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Abstract

Proteins searching and recognizing specific sites on DNA is required for initiating all major

biological processes. While the details of the protein search for targets on DNA in purified in

vitro systems are reasonably well understood, the situation in real cells is much less clear. The

presence of other types of molecules on DNA should prevent reaching the targets, but experiments

show that, surprisingly, the molecular crowding on DNA influences the search dynamics much less

than expected. We develop a theoretical method that allowed us to clarify the mechanisms of the

protein search on DNA in the presence of crowding. It is found that the dimensionality of the

search trajectories specifies if the crowding will affect the target finding. For 3D search pathways

it is minimal, while the strongest effect is for 1D search pathways when the crowding particle can

block the search. In addition, for 1D search we determined that the critical parameter is a mobility

of crowding agents: highly-mobile molecules do not affect the search dynamics, while the slow

particles can significantly slow down the process. Physical-chemical explanations of the observed

phenomena are presented. Our theoretical predictions thus explain the experimental observations,

and they are also supported by extensive numerical simulations.
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Introduction. Protein-DNA interactions control all major biological processes involved in

the transfer and maintenance of genetic information [1]. All these processes are initiated by

protein molecules finding and recognizing specific sequences on DNA. Due to a large number

of nonspecific sites and interactions with multiple molecules in cellular medium, the protein

search is a very complex biochemical and biophysical problem. It has been extensively stud-

ied using a variety of experimental and theoretical techniques [2–24]. Although a significant

progress in explaining protein search dynamics has been achieved, many aspects of these

complex phenomena are still not clarified [4, 5, 15, 17].

Theoretical studies of the protein search phenomena identify three different regimes de-

pending on the nature of the dominating motions [17]. When the protein molecule is strongly

nonspecifically bound to DNA most of the time a 1D search regime is realized: the protein

slides to the target through the DNA molecule. For the case of weak nonspecific attrac-

tions the protein finds the specific sequence by utilizing a 3D search, i.e., it comes to the

target directly from the bulk solution. But the most interesting behavior is observed for

intermediate range of nonspecific interactions when the search combines both 1D and 3D

pathways. Here the fastest search times are typically found [4, 17]. This is known as a facili-

tated diffusion [4, 5]. Recent single-molecule experiments that can visualize the dynamics of

individual molecules qualitatively support these views [9, 11, 12, 14, 23]. However, the ma-

jority of theoretical models usually consider an oversimplified picture of the unobstructed

protein search for always open target sites on DNA [4, 5, 17]. This might be reasonable

for some in vitro situations, but in live cells the medium is very crowded, and the DNA

chains are usually covered by a large number of various biological molecules [1, 15, 26]. This

should prevent the fast protein search for target sites on DNA [27, 28]. At the same time,

experiments suggest that the crowding does not strongly influence the effectiveness of this

process [14, 15]. Thus, the mechanisms of in vivo protein search in the presence of crowding

particles on DNA remain not well understood [15].

In this Letter, we present a theoretical method that allows us to explicitly investigate

the role of the crowding in the protein search for targets on DNA. Using a discrete-state

stochastic framework, the protein search dynamics is analyzed in the presence of the crowd-

ing agent that can move along the DNA chain. This approach takes into account the most

relevant physical-chemical processes in the system. We identify the mobility of the crowding

particles as a key property determining the effect of the crowding in the protein search. It
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FIG. 1. A general scheme for the protein target search on DNA with a mobile obstacle. There are

L nonspecific sites and 1 specific target site, which is located at the site m. A protein molecule

can slide along DNA with the diffusion rate u, or it might dissociate into the solution with the rate

koff . From the solution the protein can associate to any site on DNA with the rate kon per chain.

In addition, the obstacle can diffuse along DNA with the rate uob.

is also argued that the crowding effects are stronger if the search is taking place via 1D

diffusion along DNA in comparison with 3D search via the bulk solutions. Our theoretical

predictions are tested by extensive computer Monte-Carlo simulations.

Model. We consider a single DNA molecule, a single searching protein and a single

crowding particle in our system. The DNA molecule is represented as a chain consisting of

L + 1 binding sites as shown in Fig. 1. One of the sites serves as a target and it is located

at the position m (1 ≤ m ≤ L). In addition, the chain contains a crowding particle, which

also occupies 1 site. It can diffuse along the DNA chain with a rate uob (Fig. 1). The

searching protein always starts from the solution that we label as a state 0. We assume that

DNA is coiled in the solution, and the searching protein diffuses fast in the volume around

DNA, so it can bind to any vacant site on DNA with equal probability with a binding rate

kon per each site (see Fig. 1). The attached protein can slide along the DNA chain with

a diffusion rate u. The DNA-bound protein and the crowding particle interact with each

other via a hard-core exclusion, i.e., they cannot pass each other. Finally, the protein can

dissociate from DNA with a rate koff , as shown in Fig. 1. Investigating the protein search

dynamics, we average over all possible initial positions of the crowding particle on DNA.

