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ABSTRACT

Indentation tests are performed on samples of Indiana Limestone
and Berea Sandstone under confining pressures ranging from 0 to 2500
psi. The force-displacement data from these experiments are analyzed
by comparing them to numerical results obtained for a simplified
theoretical model which assumes 1) rigid-perfectly plastic behavior,
2) a Mohr-Coulomb linear yield envelope, and 3) negligible 1lip
formation. In addition, indentation is assumed to be a quasi-static,
equilibrium process.

The two Mohr-Coulomb parameters cohesive strength (c) and angle
of internal friction (¢) are bounded by consideration of the
following two heuristic conditions:

1. The force-displacement curve generated by a perfectly rough
assumption must be an upper bound to the experimentally observed
curve,

2. The frictionless solution must be a lTower bound.

These two conditions restrict ¢ and ¢ to a narrow allowable region
in ¢-c space, and are applicable to more realistic yield conditions,

as well,



ACKNOWLEDGEMENTS
It is a pleasure to record my gratitude to Dr. John Cheatham for
his guidance and advice throughout the project. The financial
assistance by Dr. Phil Patillo and the Amoco Production Company is
greatly appreciated., Thanks go to Daan Hekma-Wierda for his excellent

sample preparation, and to Linda Anderson for typing the manuscript.



I1.

[1I.

Iv.

Table of Contents

Abstract
Acknowledgements
Table of Contents
List of Figures
Nomenclature

Introduction

Theoretical Background and Numerical Procedures

Failure Envelope

Equations in Axial Symmetry

Method of Characteristics Solution

Finite Difference Approximations

Numerical Solutions

On the Incompleteness of stress-characteristic solutions

Experimental Method and Observations

Apparatus

Data Acquisition

Repeatability

Experimental Results

Restriction of Plasticity Parameters
Method

Examples

Summary and Conclusions

References

Appendices

Page

ii

12
15
31
34
34
37
41
41
61
61
62
71
73
75



Figure
2.1

2.2

2.3

2.4
2.5-2.13
2.14
2.15

3.1

3.2
3.3,3.4
3.5
3.6-3.23
4.1

4.2a
4.2b

4.3

Al

A2

LIST OF FIGURES

Mohr-Coulomb yield envelope

coordinate systems

characteristic directions by Mohr's circle pole
a characteristic network

characteristic solutions for various geometries
pressure profiles for various angles ¢

rough vs. smooth pressure profiles

test apparatus

rock tray detail

tool profiles

data acquisition schematic

experimental force-displacement curves

ideal parameter restriction

result for Indiana Limestone

result for Berea Sandstone

Mohr-Coulomb predictions

system elasticity curve

typical dataset correction

14
19
29
30
35
36
38
40
42
63
67
69
70
76
78



NOMENCLATURE

C1,C2,C3 curve fit constants

c

c*

EsN

cohesive strength

an effective cohesion = ¢ + wtan ¢

tool displacement

force on tool

indices for numbering finite-difference mesh nodes

radial, axial, and circumferential directions in cylindrical
polar coordinates

confining pressure on the rock face

angle of tool face to the vertical axis

angle between the direction of maximum principal stress and
the radial direction

= /4 - ¢/2

characteristics to the stress equations

= :1—;—33 + c cotg, the distance from the yield envelope
apex to the center of the Mohr's circle

principal stresses

a normal stress

shear strength

angle of internal friction

an auxiliary function = %— coté o g



I. INTRODUCTION

Triaxial testing is currently the accepted method of determining
rock properties. Due to the tremendous effective confining pressures
under an indentation tool, and the difficulty with which such
pressures are achieved 1in triaxial testing, there is motivation to
study the problem of extracting these properties by an indentation
test. This thesis presents a method for determining certain rock
plasticity parameters.

Several assumptions are made in the analyses that follow:

1, The rock is rigid-perfectly plastic. No strain-hardening or
softening is allowed, and elastic deformations are negligible.

2. The yield condition is the Mohr-Coulomb Tinear envelope.

3. Lip formation at the surface is negligible, with regard both to
rock-tool interaction and to boundary conditions.

4, The theoretically correct load on the tool for a given set of
parameters is obtained by integrating the differential equations
of plastic equilibrium,

Assumption 4 inherently disregards consideration of a flow rule for
the material.

Since the Mohr-Coulomb condition has two parameters, the ideal
result of this study would be to specify a unique value for each as a
result of analyzing an indentation test. It is known, however, that
this yield condition is only an approximation to real behavior. The
goal of the thesis, then, is to develop a method of restricting the

two parameters in some systematic way.



II. THEQRETICAL BACKGROUND AND NUMERICAL PROCEDURE

Failure Envelope

For a rigid-plastic material, the criterion for plastic flow is
known as the yield condition. Rocks are among a class of materials
whose yielding is influenced by hydrostatic pressure. Coulomb (1773)
introduced the simplest description of such a behavior, proposing that

the shear strength varies linearly with mean stress (see Figure 2.1):
T=¢ + q]tan¢ (1)

where

T 1is the shear strength

¢ is the cohesive strength

%, is a normal stress

¢ s the angle of internal friction.
Note that sign convention here and throughout the paper is positive
for compressive stresses.

Other yield surfaces have been proposed in order to more closely
model materials of this class - most notably the modified von Mises
criterion and a parabolic yield envelope - but the Coulomb criterion
is used exclusively in the present study since 1) it is easy to
analyze for the proposed solution methods and 2) linear regions
represent fairly well the behavior of rocks for compressive mean

stresses (Gnirk and Cheatham [10]). In fact, tensile mean stresses

are not encountered in indentation testing, so it is impossible with



MOHR-COULOMB YIELD

ENVELOPE

FIGURE 2.1
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this method to deduce the shape of the failure envelope in the tensile
region.

The Coulomb yield condition is often combined with Mohr's stress
representation, so that yield is said to occur when the Mohr's circle
contacts a failure envelope. Stress states represented by circles
inside (not touching) the envelope result in rigid response, and

circles outside of this envelope are not allowed.

Equations in Axial Symmetry

It has been shown (Harr [8]) that the solution to problems of
limiting equilibrium reduces to the integration of the differential

equations of equilibrium

aorr L1 aTrA+ arrz . (or - O'A) 0

or r aa .74 r

arr)‘*‘l 80A+ Brz)\+2'cr)‘_ 0 2)
or r o9i oz r

a'rrz +.}_ 3TZ>‘ . aoz N TPZ o

or r ai az r

combined with the stress relations given from the yield condition

(Mohr-Coulomb in this case):

0. = o{l + sin¢ cos28) - ¢ cot ¢
a, = ol - sin¢ cos26) - ¢ cot ¢ (3)
.. = osing sin2e .

rz



COORDINATE SYSTEMS*

2

* after Karafiath and Nowatski [2]

FIGURE 2.2



6

Axial symmetry requires that the shear stresses rnand Ty vanish,

so that in an arbitrary r-z plane, equations (2) reduce to

30, . L . (cr - OA) o
ar az r
(4)
9Tpy N 89, . rz _ 0
or oz r

A solution to the equations (3) and (4) depends not only on defining
appropriate boundary conditions, but also on a further assumption
known as the Haar and von Karman hypothesis (Cox, Eason, and Hopkins
[12]), in which it is assumed that the circumferential stress 9, of
equation (4) is equal to the minimum principal stress 03.
Specifically:

o + g .~ 0O

. = 5 z _ [( r 5 2)2 + TEZJI/Z (5)

Cox, et al [12] suggest that stress distributions which agree with
this hypothesis are appropriate to the dindentation problem, but it
should be recognized that other plastic stress states exist which
permit axially symmetric flow. The solutions of the present study
rely implicitly on the Haar and von Karman hypothesis.

Substitution of equations (3) and (5) into (4) yields

38

; a0 . .
(1 + sing cosZe)ﬁ- 20 sing s1n26$

. 26 . . 90
+ —_— —
20 sing¢ cos26 = + sin¢ sin2e 5z

+ —rl,-[o sing(l + cos26)] = 0
(6a)



and

38

. . a0 .
sing s1n29? + 20 s1r'14> cos296 e

28
oz

+ (1 - sin¢ cos28) -g—;’+ 20 sin¢ sin2e

+%[cs1'n¢ sin2e] = 0 (6b)

Method of Characteristics Solution

In theory, it is possible to solve equations (6) based on a
common numerical procedure such as a finite-difference
approximation. There is, however, a further refinement which leads to
simpler equations and quantities with physically obvious meaning: the
method of characteristics (see Abbott [7], Smith [17]).

In this method, directions are sought along which the integration
of the partial differential equations transforms to the integration of
an equation involving total differentials only. Since there are two
equations, two families of curves will result which satisfy these
directions.

