defined by Equation (3.30)

subspace spanned by Hermite cubic polynomials
defined by Equation (3.28)

Q’/ / Dkoe_ 4

matrix defined by Equation (4.18)

1/2(Q" + Q)

number of grid points

gas constant

dimensionles distance = x /,LL/ KS
XO //J.7 KS

x, [H/ KS

cross sectional area of wire
matrix defined by Equation (4.19)
matrix defined by Edquation (4.20)
time

absolute temperature

absolute temperature outside catalyst
particle
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small perturbation of the steady state
dimensionless concentration for the slab
problem

small perturbation of the steady state
dimensionless temperature for the slab
problem

approximation of uy defined by Equation (4.31)
column vector defined by Equation (4.21)

auxiliary function defined by Equations
(2.41) and (2.42)

function defined by Equations (4.20) to (4.25)

Hermite cubic polynomials defined by
Equations (4.28) and (4.29)

approximation of u, defined by Equation (4.32)

co-ordinate measured along wire for the wire
problem; co-ordinate normal to slab faces
for the slab problem

terminal points of 9}
T/T

b

steady state dimensionless temperature

c/cb

steady state dimensionless concentration
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kij

AT

ij

ij

mass transfer coefficient per unit length
of wire

integration constant

integration constant determining asymmetry
of solution

coefficients defined by Equation (4.31)
i
ol (Tn)
column vector defined by Equation (4.89)
Qch/KTb
coefficients defined by Equation (4.32)
i
B (t)
E/RTb
&
€o

time step

wk(x)wi(x)wj(x)dx

EFL/Rc(ch
<wjwy>
<wi'wj>

effectiveness factor
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one-sided effectiveness factor
defined by Equation (4.84)

T /o(Qcb

steady state dimensionless temperature
thermal conductivity

Thiele modulus

eigenvalue, defined by Equation (2.37)

heat transfer coefficient per unit length
of wire

Y
koe-y
D x
L.
_7 3
koe N
D 0
_Y \E
koe )
D 1

density of catalyst particle

small perturbation of steady state dimen-
sionless temperature for the wire problem

dimensionless time (t/C for wire problem;
koe—y t for slab problem)
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n AT

a8 /as

defined by Edquation (4.83)

column vector defined by Equation '(4.90)
defined by Equation (4.71)

spatial factor of o

defined by Eguation (4.76)

temporal factor of O

x interval occupied by catalyst

Mathematical Notation

<-

’

-2

inner product defined by Equation (4.35)
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APPENDIX I

INTEGRALS INVOLVING THE HERMITE CUBIC POLYNOMIALS

3
Q.. = <wi.wj> = wi(x)wj (x)dx (A.1)

ij §b

For each i, Cij has at most six non-zero elements. Note

that Qij = Cji‘

The non-zero elements are tabulated below, where r is

the number of grid points.

(1,3) Eis (1,3) oy
1,1 13h/35 2r-1,2r-3  9h/70

1,2 11h%/210 2r-1,2r-2  13h2/420
1,3 9h/70 2r-1,2r-1  13h/35
1,4 ~13n2 /420 2r-1,2r ~11n%/210
2,1 1102 /210 2r,2r-3 ~13h% /420
2,2 n3 /105 or,2r-2 13 /140
2,3 13h%/420 2r,2r-1 ~11h%/210
2,4 -n3 /140 2r,2r n3 /105

The other non-zero elements can be expressed in terms
of the above integrals and are evaluated by the use of the

following relations:



2i-1,2i-3

g

2i-1,2i-2

g

2i-1,2i-1

g

2i-1,21

8

2i-1,2i+1
C2i—l,2i+2
2i,2i-3
g2i,2i—2
€2i,2i-1
2i,2i

2i,2i+1

2i,2i+2

2r-1,2r-3
2r-1,2r-2
2r-1,2r-1 F

2r-1,2r *

2r,2r-3

2r,2r-2

2r,2r-1

2r, 2r +
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(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

(A.7)

(A.8)

(a.9)

(A.10)

(A.11)

(A.12)

(A.13)
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The relations (A.2) to (A.13) are valid for i=2,3,...,r-1.

dw dw
€ =
ij < ' > f T a O (a.14)

For each i, €.. also has at most six non-zerc elements.