We can also extend the analysis to multiple crowders on DNA, but the main physics can be

already understood from the case of the single crowding agent.
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To analyze the search dynamics, we notice that if the diffusion rate of the crowding

agent is relatively small in comparison with other rates in the system, then the protein will

be able to find the target before the crowding agent can move from the original position.

This suggests that the arrival times to the target can be well approximated as a linear

combination of search times for the systems with static obstacles at different positions along

the DNA chain. Such problems have been solved before [18], and this leads to the following

approximate expression for the search time in our system,

〈T ob
0 〉 ≃

1

L





m−1
∑

lob=1

Tob(lob) +
L−m
∑

lob=1

Tob(lob)



 , (1)

where

Ti =
koff + kon(L − Si)

konkoffSi

, (2)

which is valid for the static obstacle (i = ob) located at a distance lob from the target, as

well as for a homogeneous chain without crowding molecules (i = 0). The auxiliary function

Si has a form [18]

Sob =
y(y−m − ym)

(1 − y)(ym + y1−m)
+

y(1 − y2lob−2)

(1 − y)(1 + y2lob−1)
, (3)

with

y =
koff + 2u −

√

k2
off + 4ukoff

2u
. (4)

The results of our analytical calculations are presented in Fig. 2, where they are also

compared with predictions from Monte Carlo simulations. Here the search times as a func-

tion of the scanning length λ =
√

u/koff (the average distance that the protein slides along

the DNA before dissociating into the bulk solution) are computed for different mobilities of

the crowding agent. As in the case of the protein search without obstacles [17], three search

regimes are identified. For λ < 1 (weak nonspecific interactions between the searching pro-

teins and DNA) the target can be found only by directly associating from the solution. This

is the 3D search pathway. For intermediate values of the scanning length (1 < λ < L), the

protein can also reach the target via sliding along the DNA chain. So this corresponds to

a combination of the 3D and 1D search pathways. For strong nonspecific interactions the

scanning length is large (λ > L), and 1D search pathways dominate.

Our approximate theory describes the protein search dynamics quite well for not very

large scanning lengths (λ < L), when 3D pathways play important role in the search (see
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FIG. 2. A dynamic phase diagram for the protein search on DNA with a crowding particles. The

DNA chain has the length L = 103 bp with the target at the position m = L/2. Parameters used

for calculations are: kon = 0.1 s−1, u = 105 s−1 and different uob (in units of s−1) as shown in the

picture. Solid curves correspond to analytical results for homogeneous DNA without obstacles and

for DNA with a static obstacle averaged over all initial positions of the crowding particle. Symbols

describe Monte Carlo simulations whereas the dashed lines correspond to the approximate theory

(see the text for the explanations).

Fig. 2). This is an expected result because the crowding particle cannot block the protein

from finding the target all the time. But even for slow moving crowding objects there is

always a regime in which the search times becomes independent of λ. Our theory that

views the search dynamics as average over systems with static obstacles fails to predicts

this. Another important observation from Fig. 2 is that increasing the mobility of the

crowding agents leads to a situation when the protein effectively does not feel any crowding

at all. The last observation is surprising since one expects that the protein and the crowding

molecule interact many times by colliding into each other when the search is dominated by

1D motion.

To explain this peculiar dynamic behavior, we present the following arguments. Let us

consider the 1D search regime when the protein is bound to DNA most of the time. We
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FIG. 3. A schematic view of different distributions of relevant particles during the 1D search on

DNA. The capital letters T , P and C describe the target, the protein and the crowding agent,

respectively. The labeling of configurations is explained in the text.

consider the search processes with all possible initial positions of relevant particles. Both

the protein molecule and the crowding agent with equal probability can be found anywhere

on DNA. If we abbreviate P , T and C as the protein, the target and the crowding agent,

respectively, then there are six (= 3!) possible arrangements of these species relative to each

other on the DNA chain: see Fig. 3. We label them as PTC, TPC, PCT , CPT , TCP and

CTP . Due to the symmetry, some of them equally probable, i.e.,

PPTC = PCTP , PCPT = PPCT , PTPC = PTCP . (5)

Because the target is fixed at the site m, the probabilities for different configurations are

proportional to the product of segment lengths where the protein and the crowding molecule

can be found. It can be written as (see Fig. 3)

PPTC = PCTP = Am(L − m), PCPT = PPCT = Am2, PTPC = PTCP = A(L − m)2, (6)

where the normalization coefficient A can be found from
∑

i Pi = 1 for all six configurations.