Multiplying the first of equations (6) by sin (8% p) and the
second by ~cos(e t u), dividing through by t cos¢, and adding, the

following pair of equations is obtained (u= /4 - ¢/2):

cos(e + ) —g|§+ sin(e + y) -gg

+1
+1

20 tan¢ cos(6 + y) —gFe

(7)

+1
+1

20 tan¢ sin(6 + ) —2—29

% di" sin(6t y) - sin(e ¥ wl =20



A clever change of variables proposed by Sokolovski

equations (7) into characteristic form.

x=%cot¢mg
E=xt 90
n=x- 6

equations (7) become

dE 3t _ . _ [sin(6 - ) - sin{(e8 + u)]

srrtan(et ) Z=a-= 2r Cos(68 * p)

an an_, - -Lsin(6+ u) - sin(e - w)]

5 + tan(e - “)'32 =b 2r cos{6 - n) :
Along with the chain rule

dg =-§§ dr + gg dz

dn = —g;,'-‘ dr + —:ZD dz
the system can be written in matrix form:

- - .o —

1 tan(e+ ) O 0 -g§ a ]

0 0 1 tan(e- | |22 b

dr  dz 0 0 2 de

0 0 dr dz 2 dn

Letting

8

[16] brings

(8)

(9)

(11)



The solution of the characteristic slopes requires that the
determinant of the coefficient matrix in (11) be zero (Abbott [7],

p. 72):

dz2 - [tan(e - p) + tan(e + p)ldr dz
+ [tan(e - p)tan(e + p)] =0 (12)
Equation (12) 1is a quadratic equation for g%, the slope of a
characteristic line. The system (11) is classified as hyperbolic,
parabolic, or elliptic, depending on whether the discriminant of the
quadratic formula for (12) is positive, zero, or negative,

respectively. In this case, the discriminant is
[tan(8 - y) - tan(6 + W% 50 (13)

and, 1in fact, 1is equal zero only when ¢ = n/2, which is
meaningless. The system of equations (11) is therefore hyperbolic for
the range of ¢ considered. Solving equation (12) yields the two

real, distinct slopes associated with the characteristics ¢ and n.
92 | - tan(et (14)
dr Esn =

These two slopes may also be seen by use of the Mohr's circle pole, as
in Figure 2.3. In the present case, the pole P is found by the
intersection of a Tine through the minimum principal stress 03,

inclined at an angle 8, with the stress circle. This 1is an
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CHARACTERISTIC DIRECTIONS BY
MOHR'S CIRCLE POLE

g-direction

ay

n-direction

FIGURE 2.3
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intuitively useful concept, since the lines drawn from the pole to the
points of tangency to the yield envelope map directly into physical
space as the characteristic slopes.

Setting all numerators of Cramer's solution to zero, the system
(11) gives ordinary differential equations for the variation
of £and n along the characteristics. The fundamental quantities of

interest, however, are oand 6. Using the relations (from equations

(8)),

o=c exp[(&g + n)tang¢]

g = £ 5 n (15)
the characteristic equations are given as

dz = dr tan(e + )

do+ 20 tan¢ do (16a)

+F°[sin¢dr + tan¢(l - sing¢)dz] = 0
for the k-characteristics, and

dz = dr tan(6 - )

do - 20 tan¢ do : (16b)

+F°[sin¢ dr - tan¢(l - sing)dz] = 0

for the n-characteristics.
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Equations (16) are a generalization of the so-called Kotter's
equations, which describe the variation of plastic stress along slip-
lines in plane strain. Given the proper boundary conditions, these
equations describe compietely the values r, z, o, and & along their

respective characteristic curves.

Finite-Difference Approximation to the Characteristic Equations

Since the characteristic equations (16) involve only total
differentials, they are quite amenable to approximation by a finite-
difference method. An arbitrary portion of a finite characteristic
net is shown in Figure 2.4, showing a node-numbering system for the
intersections of £ and n characteristics, In this study, a simple
backward-difference approximation is used. Thus equations (16) are

replaced by the approximations

21, 7 Biger T Mg 7 Mg )ten(ey g )
(17a)
. . o= O . + 20. . .. o= 8. .
%,5 " %,j-1"% 2%,5-1 a8 5 - 8 5 )
O . B
+ __l..’_‘]_.i_= 0
i,5-1
for t-characteristics, and
24,5 " Zie1,5 = (Fi,5 = Py gltan(e ) 5 - )
%57 %-1,j " 201-_1’j tan ¢( ei,j - ei-l,j) (17b)
Ui-l,j A

+——=2d =9
i-1,j
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for n=characteristics where

A =sinari ) - tan¢(1l 'Si"@(ZiJ -

7 Tk, 2i-1,5)

B - ri,j-l) + tan¢(l - sin¢)(zi’j - Zi,j-l)'

s1n¢(ri’j

The first equations of (17a), (17b) constitute two equations in two

unknowns, such that at the i,jth node (of Figure 2.4, for example):

21,5 7 %5 T %Ly T g

(18)
or
Zi,5 = %,-1 alri g - ny,a)
where
o = tan(ei’j_l + q)
® = ta"(ei-l,j -
and
"5 7 i1,y 2,51 AT, 5e1m %1, (o - o) (19)
Likewise, the second equations are solved algebraically to yield:
.3 T 0,50, (- tande g -8 )
- g 0 =P e .+ 1 (20)
i=1,7 i.j-1 *i-l,j ri,j-l i,j-1 i-1,j



14
A CHARACTERISTIC NETWORK

n -characteristics
(j = constant)

-1, j-1

.i"]-s J

i-1, j+l

i,j+1

itl, j+1

g-characteristics
(i = constant)

FIGURE 2. 4
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and
%,5 = 19,51 7 %1, * 20andloiy 5 %1 5 % 501 8,51
A . A ag. . B
i-1,] i,j-1
optodsd Y/C2tang(o; 1 = + o5 . )] (21)
ri-l,j ri,j-l i-1,] i,j-1

The preceding equations (18)-(21) are known as recurrence relations.
For a given i,j node in the mesh, the values of r, z, o, and 6 are
completely determined if they are known at the previous i- and j-
characteristics. Characteristic meshes can now be constructed to

provide such information along the problem boundaries.

Numerical Solutions

Procedure:

The implementation of a numerical solution now depends on a
proper description of the boundary conditions at the free surface and
at the tool-rock interface.

Along the free surface, for any choice of location r (z = 0), the
boundary conditions are given by the fact that confining pressure
represents a minimum principal stress. Since 1ip formation is
neglected, the direction, 8, of the maximum principal stress is

=20 (22)

The value of ¢ on the free boundary is given by

_ccotp+ w
"1 - sing (23)
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Thus, for a given location, all four variables of the characteristic
equations are specified.

At the tool-rock interface, o 1is unknown. Indeed, it is the
quantity to be established. A value for 8 1is given by the particular
assumption made regarding friction along this boundary. Two types of
frictional behavior are considered here: 1) a perfectly lubricated
surface, in which the stress at the interface must be a (maximum)

principal stress, then

8=8 (24)
or 2) a perfectly rough surface, in which the interface must itself be
a characteristic line

8= B+5 - h (25)

Solutions to indentation problems are generally obtained by
progressing from the free surface boundary to the tool-rock
interface. With reference to Figure 2.5, a description of a

representative solution procedure for a cone is described:

1. The problem geometry is known. Assume the farthest extend of the
slip line field and divide the boundary nodes equally into this
length.

2. Now x, z, o, and ® are known at the boundary nodes. This is the
so-called Cauchy problem (all values known along a non-

characteristic line).
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3. Using the recurrence relations above, find all values at the nodal
points in the passive zone.

4, Compute 6 and o at the singular point where many i-
characteristics converge (equal increments of ®& through the known
total change in 9). Note there is an analytical solution at this
point:

o= coexp[2tan¢ A8], (26)
where 9, is the value on the free surface.

5. Use recurrence relations to sclve the remaining radial zone.

6. Because 6 1is known at the rock-tool interface, the active zone
corresponds to the so-called mixed boundary value problem (some
values known on both characteristic and non-characteristic lines).
After a boundary point has been solved, the standard recurrence
relations solve the rest of the nodes along that particular i-
characteristic.

7. The field is now complete. The final node of the active zone
should be coincident with the tip of the cone. If it is not, the
assumed extent of the slip line field must be adjusted until the
final node and the wedge tip are at the same location (within some

tolerance).

Results:

The above procedure is carried out on the Mechanical Engineering
Department's Celerity C-1200 computer (see Appendix B for programs).
The most obvious result is the construction of a characteristic net

(or mesh) given by the r, z locations of each nodal point. Some of
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these nets are plotted in the following figures for various conditions
of tool geometry and friction conditions. The mesh boundaries are
also the boundaries of the plastic region, with all material outside
the boundary assumed rigid.

Notice (Figures 2.11, 2.12, 2.13) that the assumption of a
perfectly rough interface introduces a "false cone" of rigid material
underneath the punch when the cone half-angle 1is greater than 45°.
The reason for this phenomenon 1is the condition that two
characteristic lines must meet at the axis of symmetry at an angle not
less than w/4 - ¢/2. Since real characteristic lines are slightly
curved in this region, the rigid cap of material should also have a
slight curvature. A close approximation, however, is to assume that
the region is a true cone of half-angle n/4 - ¢/2 (this satisfying
automatically the condition at the axis of symmetry).

The phenomenon of mesh overlap - seen to a slight extent in
Figure 2.5 and more pronounced in Figures 2.10, 2.12, and 2.13 - is
not explained. Clearly, the method of characteristics does not allow
such an occurence, since it implies a physically inadmissible
multivalued stress state. Karafiath and Nowatski [2] find that
overlap is more likely to occur for sharp tool angles than for blunt,
but offer no insight as to the causes. Since the resulting pressure
profiles from these solutions compare well to those of non-overlapping
solutions, the results are taken to be correct. Still, further study
into the phenomenon is indicated, particularly to identify whether the

problem is numerical or physical in nature.



