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Abstract 

Prom High-Level Tasks to Low-Level Motions: Motion Planning for 

High-Dimensional Nonlinear Hybrid Robotic Systems 

by 

Erion Plaku 

A significant challenge of autonomous robotics in transportation, exploration, and 

search-and-rescue missions lies in the area of motion planning. The overall objective 

is to enable robots to automatically plan the low-level motions needed to accomplish 

assigned high-level tasks. 

Toward this goal, this thesis proposes a novel multi-layered approach, termed 

Synergic Combination of Layers of Planning (SyCLoP), that synergically combines high-

level discrete planning and low-level motion planning. High-level discrete planning, 

which draws from research in AI and logic, guides low-level motion planning during 

the search for a solution. Information gathered during the search is in turn fed back 

from the low-level to the high-level layer in order to improve the high-level plan in 

the next iteration. In this way, high-level plans become increasingly useful in guiding 

the low-level motion planner toward a solution. 

This synergic combination of high-level discrete planning and low-level motion 

planning allows SyCLoP to solve motion-planning problems with respect to rich models 

of the robot and the physical world. This facilitates the design of feedback controllers 



that enable the robot to execute in the physical world solutions obtained in simulation. 

In particular, SyCLoP effectively solves challenging motion-planning problems that 

incorporate robot dynamics, physics-based simulations, and hybrid systems. Hybrid 

systems move beyond continuous models by employing discrete logic to instanta­

neously modify the underlying robot dynamics to respond to mishaps or unantic­

ipated changes in the environment. Experiments in this thesis show that SyCLoP 

obtains significant computational speedup of one to two orders of magnitude when 

compared to state-of-the-art motion planners. 

In addition to planning motions that allow the robot to reach a desired destination 

while avoiding collisions, SyCLoP can take into account high-level tasks specified using 

the expressiveness of linear temporal logic (LTL). LTL allows for complex specifica­

tions, such as sequencing, coverage, and other combinations of temporal objectives. 

Going beyond motion planning, SyCLoP also provides a useful framework for dis­

covering violations of safety properties in hybrid systems. 
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Chapter 1 

Introduction 

The field of robotics nowadays is marked by an emphasis towards increasing the 

autonomy of robots in planning and carrying out assigned tasks. The Minerva robotic 

tour guide [CNN98], the Sony robot dog [FOR07], the Twendy-One robot [ABC07], 

the robotic vehicles racing in the DARPA Grand Challenge [DAR07], and the IRobot 

array of domestic and military robots [USN08] are just some examples of robots that 

exhibit a great degree of autonomy in accomplishing their assigned tasks. 

A basic component of autonomy is the ability of the robot to plan the motions 

needed to accomplish an assigned task. While significant progress has been made, as 

research in the last forty years has demonstrated, motion planning still constitutes a 

significant challenge in autonomous robotics: 

Some of the most significant challenges confronting autonomous robotics 

lie in the area of automatic motion planning. The goal is to be able to 

specify a task in a high-level language and have the robot automatically 

compile this specification into a set of low-level motion primitives, or feed­

back controllers, to accomplish this task [CLH+05]. 

Due to the complexity of both the robot hardware and the physical world, motion 

planning generally takes place using simulated and simplified models of the robot 
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and the environment on which the robot operates. The motion planner employs 

these models to produce a sequence of motions that in simulation enables the robot 

to accomplish an assigned task. In order for the robot to execute the simulated 

motions and accomplish the assigned task in the physical world, feedback controllers 

are then used to convert the output of the motion planner into low-level commands 

to the robot hardware. 

Moreover, most motion-planning methods to date focus on the simple task of 

computing a sequence of motions that in simulation allows the robot to move from 

an initial to a goal destination while avoiding collisions with obstacles. Motion 

planning is further simplified by computing a sequence of rotations and transla­

tions to accomplish this task in a simulated world that models only the geometry 

of the robot and the obstacles [Lat91, CLH+05, LaV06]. Even with these simplifi­

cations, the geometric motion-planning problem is by no means easy, as evidenced 

by theoretical results that have shown it is PSPACE-complete [Can88a, Can88b]. 

Despite the hardness theoretical results, great progress has been made in solving 

challenging geometric motion-planning problems, especially by sampling-based mo­

tion planners [KSL096, HLM97,LaV98, BMA98,ABD+98a,BOvdS99,LK01,HKLR02, 

Ist02,SL02,BV02,MRA03,LK04b,MTP+04,JYLS05,BB05,HSAS05,PBC+05,HLK06, 

KH06,BB07], and many others surveyed in [CLH+05, LaV06]. 