Then one can easily calculate

PCTP =
m(L − m)

2(L2 + m2 − mL)
, PPCT =

m2

2(L2 + m2 − mL)
, PTCP =

(L − m)2

2(L2 + m2 − mL)
.

(7)
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FIG. 4. Average times to reach the target as a function of the obstacle mobility uob (in units of

s−1). Parameters used for calculations are: kon = 0.1 s−1, u = 105 s−1, koff = 10−7 s−1, the

position of the target is m = L/2, and variable DNA chain lengths L (in units of bp) as indicated

in the plot. Symbols correspond to Monte Carlo computer simulations, and the dashed curves are

theoretical predictions.

The overall search time is an average over all initial configurations presented in Fig. 3.

However, it is clear that the largest contributions to the search time will come from the

configurations where the crowding particle is found between the protein and the target,

such as TCP and PCT configurations (see Fig. 3). In these cases, the crowding agent can

block the protein from reaching the target. Therefore, for uob < u, we can approximate the

contributions to the search time due to blocking as

〈Tbl〉 ≃ PPCTTPCT + PTCP TTCP . (8)

The average blocking times from the initial configurations PCT and TCP can be estimated

as

TPCT ≃
(m/2)2

2uob

, TTCP ≃
((L − m)/2)2

2uob

, (9)

which are the average times required for the crowding agent to pass the target and make

the path open for the protein. For the crowding agent to do that they have to diffuse the
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distances m/2 or (L − m)/2 for the PCT or TCP configurations, respectively (see Fig. 3).

Substituting these expressions into Eqs. (7) and (8), leads to the total blocking time

〈Tbl〉 =
m4 + (L − m)4

16uob(L2 + m2 − mL)
. (10)

When the target is in the middle, m = L/2, this equation gives 〈Tbl〉 = L2/96uob, while the

blocking time is larger for the targets near the end of the DNA chain, m/L ≪ 1, where we

obtain

〈Tbl〉 ≃
L2

16uob

(

1 −
3m

L

)

. (11)

Finally, the total search time can be found as a combination of the blocking time and the

average search time for the system without the crowding particle,

〈T ob
0 〉 ≃ T

(0)
0 + 〈Tbl〉, (12)

where the explicit expressions for T
(0)
0 are known [17]. One should also note here that our

theoretical arguments are valid for all target positions as long as they are not at the end of

the DNA chain (m 6= 1 or m 6= L). In this case, the crowding molecule can never create

paths for the searching protein to slide directly into the target. The details of the search

dynamics in this case are discussed in the Supplementary materials.

The results of our theoretical calculations for the 1D search regime are presented in

Fig. 2 and Fig. 4, and excellent agreement is found in comparison with Monte Carlo

computer simulations. But the most important result from our theoretical arguments is the

understanding of the role of the crowding agent mobility. Slow crowding molecules (small

uob) significantly decelerate the search dynamics by blocking the sliding of proteins to the

target (see Fig. 4). Increasing the mobility (large uob) lowers the blocking ability, and

the search dynamics is quite fast (Fig. 4). Faster crowding molecules can move quickly

beyond the target, freeing the path for the protein to reach the specific site. If the mobility

of the crowding agent is low, then it will take a very long time before such path can be

created. The last result is counter-intuitive since one would expect many collisions between

the protein and the crowding agent that could slow down the search process. To understand

this we notice that if the protein and the crowding agent are sitting on the neighboring sites,

because of the high mobility of the crowding molecule it will move faster away, clearing the

previously occupied site. This process will eventually lead to the protein reaching for the

target.
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It is important to discuss our theoretical predictions for realistic situations using tran-

scription factors binding to their specific sites. It is known that DNA are heavily covered by

many DNA-binding proteins [1, 27]. It should block the sliding of transcription factors to

their targets, but because the mobility of many DNA-binding proteins is similar (u ∼ uob)

our theory suggests that this should not be a big problem. In addition, experiments indicate

that the search for transcription factors is taking place at the conditions where both 3D and

1D search modes coexist [13, 14], and this should lower the effect of the crowding. Further-

more, the search could be even faster because of the lower length of DNA that should be

scanned by the protein.

Conclusion. We present a theoretical approach that allowed us to explicitly investigate

the role of the crowding on dynamics of protein search for specific target sites on DNA. We

found that there are two important features of the search process that help proteins to avoid

the expected negative effects of the crowding. One of them is a mobility of the crowding

molecules on DNA, which increases the probability for direct sliding into the target. Fast

crowding molecules move away and clear the path for the protein motion to the specific sites.