FIGURE 2.5
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FIGURE 2.8
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FIGURE 2.9
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The variable which is not shown in the characteristic nets is o,
but it is extremely important since it contains the stress
quantities. Specifically, the normal pressure, Gys  ON the punch face

of a smooth tool is given by

g = ol + sing) - ¢ cot ¢ (27)
(by hypothesis t = 0)
whereas on the face of a perfectly rough tool,
o, = ol -~ sin¢ cos2y) - ¢ cotd
(28)
T= ¢gsing sin2y
where p= /4 - ¢/2.
In order to compare more easily the rough and smooth interfaces,

it is useful to speak of an effective pressure on the surface of the

rough tool. This pressure would consist of the actual normal pressure

% and an equivalent normal pressure %, eq which would result in
b

the same upward force as the shear stress 7. Thus, the equivalent

pressure, ¢ should be such that

n,eq °’
T COSRB = oh,eq Sing
or
%.eq ° t/tanB (29)
thus

n,effective - % ¥ %,eq"
A few of these pressure profiles are shown in the following
graphs as a dimensionless pressure P/c*, where c* = ¢ + w tan¢ is an

effective cohesion, vs. r/ros where o is the radius at the rock
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surface. Figure 2.14 shows the effect of increasing internal friction
angle, and in Figure 2.15 it is seen that the rough interface predicts
higher effective pressures (and thus, when integrated, higher overall
forces) than the smooth case - an intuitively obvious fact.

Finally, it is noted that geometric similarity holds for flat
punches on the surface and complete cones, but not for blunt cones.
Solutions can be obtained for various values of ¢ and then scaled to
the problem at hand when similarity holds, but for the other cases,
new solutions must be computed at every depth of the indentation. The
solution of Figure 2.9, for example, cannot be achieved by any

“scaling" of Figure 2.8.

On the incompleteness of stress-characteristic solutions

Strictly speaking, the solution obtained by the stress
characteristic networks is incomplete. Although such a field (if it
can be found) may be completely determined by the stress boundary
conditions, the force on the punch thus obtained is neither an upper
nor a lower bound to the true, complete solution. The reasons for
this are grounded in the theorems of 1imit analysis, and the fact that
kinematical considerations are inherent to perfect plasticity.

The theorems of 1imit analysis are restated by Chen [14] as

follows:
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Theorem I (Lower Bound Theorem) - If an equilibrium
distribution of stress covering the whole body can
be found which balances the applied loads on the
stress boundary and is everywhere below yield; then

the body will not collapse,

Thus, to show that the solution obtained by stress characteristics is
at Teast a Tower bound, it 1is necessary to extend the characteristic
field into the rigid material below the plastic region, and determine
that the yield condition 1is nowhere violated (statically admissible
stress field). A method after Bishop is used by Cox, Eason, and
Hopkins [12] to extend the characteristic field for the case of the
flat punch, but this method would be extremely difficult in the
present case, given the lack of simple geometry which exists for the

flat punch.

Theorem II (Upper Bound Theorem) - If a compatible
mechanism of plastic deformation is assumed which
satisfies the condition of no plastic work on the
displacement boundary; then the loads determined by
equating the rate at which external forces do work
to the rate of internal dissipation will be either

higher or equal to the actual limit load.
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Using the stress characteristics to find this kinematically admissible
velocity field of Theorem II requires a further assumption that the
material behaves according to an associated flow rule (stress and
strain characteristics coincide). In fact, many geologic materials
exhibit non-associated flow characteristics (Desai and Siriwardane
[(15]). Furthermore, Chen [14] shows that proofs of Theorems I and II
are a direct consequence of the associated flow assumption.

Given the difficulty of these limit analyses for all but the
simplest geometries, Cox, et al [12] conclude their paper with the
suggestion that the construction of complete solutions be omitted in
problems of this type, advice which is undertaken here. It is noted
in passing that the axisymmetric smooth flat punch solution is

complete.
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ITI. EXPERIMENTAL METHOD AND OBSERVATIONS

Apparatus

Indentation testing is carried out in the Mechanical Engineering
department's Rock Mechanics Lab. Two kinds of rock are subjected to
the various indentation experiments: Indiana Limestone and Berea
Sandstone. The main purpose of these tests is to obtain a record of
force vs. displacement for a variety of experimental conditions. Only
three conditions are varied: rock type, tool profile, and confining
pressure,

The main apparatus for these experiments is a large, thick-walled
pressure vessel fitted with a hydraulic ram to force the tool into the
rock (see Figure 3.1). The interior of the vessel holds a steel box
containing a relatively large (4" x 3 1/2" x 12") rectangular rock
sample. In order to obtain new testing sites on a particular rock
sample, translating rods are brought out through O-ring seals in the
thick end plates of the vessel, and are moved via a motor-driven power
screw arrangement attached to one of the rods. Usually, it is
possible to fit eight tests on a single rock sample.

The application of a confining pressure on the rock face is
achieved by pressurizing the hydraulic oil in the vessel interior with
a Sprague air-operated pump (oil pressure : air pressure = 150:1).
Since they are permeable to the surrounding oil, the rock and
surrounding Castone compound are covered with a silicone putty sealant
(commonly known as "silly putty"), which forms a barrier between the

0i1 and the dry rock (see Figure (3.2). Without this seal - or if the
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seal integrity is lost - the oil quickly forces its way into the rock,
reducing the pressure differential across the rock face to zero. The
(undesirable) result is an effectively-atmospheric confining pressure,
with correspondingly brittle rock behavior. The present vessel can be
safely operated at interior pressures of up to 10,000 psi, although no
tests are run above 5,000 psi in this study. To avoid the possibility
of injury from explosion, tests are run remotely from the next room.
Hardened steel tools of various profiles (see Figures 3.3 and
3.4) are placed in a fitting on the end of the ram and held in place
by a set screw. In general, these tools can be of any shape, but
tools in the present study are simple profiles amenable to analysis.
The tool ram is part of a hydraulic piston, which is pressurized by a
precision hand-operated Ruska pump during an indentation. This pump
Tine is the only hydraulic connection between the testing room and

operating room.

Data Acquisition

Since the testing vessel is operated remotely, various
transducers are used to collect the relevant data (see Figure 3.5).
These include: strain gages mounted on the ram to measure force, a
linearly variable differential transformer (LVDT) to measure
displacement at the top of the ram, a wire-wound potentiometer to
determine the position of the rock tray within the vessel, and a
strain gage pressure transducer for confining pressure measurement.
In the case of the two strain gage devices and the LVDT, an excitation

voltage 1is supplied by a Hewlett-Packard 62378 triple output power
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supply. Signal voltages (or potentiometer leads, as the case may be)
are brought into a Hewlett-Packard 3421A Data Acquisition Unit, which
measures and digitizes the voltages/resistance. A controlling
computer, in the form of an HP-85, sends software commands to the
3421A, reads in the digitized data, and makes necessary calculations
in order to translate the transducer signals into meaningful physical
quantities. In addition, the plotting capabilities of the HP-85 are
used to generate a simultaneous force-displacement curve on the screen

as a test 1is conducted - a valuable indicator of test progress.

Repeatability

Variation of material properties between samples is of concern
when testing “"natural" materials such as rocks, since there is the
possibility that results will be more strongly affected by such
variation than by known experimental conditions. Although no rigorous
analysis of sample variability is performed for this study, the
empirical evidence suggests that the rocks under consideration display
remarkable consistency in behavior, Figure 3.6 shows identical tests
performed on two different samples of Indiana Limestone. Obviously,
there is close agreement between the two curves, giving some measure

of confidence in the results that follow.

Experimental Results

The following graphs present the primary (corrected) experimental
data for tests using axially symmetric tools. Experimental variables,
namely rock type, confining pressure, and tool geometry, appear with

each plot (also a dataset number "nc" where n is the test number).
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For the cases in which confining pressure is varied widely
(Figures 3.8, 3.9), the zero-pressure tests clearly exhibit brittle
behavior, as shown by the jagged, unpredictable curves. This response
corresponds to the formation of large chips around the testing site
which become completely separated from the intact rock. It is also
clear that strength generally increases with increased confining
pressure,

Note the abrupt change in slope in Figure 3.10 for the .1-45-90
cone. Since the 45° section of this tool has a depth of 0.1", the
fact that the slope change occurs slightly before 0.1" displacement
indicates that some 1ip formation is taking place, contrary to the
assumption made for numerical solutions.

Tests shown in Figure 3.17-3.23 are carried out to extremely high
force in order to observe the effect of an initial section. Thus, it
is postulated that the response of the .1-45-90 cone 1in the
displacement region > 0.1" (Figure 3.17) should correspond to the
response of the .183-90 cone from zero displacement. In fact, the two
curves (shifted by the 0.1" initial section) do not agree well except
that the final slopes are nearly equal after a large "transition
region". There is better agreement for the case of Berea Sandstone
(compare Figures 3,20 and 3.21), but the transition region is still
fairly large. Computation of characteristic nets for the dual-angle

tools, not performed here, may provide some insight to this behavior.
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IV. RESTRICTION OF PLASTICITY PARAMETERS

Method
For a particular problem geometry, there exist now both a
numerical solution and an experimental result. The experimental
result is a single number: the force on the punch. The numerical
solution, however, consists of a dimensionless pressure profile,
P/c*. This profile can be integrated using a combination of the
trapezoidal rule and the theorem of Pappus-Guldinus (see Appendix B),
to yield an "effective area", F/c*, which gives a force on the tool

for some choice of c*.