ij
Also, €.. = €... The non-zero €.. are tabulated below.
l] ]l lj
. € ..
(1,3) i (i,3) €iq
1,1 6/5h 2r-1,2r-3 -6/5h
1,2 1/10 2r-1,2r-2 -1/10
1,3 -6/5h 2r-1,2r-1 6/5h
1,4 1/10 2r-1,2r -1/10
2,1 1/10 2r,2r-3 1/10
2,2 2h/15 2r,2r-2 -h/30
2,3 -1/10 2r,2r-1 -1/10
2,4 -h/30 2r,2r 2h/15
€ - €
2i-1,2i-3 2r-1,2r-3 (A.15)
€ - €
2i-1,2i-2 2r-1,2r-2 (a.16)
€ - € €
2i-1,2i-1 2r-1,2r-1 T "11 (A.17)
€_. ) = € €
2i-1,2i ar-1,2r 7 12 (A.18)
€ - €
2i-1,2i+1 13 (3.19)
= € (A.20)

e2i—l,2i+2 14



€
2i,2i-3

€
2i,2i-2
e » .
2i,2i-1
€
2i,2i
€
2i,2i+1

€
2i,2i4+2

€
2r,

€
2r,

€
2r,

€
2r,

€
23

€
24

2r-3

2r-2

2r-1

2r

€
21

€
22
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(A.21)

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)

The relations (A.15) to (A.26) are valid for i=2,3,...,r-1l.

&
kij éb

For each (i,]),

3

kij

wk(x)wi(x)wj(x)dx

(A.27)

has at least six non-zero elements.

These are tabulated below, where r is the number of grid

points.

(i,3)

- - - -

-

- - - - -

T i i i i e i
-
W W W W NNNDN R

-

Iw

DLW H B W R D W N

S

kij

43h/140
97h2 /2520
9h/140
_43h2 /2520
97h2 /2520
2h3 /315
n2/72

-h3 /280
9h/140

h2 /72
9h/140
-h2/72



(i,3)

2r-1,2r-3
2r-1,2r-3
2r-1,2r-3
2r-1,2r-3

2r-1,2r-2
2r-1,2r-2
2r-1,2r-2
2r-1,2r-2

N B W B W N D oW N

S oW N

2r-3
2r-2
2r-1
2r

2r-3
2r-2
2r-1
2r

S

kij

~43h%/2520
-n3 /280
2 /72

n3 /315

97h2 /2520
on3 /315
h2/72

-3 /280

2h3/315
n? /840
h3/315
1?1260

w2 /72
h3/315
43n2 /2520
-h3 /280

-3 /280
~h?/1260
-n3 /280
n%/1260

9h/140
n?/72

9h/ 140
-2 /72

w2 /72

h3 /315
43h% /2520
-h3 /280
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(i,3)

2r-1,2r-1
2r-1,2r -1
2r-1,2r-1
2r-1,2r-1

2r-1,2r
2r-1,2r
2r-1,2r
2r-1,2r

2r,2r-3
2r,2r -3
2r,2r-3
2r,2r =3

2r,2r-2
2r,2r=2
2r,2r-2
2r,2r-2

2r,2r-1
2r,2r-1
2r,2r-1
2r,2r~1

2r,2r
2r,2r
2r,2r
2y ,2r

The other non-zero

3

kij

2r-3
2r-2
2r-1
2r

2r-3
2r-2
2r-1
2r

2r-3
2r-2
2r-1
2r

2r-3
2r-2
2r-1
2r

2r-3
2r-2
2r-1
2r

2r-3
2r-2
2r-1
2r

132

3

kij
9h/140
4302 /2520

43h/140
~97h% /2520

-h2 /72

-h3 /280
-97n2 /2520
2h3 /315

~43n2 /2520
-3 /280
-h2 /72

h3 /315

-n3 /280
-h?/1260
-n3 /280
n? /1260

-h2/72

-n3 /280
~97h% /2520
2n3/315

n3/315
n?/1260
2n3/315
-n? /840

can be evaluated from the above

using the following equations



2i-3,2i-1,2i-3
2i-2,2i-1,2i-3

2i-1,2i-1,23i-3

2i,2i-1,2i-3

2i-3,2i-1,2i-2

S
3
3
3
3

2i-2,2i-1,2i-2

84

2i-1,2i-1,2i-2

2i,2i-1,2i-2

2i-3,2i-1,2i-1

o o oo

2i-2,2i-1,2i-1

o

2i-1,2i-1,2i-1

2i,2i-1,2i-1

o2 o”

2i+1,2i-1,2i-1

(87

2i+2,2i-1,2i-1

o?