Motions of a robot in a physical world, however, are governed by the underlying 

robot dynamics that often impose constraints on velocity, acceleration, and curvature. 
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Consequently, solution paths obtained in simulation by motion planners that do not 

take into account robot dynamics but consider only geometric models cannot be 

easily followed by the robot in the physical world. It is in general difficult and an 

open problem to design feedback controllers that can convert a geometric solution 

path into low-level hardware commands that enable the robot to follow the geometric 

path and thus accomplish the assigned task in the physical world. 

This gap between paths produced by geometric motion planning in simulation and 

the design of feedback controllers that can enable the robot to follow these geometric 

paths in the physical world underscores the need for incorporating robot dynamics 

directly into motion planning. Such an approach facilitates the design of feedback 

controllers, since the solution computed by the motion planner in simulation not only 

avoids collisions with obstacles, but also respects the robot dynamics. 

Motion planning with dynamics, however, poses significant challenges. Modeling 

the dynamics in addition to the geometry of the robot can considerably increase 

the dimensionality of the motion-planning problem. Moreover, solutions no longer 

consist of translations and rotations, but instead of sequences of motions obtained by 

simulating the robot dynamics. Constraints imposed by the robot dynamics add to 

the difficulty of finding sequences of motions that allow the robot to reach the goal 

while avoiding collisions with obstacles. 

Current approaches to motion planning with dynamics are usually based on sim­

ple adaptations of popular geometric motion planners. Geometric motion planners, 
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however, are designed to take advantage of the assumption that the possible motions 

of the robot are purely geometric, i.e., translations and rotations. Such assumption 

does not hold in the case of motion planning with dynamics, since constraints imposed 

by the dynamics limit the possible motions of the robot. Research has shown that ap­

proaches based on adaptations of geometric motion planners are generally ineffective 

in solving challenging motion-planning problems with dynamics [LK04a,LK05,BK07, 

BTK07a, BTK07b, PKV07a, PKV07b, PKV07c, PKV08a, PKV08b, PKV08c, PKV08d]. 

These limitations become even more pronounced when considering richer models, 

such as physics-based simulations. Physics-based simulations add an increased level 

of realism by modeling not only the dynamics and geometry of the robot, but also 

friction, gravity, and other interactions of the robot with the environment. 

Moreover, many robots used in navigation and exploration of unknown and possi­

ble hazardous environments can quickly modify the underlying dynamics to respond 

to mishaps or unanticipated changes in the environment. Such behavior is often mod­

eled by hybrid systems, which go beyond continuous models by employing discrete 

logic to instantaneously switch to a different operating mode. 

Incorporating richer models, such as robot dynamics, physics-based simulations, 

and hybrid systems, directly into motion planning is crucial, as it facilitates the 

design of feedback controllers that enable the robot to execute in the physical world 

the solutions obtained in simulation. This approach adds significant computational 

challenges to current motion planners, rendering them practically ineffective. 
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Novel approaches are needed to significantly reduce the computational cost asso­

ciated with incorporating richer models into motion planning. This has the potential 

to enable robots employed in service, search-and-rescue missions, and exploration to 

autonomously plan low-level motions needed to accomplish assigned tasks. 

1.1 Contributions 

To effectively incorporate rich models, such as robot dynamics, physics-based 

simulations, and hybrid systems, directly into motion planning, this thesis proposes 

a novel multi-layered approach, termed Synergic Combination of Layers of Planning 

(SyCLoP), that seamlessly combines motion planning at different levels of modeling 

complexity. Fig. 1,1 provides an illustration. 

Fig. 1.1: Proposed multi-layered approach, SyCLoP, seamlessly combines high-level discrete 
planning and low-level motion planning. 

In the first layer, motion planning takes place in a simplified high-level and discrete 

model. In the second layer, motion planning is based on the full low-level model of 
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the robot and the physical world. The high-level discrete planning in the first layer, 

which draws from research in AI and logic, guides the low-level motion planning in 

the second layer during the search for a solution. 

A distinctive feature and a crucial property of SyCLoP is that high-level discrete 

planning and low-level motion planning are not independent of each-other but in 

fact work in tandem, as illustrated in Fig. 1.1. At each iteration, high-level discrete 

planning provides a high-level plan that constitutes a solution to the motion-planning 

problem under the simplified discrete model. Low-level motion planning attempts in 

turn to guide the search for a solution under the full model so that it closely follows 

the current high-level plan. Information gathered during the search, such as the 

progress made in following the current high-level plan, is fed back from the low-level 

to the high-level layer in order to improve the high-level plan computed in the next 

iteration. In this way, high-level plans become increasingly useful in guiding the 

low-level motion planner toward a solution. 