If the material under consideration were to behave exactly
according to a Mohr-Coulomb failure law, and 1ip formation could be
neglected, and the interface were either perfectly rough or
frictionless, then at every point in the indentation, the value of c*
necessary to equate predicted and actual force would be constant.
This is not the case.

Consider a two-parameter space, as in Figure 4.2. For a given
indentation problem, the values of c¢* and ¢ are bounded by the
following two conditions:

1. The force-displacement curve generated by the perfectly rough
solution must be an upper bound to the experimentally observed
curve.

2. The solution calculated for the frictionless interface must be a

lower bound to the experimental curve.
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These conditions imply that for a given ¢, constant, and a given

depth of indentation c* is restricted by

F .
c* | >.r§§g§§lmgﬂE (lower bound for c*) (30)
¢ rough
and
Fex eriment
c* | < 2* (upper bound for c*) (31)
¢ smooth

Furthermore, since the proposed yield condition is, in general, not
equal to the actual, equations (20), (21) constitute only local Tlower
and upper bounds. It is necessary to check these bounds at every
depth of indentation to find the maximum (global) lower bound and the
minimum (global) upper bound for a given ¢. When this procedure has
been carried out for each value of ¢, the upper and lower bound
curves should envelope a (hopefully small) area of ai]owab]e ¢-c*

existence. The smallness of this area is an indication of the
accuracy with which the proposed yield surface corresponds to the
rock's actual yield condition. Figure 4.1 shows one such ideal result
for a hypothetical two-parameter yield condition, the parameters given

by A and B.

Example 1: Indiana Limestone, 2000 psi confining pressure, .09-45-
cone (test 8c).
From the test curve, the following values are obtained at the

dimensionless depth d/r:
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s E(Ibf)
0.5 860
1.0 1330
4.0 4070

Program force.c is used to integrate the pressure curves for this tool
at several values of ¢ for each of the above depth ratios. The

smooth case gives for F/c*:

Table 4.1
d/r
rad 9.5 1.0 4.0
0.1 .0677 .0884 .0271
0.2 .0956 .124 .365
0.3 .142 .182 .512
0.4 .221 .283 .756
0.5 372 474 1.20
0.6 .680 .861 2.05
0.7 1.40 1.76 3.95
0.8 3.33 4,15 8.81

According to the above method, it is necessary to find the
minimum c* allowed at each depth increment for a particular value
of ¢: the global minimum for c¢* 1is then the minimum of these

values. For example, at ¢ = 0.4
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* .
cmax,0.5 = 860/.221 = 3891 psi
* _ _ .
Chax,1.0 - 1330/.283 = 4700 psi
* _ _ .
Cmax,4.0 = 4070/.756 = 5383 psi

The minimum value of C*max is thus 3891 psi. If this process is
performed at each value of ¢ (0.1 to 0.8), the following results are

. *
obtained for c max "

Table 4.2
¢ (rad) C*max (psi)

0.1 12703

0.2 8995

0.3 6056

0.4 3891

0.5 2312

0.6 1265

0.7 614

0.8 253

The rough case is treated analogously, giving the following

values for C*min (take the maximum of all depths):
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Jable 4.3
¢ (rad) C*min (psi)
0.1 10900
0.2 7470
0.3 4850
0.4 2995
0.5 1720
0.6 910
0.7 430
0.8 175

It is notable that the critical depth/radius ratio for the rough case
is 1.0, not 0.5. Tables 4.2 and 4.3 are the points on upper and lower
bound curves, respectively, for c* plotted versus ¢. This plot is
shown in Figure 4.2a. Note that while the c-¢ pairs are, indeed,
restricted to a narrow band, each parameter may still take on a rather
large range.

Example 2: Berea Sandstone, 2500 psi confining pressure, .1-45-90

cone (test 48c).

Table 4.4 and Figure 4.2b show similar results.
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Table 4.4
¢(rad) C*nin(psi) C*nax (PS1)
0.1 22210 23150
0.2 15160 16400
0.3 9890 11060
0.4 6110 7090
0.5 3520 4220
0.6 1880 2300
0.7 900 1120
0.8 370 470

Although these results mean that the rock plasticity parameters
are not uniquely specified (on the surface a negative resuit), they
are in fact the correct results for the Mohr-Coulomb envelope. If one
is restricted to a linear envelope, there exist many choices of this
straight line which could be used to approximate a "real" failure
envelope, and due to the fact that the rough and smooth predictions
diverge widely from the observed curve as indentation progresses, all
of these choices will envelope the test results. Figure 4.3 shows
this divergence for a particular chioice of ¢ = 0.5 as applied to the
curve of the example (test 8c). Even for this arbitrary choice of ¢,
the predictions are not too bad. Apparently, the rough case more
closely approximates the true curve - a result which is expected. The
choice of a finite coefficient of friction would, of course, fall
somewhere between the two curves, but would not be expected to resolve

the ambiguity in the choice of ¢ and ¢.
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V. SUMMARY AND CONCLUSIONS

Laboratory tests are conducted on samples of &ndiana Limestone
and Berea Sandstone by indenting them with axially symmetric steel
tools of various profiles. In order to achieve plastic (rather than
brittie) behavior, confining pressures of up to 2500 psi are applied
to the face of the sample. A record of force vs. displacement is
obtained for each test. The goal of the thesis is to use the results
of such a test to determine the parameters of a particular proposed
yield condition.

In the present case, a Mohr-Coulomb linear yield envelope is
chosen for simplicity of analysis. Further, the rock-tool interface
is regarded as either frictionless or perfectly rough, and 1ip
formation at the surface is neglected. The differential equations of
plastic equiiibrium are integrated for these assumptions at various
values of ¢, the angle of internal friction. The ultimate result of
this integration is an effective area F/c* for each value of ¢ (F is
the total force on the tool; c* - the effective cohesion - contains c,
the cohesive strength). Since the true force is known by experiment,
this effective area is used to establish bounds on c* at a particular
value of ¢, wusing the condition that the frictionless and perfectly
rough numerical solutions must everywhere envelope the experimental
curve,

As a result of this method, the Mohr-Coulomb parameters are
confined to a narrow allowable region in ¢-c* space, rather than
uniquely specified. It is concluded, therefore, that the Mohr-Coulomb

yield condition is a poor approximation for the entire yield envelopes
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of these rocks, even though it may be an acceptable model in certain

regions of mean stress, The narrowness of the allowable regions,

however, indicates that plasticity parameters can be adequately
restricted merely by consideration of perfectly rough and smooth
interfaces.

There exists from this study a good database with which to
compare other theoretical models. The general method outlined in
section IV provides a means of bounding plasticity parameters for any
such proposed yield envelope. This thesis, then, provides a base for
the future work suggested below:

1. Propose a parabolic yield condition. It is amenable to the method
of characteristics, contains only two plasticity parameters, and
much more closely approximates "real" envelopes over all ranges of
mean stress.

2. Construct characteristic nets for the dual-angle tools, since they
may provide more restrictive conditions to the plasticity
parameters.

3. Analyze the transition region between angles of a dual-angle
cone. 1 and 2, above, may provide considerable insight here. Lip
formation may be an important component of the transition.

A method of characteristics solution to the parabolic yieid
condition can be substituted almost directly into the programs
provided by this thesis, and is the single most important improvement
to make. Hopefully, such a refinement will 1lead to a very small
allowable region of parameters, in which case the extraction of

triaxial data from an indentation test is complete.
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APPENDIX A

CORRECTING FOR SYSTEM ELASTICITY

The raw test data for an indentation test consist of a force, a
displacement, and a time for each force-displacement pair. Since the
time measurement lags the recording of force and displacement by a
constant delay, it may be considered to be without error. The force
is subject to typical strain gage errors, but since the gages are
mounted immediately above the tool, the measurement is not subject to
any systematic bias (such as friction).

The displacement reading, however, contains errors associated
with "system elasticity". In order to determine the extent to which
this elasticity is important, a test was performed on a steel block
using a large, (1/2" x 1/2") flat tool (see Figure Al, solid curve).

The non-linear part of the loading curve at low loads is due to
the suspension of the rock tray. The tray has a clearance from the
vessel floor to facilitate motion along the length of the vessel. An
application of small force (about 200 1bf) closes the clearance, after
which the tray is far more rigid.

Even after the tray clearance closes, there 1is noticeable
displacement with increasing load, only a negligible portion of which
is due to compression of the steel block. In other words, the
displacement measurement contains a systematic bias throughout the
loading range.

Correction of the raw data curves is simple in theory: fit a

curve to the elasticity test (steel block) and subtract displacements
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from the raw data. The practicalities of curve fitting, however, made
the search for a good fit difficult. A further problem is that, due
to the nature of the curve, it is easier to fit the force to
mathematical functions of displacement rather than vice-versa, but
these functions are usually not (conveniently) invertible to yield
displacement as a function of force. After a long search through
polynomial, exponential, logarithmic, and power-curve basis functions,
one was finally found that adequately represented the displacement as
a function of force (see Figure Al, dashed curve):

(C

+ C4F)
. 3

2

where

o
1]

displacement in inches

and

F = force in pounds.