2i-3,2i-1,2i

2i-2,2i-1,21i

o7 8/

2i-1,2i-1,2i

2r-3,2r-1,2r-3

2r-2,2r-1,2r-3

2r-1,2r-1,2r-3

o O o2

2r,2r-1,2r-3

2r-3,2r-1,2r-2

2r-2,2r-1,2r-2

o2 o2 »

2r-1,2r-1,2r-2

2r,2x-1,2r-2

2r-3,2r-1,2r-1

2r-2,2r-1,2r-1

o2 o7 02 o

2r-1,2r-1,2r-1

o2

or,2r-1,2r-1 T

02

311

&4

411

/4

2r-3,2r-1,2r

2r-2,2r-1,2x

8/ o2

2r-1,2r-1,2r +

+ 3

111

S

211

3

112
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(A.28)

(A.29)

(A.30)

(A.31)

(A.32)

(A.33)

(A.34)

(A.35)

(A.36)

(A.37)

(A.38)

(A.39)

(A.40)

(A.41)

(A.42)

(A.43)

(a.44)



2i,2i-1,21

o

2i+1,2i-1,2i

8/

2i42,2i-1,21

o”

2i-1,2i-1,2i+1

o

2i,2i-1,2i+1

o2

2i+1,2i-1,2i+1

(84

2i+2,2i-1,2i41

8/

2i-1,2i-1,2i+2

8/

2i,2i-1,2i42

8/

2i+1,24i~1,2i+2

2i+42,21i-1,21i+2

o2 o2

2i-3,2i,2i-3

o9

2i-2,21,2i-3

o2

2i-1,2i,2i-3

8/

2i,2i,2i-3

2i-3,21i,2i-2

o7 o7

2i-2,2i,2i-2

8/

2r,2r-1, 2r

8/

312

o2

412

02

113

213

313

o (07 o2

413

114

o o7

214

o2

314

o2

414

02

2r-3,2r,2xr-3

o”

2r-2,2r,2r-3

8/

2r-1,2r,2r-3

0/

2r ,2r,2r-3

Q7

2r-3,2r,2x-2

o2

2r-2,2r,2xr-2

+ 8212
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(A.45)

(A.46)

(A.47)

(A.48)

(A.49)

(A.50)

(A.51)

(A.52)

(A.53)

(A.54)

(A.55)

(A.56)

(A.57)

(a.58)

(A.59)

(A.60)

(r.61)



o2

2i-1,2i,2i-2

o”

2i,2i,2i-2

2i-3,2i,2i-1

02 o”

2i-2,2i,2i-1

2i-1,2i,2i-1

2i,2i,2i-1

o/ o O

2i+1,2i,2i-1

2i+2,2i,2i-~1

2i-3,21i,21

o” o O

2i-2,2i,2i

2i-1,2i,2i

2i,2i,2i

2i+1,21i,2i

o” o2 o o2

2i+2,21i,2i

2i-1,21i,2i+1

o o2

2i,2i,2i+1

S

2r-1,2r,2r-2

S

2r,2r,2r-2

)

2r-3,2r,2r~-

82r-2 2r,2r-
S
2r-1,2r,2r-
S
2r,2r,2r-1
8
2r-3,2r,2r
2r-2,2r,2rx
2r-1,2r,2r
2r,2r,2r +

22

22

S
S
)
S
3,
3,
3.,
3,,

1

1

1

+

+

122

222
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(A.62)

(A.63)

(A.64)

(A.65)

(A.66)

(A.67)

(A.68)

(A.69)

(A.70)

(A.71)

(A.72)

(A.73)

(A.74)

(A.75)

(A.76)

(A.77)



2i+1,2i,2i+1

2i+2,2i,2i+1

2i-1,2i,2i+2

2i,2i,2i+42

2i+1,2i,2i+2

O? o2 O o2 o O

2i+2,21,2i+2

323

o” o2

423

124

o2 o0

224

o2

324

o2

424
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(A.78)

(A.79)

(A.80)

(A.81)

(A.82)

(A.83)



SPACE GRIDS FOR TRANSIENT PROBLEM

Steady State

low symmetric
medium symmetric
high symmetric

ml: & = 0.09

2
hm; &, = 0.09
hl; &, = 0.09
ml; &, = 0.02
hm; &, = 0.02
hl; &, = 0.02

2

APPENDIX II

137

Step Size
First Four Intermediate Final Four
Steps Four Steps Steps
h 6h h
h 8h h
h 8h h
h 6h h
h 6h h
h 6h h
h 10h h/5
h 40h h
h 20h h