Another one is a dimensionality of the search pathways. Increasing the contribution of 3D

binding to the target via the bulk solution decreases the influence of the crowding agents.

Our theoretical predictions are fully supported by extensive Monte Carlo computer simula-

tions. The proposed theoretical method provides a simple and convenient way of explaining

the dynamics of protein-DNA interactions using fundamental physical-chemical ideas. This

should lead to better understanding the mechanisms of complex biological processes.

The work was supported by the Welch Foundation (Grant C-1559), by the NSF (Grant

CHE-1360979), and by the Center for Theoretical Biological Physics sponsored by the NSF

(Grant PHY-1427654).

∗ tolya@rice.edu

[1] Alberts, B., et al. Molecular Biology of Cell 6th ed. (Garland Science, New York, 2014).

[2] A.D. Riggs, S. Bourgeois, M. Cohn, J. Mol. Biol. 48, 67 (1970).

[3] S. E. Halford and J.F. Marko, Nucl. Acid Res. 32, 3040 (2004).

[4] L.A. Mirny, M. Slutsky, Z. Wunderlich, A. Tafvizi, J.S. Leith, and A. Kosmrlj, J. Phys. A:

9



Math. Theor. 42, 434013 (2009).

[5] A.B. Kolomeisky, Phys. Chem. Chem. Phys. 13 2088 (2011).

[6] O.G. Berg, R.B. Winter, and P.H. von Hippel, Biochemistry 20, 20, 6948 (1981).

[7] O.G. Berg and P.H. von Hippel, Ann. Rev. Biophys. Biophys. Chem. 14, 131 (1985).

[8] R.B. Winter, O.G. Berg, and P.H. von Hippel, Biochemistry 20, 6961 (1981).

[9] D.M. Gowers, G.G. Wilson, G.G. and S.E. Halford, Proc. Natl. Acad. Sci. USA 102, 15883

(2005).

[10] G. Kolesov, Z. Wunderlich, O.N. Laikova, M.S. Gelfand, and L.A. Mirny, Proc. Natl. Acad.

Sci. USA 104, 13948 (2007).

[11] Y.M. Wang, R.H. Austin, and E.C. Cox, Phys. Rev. Lett. 97, 048302 (2006).

[12] J. Elf, G.-W Li, and X.S. Xie, Science 316, 1191 (2007).

[13] A. Tafvizi, F. Huang, J.S. Leith, A.R. Fersht, and L.A. Mirny, Biophys. J. 95, L1-L3 (2008).

[14] P. Hammar, P. Leroy, A. Mahmutovic, E.G. Marklund, O.G. Berg, and J. Elf, Science 336,

1595 (2012).

[15] A. Mahmutovic, O. G. Berg and J. Elf, Nucl. Acid Res. 43, 3454 (2015).

[16] L. Zandarashvili, D. Vuzman, A. Esadze, Y. Takayama, D. Sahu, Y. Levy, and J. Iwahara,

Proc. Natl. Acad. Sci. USA 109, E1724 (2012).

[17] A. Veksler and A.B. Kolomeisky, J. Phys. Chem. B 117, 12695 (2013).

[18] A.A. Shvets, M. Kochugaeva and A.B. Kolomeisky, to appear in J. Phys. Chem. B (2016).

[19] A. Marcovitz and Y. Levy, Biophys. J. 104, 2042 (2013).

[20] E.F. Koslover, M.A.D. de la Rosa, and A.J. Spakowitz, Biophys. J. 101, 856 (2011).

[21] A. Afek, J.L. Schipper, J. Horton, R. Gordan, D.V. Lukatsky, Proc. Natl. Acad. Sci. USA

111, 17140 (2014).

[22] M. Sheinman, O. Benichou, Y. Kafri, and R. Voituriez, Rep. Prog. Phys. 75, 026601 (2012).

[23] A. Tafvizi, F. Huang, A.R. Fersht, L.A. Mirny, and A.M. van Oijen, Proc. Natl. Acad. Sci.

USA 108, 563 (2011).

[24] A.B. Kolomeisky and A. Veksler, J. Chem. Phys. 136, 125101 (2012) .

[25] A. Esadze, C.A. Kemme, A.B. Kolomeisky, and J. Iwahara, Nucl. Acids Res. 42 7039 (2014).

[26] C. A. Brackley, M. E. Cates, and D. Marenduzzo, Phys. Rev. Lett. 109, 168103 (2012).

[27] H.-X. Zhou, FEBS Lett. 587, 1053 (2013).

[28] H. Flyvbjerg, S.A. Keatch, and D.T.F. Dryden, Nucl. Acids Res. 34 2550 (2006).

10