The three constants for a least-square fit are

€, = 1.41884 x 1074
C, = 0.62032
C3 = -8.3744 x 1070

These constants were found using the SPEAKEZ command MULTIREG applied
to the loading portion of the TRAY3 data set. All corrected datasets
use this curve to make displacement corrections. A typical dataset
correction is shown in Figure A2. If the rock were truly rigid, the
corrected unloading part of the curve would be a vertical 1line.

Finite elasticity would result in a slight left curvature - somewhat
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like the raw data shown. The slight right curvature of the unloading

in Figure A2 is due to overcorrection for elasticity at certain force

levels.



Program

"TESTE"

“CORRECT"

“GPLOT"

"cone,c"

"bluntcone.c

“force.c"

80

APPENDIX B

COMPUTER PROGRAMS

Computer

HP-85

HP-85

HP-85

Celerity

Celerity

Celerity

Purpose

main testing program
controls HP-3421A files data
points

applies system elasticity
curve fit to raw data

reads and plots a dataset
solve the characteristic

net for the cone indentation
problem, calculate pressure
profile

characteristic net and
pressures for a flat-ended cone
obtain F/c* for a given

pressure profile



10
20
30
40
50
&HO
70
80
0
100
110
120

PROGRAM TEST6

' MAIN TESTING FROGRAM
OFTION BASE 1
REAL POLFO,DO.TOLF1,F1,D1,T1
REAL Ad,Rb,AS,AF,V3I,V4,V5,V6,V7,VB,R?
REAL X (500, 3)
! (force.displacement,time)
DIM N$[&1,D$L83,R$L20],C#L35113
INTEGER I,N,I2
CLEAR
t ...here are the calibration constants...
FO=5789010 ! psi/vrel
TO=5.69957 ! ohm/inch

130 DO=1.2308% ! inch/vrel

140

FO=15750000 ' Ibf/vrel

150 !

160 ' ... zeroing routine

170 DISF "SET ALL INSTRUMENTS TO ZERO, THER HIT CONT"
180 FAUSE

190 CUTFUT 709 ;"FIRA1ZON4LSZ-8;T3"

ENTER 709 § V3,V4,V5,V6,V7,V8
QUTFUT 709 ;" CLS9"

OQUTFUT 709 3 "F3RIZZON4TZ"
CLEAR

ENTER 709 3 R9

! set up plot axes now

GCLEARR

SCALE -.03,.23%,-500,8300

AXES .05, 1000

LDIR O

300 LORG 6

310 CSIZE =

320 FOR S=0 TO .2 STEF .0S

330 MODVE S,-100

I40 LABEL §

350 NEXT S

360 LORG 8

370 FOR 5=0 TO 8000 STEP 1000
380 MOVE 0,8

390 LABEL S/1000

400 NEXT S

410 !

420 ON KEY# 1," RAM" GOTO S20
4370 ON KEY# 2, "ROCK" GOTO &20
440 ON KEY# 3,"FRES" GOTO 720
450 ON KEY# 4,"FORCE" GOTO 820
460 ON KEY# 5,"Z RAM" GOTD 920
470 ON KEY# B, "BEGIN" GOTO 970
480 ¢

490 KEY LABEL

S00 GO0TO 500 ! waiting

510 ¢

S20 ' ... read ram position ...
§30 DUTPUT 709 ;"CLS8"

540 OUTPUT 709 ;"FIRALZON4TI™

81
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980

FI0

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100

ENTER 709 3 AB
D1=(A8-V8) /V74DO
KEY LABEL

DISF USING 590 ; Di

IMAGE ///,"RAM FOSITION,= ",MD.DDD

GOTD S50

...place rock correctly

OUTFUT 709 ;"CLS9"

OUTPUT 709 ;"F3IR2ZONATLY

ENTER 709 : A9

T1=CA9-R /TOQ

KEY LABEL

DISF USING 690 ; Ti

IMAGE //,"ROCK POSITION = “",MD.DD
5OTO &S0

...get up to pressure

QUTFUT 709 ;“"CLS4"

OUTPUT 709 :"FIR-1ZON4T1"
ENTER 709 : A4

F1=(R4-V4) /VI¥FO

FEY LABEL

DISF USING 790 ; F1
IMAGE /, "FRESSURE= ",MDDDDD.D
GOTO 750

... read the force

OUTFUT 709 ;"CLS&"

OUTFUT 709 ;"F1R-1ZONAT1"
ENTER 709 ; Ab

Fi={(A&-V&) /VSXFO

HEY LABEL

DISF USING 890 : Fi
IMAGE "RAM FORCE = ",MDDDDD.D
G070 850

... re—cero the force

» QUTRUT 769 3 "CLS&™

QUTFUT 709 §"F1R-1ZON4T2"
ENTER 709 3 V&
GOTO 490

'
1
t

3O OOR HOKOK 30K0K 0K KK K KK AKX K
MAIN TEST

30K KKK K KKK KR MK KO XK X
CLEAR
OFF KEY#
OFF KEY#
OFF KEY#
OFF KEY#
ON KEY# 4," END" GOTO 1290
ON KEY# 8,"ARORT" GOTO 420
KEY LABEL
OUTPUT 709 3;"LS6,8"

I=0

[URZNA R

82



1110
1120
1130
1140
1150
1170
1180
1190
1200
1210
1220
1230
12490
1250
12460
1270

1450
1500

1510
1520
1530
1540
1550
1560
1570
1530
1590
1600

' take the curve data

1

I=I+1

OQUTFUT 709 :“"FIRA1ZONATI"
X(I,3)=TIME

ENTER 702 : A&4,A8
X(I,1)=(R6-VE) /VSXFO
X{(I,2)=(AB~V8) /V7%D0O

¥

FPLOT X(I,2)=-X(1,2),X(I,1)

[}

OUTPUT 709 ;“"CLS&"

OUTPUT 709 ;"F1R—1ZON4T1"

ENTER 709 : Ab

F2= (R6-Y&) /VSKFO

IF ABS(F2-X(1,1))350 THEN GOTO 1130
GOTO 1250

ON KEY# &,"FILE" GOSUB 1350

I2=1I

DISF "TEST OVER"

BEEF

DISF I2;" DATA FPDINTS TAKEN"
GOTO 490

! filing subroutine, records information about the
MASS STORAGE IS ".DATA"
REDIM X<(I2,73)

)

CLEAR

DISF "DATA FILE NAME:"

INPUT N$

DISF "TODAY'S DATE:"

INPUT D$

DISP "ROCK DESCRIPTION:"
INFUT R$

DISF "COMMENTS:"

INFUT Cs$

N=INT ((I2%24+384) /256+1)
CREATE N$,N

ASSIGN# 1 TO N$ .
FRINT# 1 ; N%,D$,R$,I,P1,T1,C%,.X(,)
ASSIGN# 1 TO X

CLEAR

REEF

DISF N$:" FILED"

KEY LABEL

MASS STORAGE IS “.TESTER"
REDIM X(300,3)

RETURN

END

test

83



PROGRAM CORRECT

5 MASS STORAGE IS “.DATA"
7 PRINTER IS 1
10 OFPTION RASE 1
20 REAL X (500,3)
30 DIM N$[61,D$L8],.R$L201,CHL311]
35 INTEGER I.N,L
4¢) DISP “WHICH FILE DO YOU WANT?"
SO0 INPUT N$
&0 ASSIGN# 1 TO Ns$
7% READ# 1 3 N$,D$,R$,N,P1,T1,C%
75 REDIM X(N,3)
75 READ# 1 3 X (,)
80 ASSIGN# 1 TO X
20 CLEAR
100 FPRINT "FILE NAME: "3Ns
105 PRINT "CORRECTED ACCORDING"
1046 FRINT "TO X=CixY~({C2+LC3AY)"
107 PRINT "MODEL"
110 FRINT "CREARTED ON "3;D%
115 PRINT "ROCk: "3R$
116 PRINT "FRESSURE = ";P1:" FSI"
117 FPRINT "FOSITION = ";T1
120 FRINT "COMMENTS:"
130 FRINT C$
135 DI?=X(1,2)
136 E9=X(1,3)
140 FOR I=1 TO N
150 X(I,2)=X(I,2)-D9-.000141884%X (I,1)" (. 620F2~.0000083744xX(1,1))
160 X(I,3)=X(I,3)-E9
170 NEXT 1
180 CLEAR
190 PRINT "OLD NAME: ":N$
200 PRINT "ENTER NEW NAME"
210 INFUT A%
211 L=INT((NXx24+384) /256+1)
212 CREATE A, L
220 ASSIGN# 1 TO A%
230 PRINT# 1 ; A$,D$,RENFPI,T1,CH, X ()
240 ASSIGN# 1 TO X ‘
250 BEEP
260 PRINT A$;" FILED"
270 END



PROGRAM GPLOT

DEG

OFTION EASE 1

MASS STORAGE IS ".DATA"
t

bIM N$[61,.D$E81,C$LT11I,REL20]
REAL X (800,3),P,T,Z,L1,L2,L3,L4
INTEGER N, I

bISP "MAX X, TIC INCREMENT"

160 INPUT L1,L2

DISF "MAX Y, TIC INCREMENT"

120 INFPUT L3,L4
130 ¢
140 GCLEAR

O SCALE —(.2%L1),1.2%L1,—(.2XL3),1.1%L3

160 AXES L2,L4

170 LDIR ©

180 LORG 6

190 CSIZE 3

200 FOR Z=0 TO L1 STEF L2
210 MOVE Z,-(.03FL3)

> LABEL Z

NEXT Z

LORG 8

FOrR zZ=0 TO L3 STEF L4
MOVE —(.03%L1),2
LAREL Z/1000

NEXT 2Z

LORG &

CSIZE 6

MOVE L1/2,-(,15%L3)
LAREL "DISPLACEMENT (IN)"
LDIR Q0

MOVE - (.15%L1),L3/2
LABEL "FORCE (KIPS)"
[}

DISF "WHICH DATA SET?"
INPUT N$ 3
ASSIGN# 1 TD N$

READ# 1 3 N$,D$,R$.N,F,T,C$
REDIM X (N, 3)

READE 1 3 X(,)

ASSIGNH 1 TO %

MOVE ©,0

FOR I=1 TO N

PLOT X(I,2)—X{1,2),X(I,1)
NEXT 1

FENUF

DISP "ANDTHER DNE? (Y/N)"

i

00 INPUT A%
S10 IF A$="Y" THEN GOTO 370
520 END

85



PROGRAM cone.c 86

/% program cone ,¢
Uses a finite-difference approximation to solve the equations of
plasticity and the slip line field for the problem of indentation

of a rigid-plastic material.

Reference: L. L. Karafiath and E. A. Nowatski, SOIL MECHANICS FOR
OFF-ROAD VEHICLE ENGINEERING, Trans Tech Publications,
Clausthal, Germany (1978). z/

#include <stdio.h>
#include <math.h>

/ *x
% Note: pointl file operations are ¥
= NOT commented out in this *
* version. *
= /

/% note these variables will be global (declared before main): */

double z([601](201],.x{601]1[201).8igmal{6011[201).theta[601)[201];
double pi,.phi,sinphi, tanphi,mu;

double tan(),.,sin();

FILE ¥pointl:

main()
{
int 1,3,h.k,itmax,iter;
double w,c,deltheta,m, z0,pressure;
double linner,louter,eps,length,b,beta,alpha;
double exp():
void recur():
char fnamel[8], f2namel[8]:
FILE #*point2;

printf("File name for state variables: \" N"N\BADBNDN\DB\DbADbAD\D\D" ) ;
scanf("xs", fname):
printf("File name for tool pressures: \" NU'\BADB\DABN\DBN\B\B\b\b" ) ;
scanf ("Xs", f2name);
Pi=3.1415926535; /* approximately ! &%/
eps=0.001; /* tolerance for final point position %/
itmax=20; /% max iterations on length =/

/% set the fineness of the mesh %/
printf("Enter the number of J-lines (k):\n");
scanf("Xa",&k);
h=3%K; /% highest i-index %/

/% define physical characteristics %/

c=1000.0; /% use this value always, ithen Bzale pressures by c */

printf£("Coulomb friction angle (rad): "):
scanf("X1£",&phi);

sinphi=gin(phi); /* these calculations %/



w=0.03

b=1.0;

87

tanphi=tan(phi); /% should prevent many ®/
mu=pi/l.0-phi/2.0; /% function calls ®/

/% see c* argument ¥/

printf ("Enter wedge half-angle, beta (radians):\n");
scanf ("X1£",8beta):

/% for convenilence =/

zO0=b/tan(beta); /% penetration depth (unitless for a sharp cone) */
iter = O; /% haven't astarted yet x/

/% guess limits for the extent of the slip-line field %/

linner=0.0; /& gotta be toc small %/
louter=8.0; /% gotta be too big ®/
/* /
newguess:
iter = iter +1: /% gtart of a new iteration */
1f (iter > itmax)
{

printe ("\n\n\n\n\n\n\n");

printf (“"Completed Xd iterations without convergence!\n", itmax);
printf ("On final iteration:\n\n");

goto finish; /#* print values for the 'itmax'th iteration */

pointi=fopen(fname,"w"): /% veopen (and clear) ascii file */
eprintf(pointl, "%d Xd\n",h,k): /¥ record mesh density =/
length=(3linner+louter)/2.0: /* (generally) a new guess x/

/% get boundary conditions (geometry, confining pressure known) */

for(d = 0: J <= ki J++)

{

1=k-J3;

z{43{3)=0.0;

x[1)[3)=b+length*I/k;

sigmal(il{31=(c/tanphi+w)/(1.0-8inphi);: /* Mohr~Coulomb only! x/
thetal1][J1=0.0;

forintf (pointl,"%X1f X1f X1¢£ Xie\n",x(1][J].
z[11[3),thetal1l[J],sigmalil[d)):

/% now solve for the passive field %/

for(i = 1; i <= ki 1++)

{
for(d = K-1+1; J <= K3 J++)
{
recur(i,J);



88

/% compute values at the singular peint [(k--->2k][0]) */

deltheta=beta/kK: /% equal increments of theta %/
3=0:
for(i = k+1; 1 <= 2%k; i++)
{
theta([i][0]=theta[i-1][0]+deltheta:;
sizma[i][Ol-sizma[k][ol*exp(z.O*tanphi'(theta[i][O]-theta[k][O])):
x[1)[0)=x([4-2][0]:
z{1]l[0)=2z[1-2][0]; )
fprintf(pointl,"X1f X1f ¥1f X1£\n",x(1]1[3],
2{11[3].theta(1l[J},sigmalil(3]):

/* compute the other stresses in the radial zone ¥/

for(i = kel; 1 <= 2%k; 1++)
{
for(d = 13 J <= ki J++)
{
recur(i,d)s
}

/% now solve the active field %/

m=tan{(pl/2.0-beta); /% the slope of the boundary */
for(i = 2%k+l; 1 <= h; 1i++)
{
V4. TR tesese.B80lve the boundary point first...... S s s ssmssassanssss =/
3 = 1-2%K;
thetal[il[J]=beta; /% ‘for no friction ! %/

2[1)[31=(2{1-1313)+(20/m-x[1-1]1[J]))*tan(thetali-1]{J]-mu))
/(1.0+tan(thetali-1][3]1-mu)/m);
x[11[3)=(20-2[1])(3))/m;

1f£(x(1])[{3] < 0.0) /% % 18 beyond axis of symmetry: daanger! ¥/

fclose{pointl);

louter=length:

goto newguess:
}

slpha=ginphi®(x[1])[J1-x(1~1]1[J])-tanphi®(1.0-ginphi)*
(z(11{3)-204-23{31);:

pigmali]l [J)=sigma(i-1][J)+2.0%sigmali-1]}{j]®tanphi®
(thetal1}{3l~-thetali-1](3])-sigmali-1]{J1%alpha/x[1i-21(J]:

fprintf(pointl,"X1f X1f X1f X1e\n",x[1]({J]).
z{ij[3),.theta(i1](d).sigma(1){3]);



/% i iiiiesasees.NOW A0 the rest £Or this L.eeieeirsrevrrrreirrsrenscrosss®/

for(d = i-2%k+1; J <= Kk; J++)
{
recur(i,d);

}

fclose(pointl);

/% check to see if the final point is in the right place (within s margin
of error. If so, stop. Otherwise, modify the guess for 'length’
and start again at 'newguess:'. %/

if (x[hl[Kk] > eps) /% too small &/
{
linner=length:
goto newguess;
}

/% amxn==zz===> If here, then we have an acceptable solution. */

/% write the wedge boundary pressures (scaled by c) to file f2name %/

point2=fopen(f2name, "w"); /% open pressure curve file 3/
fprintf(point2,"Xd\n", k)

for(d = k; J >= 0; J--)
{
1=j+2%k;
pressures=(sigmali] [1)*(1.0+sinphl)~-c/tanphi)/c;
fprintf(point2,"X1lf X1 \n".x[(1)[J),.pressure);

fclose(point2);

printf ("\n\n\n\n\nSolution ran to completicn. Error tolerance Xf\n", eps):
printf("Took Xd iterations\n\n",iter):

finish:
printf£("Physical problem characteristics:\n"):
printe(" Cone half-angle, beta = X1f (rad)\n", beta);
printe(" Friction angle, phi = X1f£ (rad)\n", phi):
printe(" Confining pressure, w = X1f (psi)\n\n", w):

printf(“Mesh size: Xd X Xd\n",h,Kk):

printf("S1lip line field extends to x = ¥f\n\n", x[0][kl):

printf("Singular point at cone/free boundary interface:\n"):
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printe(" sigma(Xd][0] = %10.5f thetal%dl[0] = X%10.5f£\n",
2%k, sigma[2%k] [0}, 2%k, theta[2%Kk] [0]);

printe(" x[%al[0] = %10.5f z[Xal [0] = X10.5f£\n\n",
2%k, x[2%k]) [0],2%Kk,z[2%k]} [0]);

~

printf("vValues on axis of symmetry (cone tip):\n"):

printe(" sigma(Xal (X4l = %10.5f thetal%dl [%¥4] = X10.5£\n",
h.K,sigmalh} [Kk],h,k, thetalh]l[k]);

printe(" x[Xa)[%4a] = X10.5¢ z[Xal[%a] = X10.5f£\n\n",
h,k,x{hl[kl.h,k,2[h]1{k]);
printf("\n");

printf("Pressure profile located in fiie Xs\n\n\n'", f2name);

# 8 onN\

function recur

(finite difference implementation)

N &% n»

volid recur(i, )

{

int 4,3
double alphal, alpha2, abar, bbar;

alphaistan(thetal[il{3-1]+mu);
alphaz2atan(thetaf{i-11{J]l-mu):

x[{1)1[31=(2[1-11[3)-2[4)[J~-1]+alphai®x[1](i-1])-alpha2*x[1-1]{3])/
(alphal-alpha2);

2(1)[3)=2z(1-1)[J1+alpha2*(x[1] (J)1-x{1-211(31);

abareginphi®(x[1][J}-x[1i-1](3])-
tanphi*(1.0-sinphi)*(z[(1]1{41-2{1-21[3));

bbar=ginphi®(x{11[J)-x{11[3-1]1)+
tanphi*(1.0-8inph1)*(z{11(J)-2[4)(J-11):

sigmali] [J1=(2.0%sigmal1-1]1[J)1%sigmal1][3-1)%(1.0~-tanphi*(theta{i-13(3]-
thetal[i11[J3-1]))~
sigmafi-1][J)*sigmali)(J-1])%(abar/x[1-1)[J]1+bbar/x[1]1[4-1]))
/(sigmali1] [J~-1)+sigmali-1][3])):

thetali1l[3)l=(eigmal1]l[j-1)-sigmali-1]{J)+2.0%tanphi®(aigmali-21][3]}*
thetaf(i-1](3)+sigmali]li-1)%thetalil[3-1])
+(sigmali-1][3I*abar/x{1-1][J]-sigmali]l[J-1)%bbar/x[1]1(3-11))
/(2.0%tanphi*(sigmali-11[J)+agigmalil{3-11));

ferintf(pointl, "X1f X1f X1f X1£\n",%[1](3].
z(1]1[3).thetali][J),sigmali)(3]):

return;
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PROGRAM bluntcone.c

/* program bluntcone.c
Uses a finite-difference approximation to solve the equations of
plasticity and the slip line field for the problem of indentation
of a rigid-plastic material, :

Reference: L. L. Karafiath and E. A. Nowatski, SOIL MECHANICS FOR
OFF-ROAD VEHICLE ENGINEERING, Trans Tech Publications,
Clausthal, Germany (1978). */

#include <stdio.h>
#include <math.h>

/* ek F: 313
* Note: pointl file operations are ¥
* commented out in this *
* version. *

F33 */

/% note these variables will be global (declared before main): */

double z{6011[201].x[601])[201).81igma(601]1[201],thetal(601](201]:
double pi,phi,sinphi, tanphi,mu;
double tan(),sin();

main()
{
int i,J.h.k,itmax,iter;
docuble w,c,deltheta,m, 20, pressure;
double linner,louter,eps,length,start,b,beta,alpha;
double exp();
void recur():
char finame(8], f2name{8]:
FILE *pointl,*point2;

/% printf("File name for state variables: \" N'"\b\b\b\b\b\b\b\b\b" }:
scanf{"%s", filname);*/
printf£("File name for tool pressures: \" N"\bA\b\b\b\b\b\b\b\b" } ;

scanf("%s", f2name):

p1=3.1415926535; /* approximately ! */
eps=0.001; /* tolerance for f£inal point position */
itmax=20; /% max iterations on length x/

/% set the fineness of the mesh %/
printf ("Enter the number of j-lines (K):\n");
scanf ("Xd",8Kk):
. h=3%k; /% highest i-index */
/% define physical characteristics */

c=1000.0; /* use this value always, then scale pressures by c ¥/

printf("Coulomb friction angle (rad): ");
scanf ("X1£",8phi);

ginphi=gin(phi); Ve these calculations x/



92

tanphi=tan(phi): Ve should prevent many */
muspi/L.0-phi/2.0; /% function calls x/
w=0, 0; /% gee c¥ argument %/

printf("Enter wedge half-angle, beta (radians):\n"):
scanf("%X1£", &beta);

b=1.03 Ve ®/
printf("Enter penetration depth:");
scanf ("X1£",&20):

/ e Y 3 XX K

* Solve the cone part first to *®
* the extent of ite field. *
E3 33T T IT T 3 ****/
iter = 0O; /% haven't started yet */

/% guessg limits for the extent of the slip-line field */

linner=0.0; /% gotta be too small %/
louter=12.,0; /¥ gotta be too big x/
again:
iter = iter +1: /% start of a new iteration */
if (iter > itmax)
{

printf ("\n\n\nConical part:\n");

printf (“Completed Xd iterations without convergence!\n", itmax);
printf ("On final iteration:\n\n"):;

goto finish; /* print values for the 'itmax'th iteration */

start=(linner+louter)/2.0: /% (generally) a new guess x/

/* set boundary conditions (geometry, confining pressure Known) */

for(d = 0; J <= ki J++)
{
1=2%k-3;
z[1)[3)=0.0;
x[1}[{3)=b+z0*tan(beta)+start*3 /k;
sigmali]l(J)=(c/tanphi+w)/(1.0-81inphi); /* Mohr-Coulomb only! */
thetali]{3]=0.0;
}

/% now solve for the passive field %/

for(i = k; 1 <= 2%k; i+*).
{
for(J = 2%k-4+1; 3 <= K; J++)
{
recur(i,J);
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/* compute values at the singular point %/

deltheta=beta/K; /% equal increments of theta */
3=0;
for(i = 2%k+1l; 1 <= 3I*K; 1++)
{
theta{il[0]=theta[i~1][0]+deltheta;
sigma(il[0]l=sigma{2*Kk] [0)*exp(2.0%tanphi*(thetali)[0]l-thetal2*k][0])):
x[1)[0)=x[41-2]{0];
2[1][0)=z[4-1]1[0];
}

/¥ compute the other stresses in the radial zone */

for(l = 2%K+1l; 1 <= 3%Kk; 1i++)
{
for(d = 1; 3 <= ki J++)
{
recur{(i,J);
}

/% now solve the active field */

m=tan(pi/2.0-beta); /% the slope of the boundary */
for(i = 3%Kk+1; 1 <= U*¥K; 1++)
{
/¥ i teereases.80lve the boundary point FirsSt..iieioerecsrescrenees®/
3 = 1-3%k;
thetal[i)[J)=beta: /% for no friction ! */

z[i][J]=(z[1—1][d]+((zO*b/tan(beta))/m-x[i—l][J])*tan(theta[i—l][d]—mu))
/(1.0+tan(theta{i-1)[3]-mu)/m);
x[1)[J)=b+(20-2{11(3])/m;

1£(x{1]1 (3] < b-eps) /% x 18 beyond ridge: too big! */

louter=start:
goto again;

alpha=sinphi*(x[1][J]1-x[{1-1)[J])-tanphi*(1.0-sinphi)*
(z[11(3)-2[1-1]1[3)):

sigmal1][3]=sigmal1-1)[3]+2.0%*sigmal1-1] (3] *tanphix
(thetal1]}[J]-theta{i-1](J))-sigmali-1][J)*alpha/x[1-11[3];
/¥ iiiiieiiierss.now do the rest for this . 72
for(d = 1-3%k+1l; J <= K; J++)

{
recur(i,d):
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if (x[4*k]}[K] > b+eps) /% too small */

{
linnersgtart;
goto again;
}
/% ========> If here. then conical part is solved. %/
/ *
%* Value of start is Known. Now *
%* golve the rest of the field to the *
* flat part. *
xXK %/
iter = 0; /% naven't started yet */

/% guess limits for the extent of the slip-line field ¥/

linner=0.0; /% gotta be too small */
louter=12.0; /¥ gotta be too big */
newguess:
iter = iter +1: /* gtart of a new iteration */

if (iter > itmax)
{
printf ("\n\n\nFlat part:\n");
printf (“Completed %d iterations without convergence!\n", itmax);
printf ("On final iteration:\n\n"):
goto finish; /% print values for the 'itmax'th iteration ¥/

length={(linner+louter)/2.0: /* (generally) a new guess */

/* set boundary conditions (geometry, confining pressure known) */

for(d = K+1l; J <= 2%k; J++)
{
1=2%k-J;
z{i]{3)=0.0;
x[1][J)}=b+2z0*tan(beta)+gtart+length¥*(J-Kk)/k;
sigmali) [(J)=(c/tanphi+w)/(1.0-8inphi); /* Mohr-Coulomb only! */
theta{il{3jl=0.0:

/% now sBolve for the passive field %/

for(l = 1; 1 <= K; 1++)
{
for(3d = 2%k-1+1; J <= 2%K; J++)
{
recur(i,d):
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for (iwk+l;icelX*k;i++r) {
for (J=k+1;J<=2%Kk;J++) {
recur(i,3):
}

/% compute values at the singular point */

deltheta=(pi/2.0-beta)/K; /% equal increments of theta ¥/
J=k;
for(i = U%¥Kk+1; 1 <= 5%Kk; 1i++)
{
theta[i]l[3l=theta{i-1][3]+deltheta;
sigmal{i1l[j]=sigmall*k][J]1%*exp(2.0%tanphi*(thetali]l[J]-thetald*k][3])):
x[1)[J1=x{1-2][3]:
z[11[3)=2(2-23 (31
}

/% compute the other stresses in the radial zone x/
Por(i = L%¥ke+l; 1 <= 5%K; 1++)
{
for(jd = k+1l; J <= 2%k: J++)
{

recur(i,d);
}

/* now solve the active fileld */
for(li = 5%k+l; 1 <= 6FK; 1++)
/* .. theseesses801lve the boundary point first.... v ceeeeeevevscsnsons */
J = 41-U4%k;
thetal[il[J)=pi/2.0: /% for no friction ' */
z[11[31=20;
x{13[3)=x(1-21[31+(201])[d]1-2z[1-2]{3))/tan(thetali-1][3]-mu);
1f(x[1][3] <= 0.0) /% x 15 beyond axis of symmetry: too big! */
{
louter=1length;
goto newguess;

}

alpha=ginphi®*(x[1J[J]1-x{1-1]1[3])-tanphi*(1.0-8inphi)*
(z{11[3)-z{4-21{31):

sigmali)[Jl=sigmali-1] [(J)+2.0%csigmali-1] [§]}*tanphix®
(theta[i][J]-thetali-1]1[J]))-sigmali-1][J)*alpha/x[1-1][d];
/¥ L iieriesasae.NOW do the rest for this d..... . vrecestorcssccssos®/
for(d = 1-U%k+1; 3 <= 2%K; J++)
{

recur(i,J);
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}

if (x[6%k][2%k] > eps) /% too small %/
{

linner=1length;
goto newguess;
}
/% ==c=====> If here, then flat part is solvead. */
/% write state variables %/
/% pointi=fopen(finame, "w");
fprintf(pointl, "%d Xa\n",h,k):
J=0;

for {(1=2%k;1<=3%kidi++) {
fprintf(pointi,"X¥1f X1f %1f X1f\n",x[31](3].z[4]1(31].
thetali][J]).sigmalil(3]);
}
for (J=1;J3<=kid++) {
for (1=2%k-J:i<=J+3%K;1++) {
fprintf(pointi,"X1lf X1f %1f %1f\n",x[1)[3].=041(31].
thetal[i)([d).eigmali][d]):
}
}
for (J=k+1l:J<=2%KiJ++) {
for (i=2%k-Jii<=kiie+) {
fprintf(pointi,"X1f X1f X1f Xie\n",x[1]1[31.2{4]1(3].
thetali}({dl,.sigmal1]1[d41);:
}
}
for (i=k+l;i<=l4*¥k;i+s+) {
for (J=k+1l;J<=2%k;3++) {
fprintf(pointl,”X1f X1f X1f Xif\n",x[11[J331.=20231[3).
thetalil[J].sigmali){31):

}

I=k;
for (1e=l*®k+1;i<ub5¥K;1i+e) {
fprintf(pointl, "%1f X1f X1f Xif\n",x(1)({33.2[11(3].
thetalil{J).sigmalilfd]):
}
for (J=k+1;3<=2%k:iJ++) {
for (lel*k+dl;ic=J+l*kii+s) {
fprintf(pointl,"X1f X1f %1€ X1f\n",x[{1](3).z2z[13(31],
thetalil(J]l.sigmalil(3]);
}
}
fclose(pointl) %/

/* write the boundary pressures (scaled by c¢) to file f2name */

point2afopen(f2name, "w"); /% open pressure curve file &/
forintf(point2, "Xa\n",2%(k+1)); /¥ number of points

written %/
for(d =~ 2%k; 3 >= k; §--)
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i=j+lU%xk;
pressure={gsigma{1]{3]*(1.0+s8inphi)~c/tanphi)/c;
fprintf(point2,V%X1f X1e\n",x[1]1[(J],pressure);

}

for (J=kK;d>=0:3--) {

1=J+3%K;
pressure=(sigma[i]{3j]l*(21.0+8inphi)-c/tanphi)/c;
fprintf(point2,"X1f X1f\n",x{1)(J].pressure);

fclose(point2);

printf ("\n\n\n\n\nSolution ran to completion. Error tolerance Xf\n",.eps):
printf("Took Xd iterations\n\n",iter):;

finish:

printf("Blunt-ended single cone:\n");

printe (" Cone half-angle, beta = ¥X1f (rad)\n", beta);
printf(" Friction angle, phi = X1f (rad)\n', phi);
printe(" Confining pressure, w = %X1f (psi)\n", w);
printe (" Indentation depth, z0 = %1f\n",z0);

printf("Mesh size: Xd X %d\n",h.k):

printf£("Slip line field extends to x = %£\n\n", x[0][2¥Kk]);

printf("Singular point at cone/free boundary interface:\n"):;

printe(" sigma([%d][0] = X10.5f¢ theta{%d][0] = X10.52\n",
2%k, sigma[2*k] [0],2%K, thetal2%k][0]);

printe(" x[%¥a][0] = %10.5¢ z{Xa) o] = X10.5£\n\n",
2%k, x[2*k][0], 2%k, z[2%k][0]):

printf£("Values on axis of symmetry {(cone tip):\n");

printe(" sigma(Xd)[%d] = %X10.5¢ thetalX%d)] [%¥4) = X%X10.5#£\n",
6%k, 2%k, sigma[6%k] (2%k], 6%k, 2%k, theta[6%k] [2%Kk]);

printe(" x[{Xdal[%d] = %10.5¢ z{%a]l[%da)] = %10.5£\n\n",
6*k.2*k.XI6*k][2*k].6*k.2*k.z[6*k][2*k]):
printe(*"\n"):

# % n\

funection recur

(finite difference implementation)

N # # 5

void recur(i,3)

{

int 1.3;

double alphal, alpha2,abar,bbar;
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alphal=tan(theta(i](J-1]+mu);
alpha2=tan(theta(i-1][J]-mu);

x[1)1[d1=C2(1-11{3)-2z[1][3-2)+alphal*x[1][J-1)~alpha2*x{i-2][J]1)/
(alphal-alpha2);

2(11(3)=2z[1-1)[3)+alpha2*(x[1]1[31-x[1-1][4]);:

abar=ginphi*(x[1][3)-x[1-21[J]1)-
tanphi*(1.0-ginphi)*(2[1]1(4]-2{1-23[31):

bbar=s8inphi®*(x{11[{3)-x(11[3-11)+
tanphi*(1.0-8inphi)*(z[1]1(3)-2[11[3-11):

sigma(i]{d]l=(2.0%sigmali-1][J]1*s1gma{1][3-1]1*(1.0-tanphi*(thetali-1](J]-

thetalil[J-1]1))~
sigma[i-1]{J1*sigma[i]l[J-11*(abar/x{1-2][J]+bbar/x{11(3-11))

/(sigmalil}[J-1]1+sigmaf{i-21[31);

thetal{il(Jl=(sigmalil(J-1]-sigmaf{i-1){Jl+2.0%tanphi*(sigmali-1}[J]1*
theta[i-11[j)}+sigmalil[J-1)*thetali) [3-11)"
+(gigmali-1){Ji*abar/x[1-1])[J)-sigmali] [J-21]1*bbar/x[1][J~-1]))
/(2.0%tanphi¥*(sigmal1-11{3)+sigmali] (3-11));

return;
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PROGRAM force.c 99

program force.c
Read a pressure-radius file to determine the total
vertical force on a tool. */

#include <stdio.h>
#include <math.h>

main()

{

Ve

Vi

/%

Ve

S*

int 1,k:
double r[303].p[303],pi=3.141592654;
double al,a2,cl,c2, force,rflat,rbar;

FILE #pointl:;
char finame[20]:

ask what pressure file to read */

printf("wWhat file do you want to read?\n");
scanf("%s", finame):

get tool size */

printf("what is actual flat radius (in)?\n"):
scanf{("%X1£",&rflat);

open the file */
pointi=fopen(finame, "r");
read the number of data pairs */
fecanf(pointi, "Xa",8&k):
read the radii and pressures */
for (i=1l;i<=k;iie+) |
facanf(pointl,"%ls X1i£",8r(1),8p[1]);
riil=r(i)*rflat; /% gcale to correct size ¥/
}
r{0]=0.0;
p{oi=p[1];
close the file %/
fclose(pointl);
use trapezoidal rule with Pappus-Guldinus to get total force ¥/

force=0.0;

for (i=1;di<=kii++) {

al=(r(1)-r(i-1))%p(i]}; /% rectangle area */
cim(r[i]+r{i-13)/2.0; /% rectangle centroid */
a2=0,5%(r[1]-r{1~1]1)%(p(i)-p[i-1]); /* triangle area %*/
c2=r{i-1]+(r[i)-r[L-1])/3.0; /% triangle centroid */

/% £ind net centroid */

if ((a1+82) == 0.0) {
rbar=cl;
goto skip;
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}

rbar=(cl*al+c2*a2)/(al+a2);
skip:
force=force+2.0*pi¥rbar*(al+az);
}

printf("force/c* = X1f 1bf/psi for flat radius = X1¢ in\n", force,rflat);