This symbiotic combination of high-level discrete planning and low-level motion 

planning in SyCLoP, as demonstrated in this thesis, has several advantages: 

(i) It obtains solutions to the motion-planning problem with respect to the full 

model of the robot and the physical world in which the robot operates [PKV07a, 

PKV07b, PKV07c, PKV08a, PKV08b, PKV08c, PKV08d]. This facilitates the 

design of feedback controllers that enable the robot to follow in the physical 

world solutions obtained in simulation. (Chapter 4) 
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(ii) It reduces by one to two orders of magnitude the computational cost in solving 

challenging problems when compared to current state-of-the-art motion plan­

ners [PKV07a,PKV07b,PKV08a,PKV08b,PKV08c,PKV08d]. (Chapters 4-8) 

(iii) It incorporates robot dynamics and even physics-based simulations, which in­

crease the realism by modeling friction, gravity, and other interactions of the 

robot with the environment [PKV07a, PKV08b, PKV08c, PKV08d]. (Chapter 5) 

(iv) It is particularly well-suited for hybrid systems, which move beyond continuous 

models by employing discrete logic to instantaneously modify the underlying 

robot dynamics to respond to mishaps or unanticipated changes in the environ­

ment [PKV07b,PKV07c,PKV08a]. Hybrid systems are often part of sophis­

ticated embedded controllers used in robots exploring unknown and possibly 

hazardous environments. (Chapter 6) 

(v) It incorporates richer tasks expressed in Linear Temporal Logic (LTL) in ad­

dition to enabling the robot to move from an initial to a goal placement while 

avoiding collisions with obstacles [PKV08c]. LTL allows for complex specifica­

tions, such as sequencing, coverage, and other combinations of temporal goals, 

such as "after inspecting a contaminated area A, visit a decontamination station 

B, before returning to any of the base stations C or D." (Chapter 7) 

(vi) Going beyond traditional motion planning, it provides a useful framework for 

discovering violations of safety properties in hybrid systems [PKV07b, PKV08a, 
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PKV08c]. Safety properties assert that nothing "bad" happens. For instance, 

when the hybrid system models air-traffic control, safety properties assert that 

planes will not come too close to one another. (Chapter 8) 

1.2 Organization 

Related work is described in Chapter 2. The motion-planning problem, com­

mon components used in sampling-based approaches, and a basic search framework 

for solving motion-planning problems are described in Chapter 3. The proposed 

multi-layered approach, SyCLoP, is described in Chapter 4. Applications of SyCLoP 

to motion-planning problems that incorporate dynamics are presented in Chapter 

5. Chapter 5 also includes experiments with several second-order models of robotic 

vehicles and physics-based simulators. Chapter 6 describes applications of SyCLoP 

to motion planning for hybrid systems, including experiments on a scalable naviga­

tion benchmark. Chapter 7 describes applications of SyCLoP to incorporate tasks 

expressed by LTL. Chapter 8 focuses on applications of SyCLoP for the falsification of 

safety properties in hybrid systems. Chapter 8 presents experiments based on falsifi­

cation of safety properties for an aircraft collision-avoidance protocol in the context 

of air-traffic management. The thesis concludes in Chapter 9 with a discussion. 

1.3 Notation 

The section includes a summary of common notation used in this thesis. 
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Name 

T 

J_ 

o 

r 

7 

Tvalid 

T 

A 

Cov 

V 

E 

f 

GOAL 

GK 

GUARD 

H 

J U M P 

V 

P R O J 

Short Description 

boolean value: true 

boolean value: false 

trajectory concatenation 

set of all trajectories 

trajectory 

valid part of trajectory 

propositional map 

NFA 

coverage estimate 

discrete model 

discrete transitions in hybrid systems 

dynamics flow function 

motion-planning goal function 

graph of discrete model 

guards in hybrid systems 

hybrid automaton 

jumps in hybrid systems 

motion-planning problem 

state-space projection function 

Defined in 

Section 3.2.1 

Section 3.1.4 

Section 3.1.4 

Section 3.2.3 

Section 7.2 

Definition 7.2.3 

Section 3.2.5 

Section 4.2 

Definition 6.2.1 

Section 5.1.2 

Section 3.1.3 

Section 4.2 

Definition 6.2.1 

Definition 6.2.1 

Definition 6.2.1 

Definition 3.1.1 

Section 3.2.4 

continued in next page... 



Name 

Q 

K 

^•GOAL 

Tv-init 

s 

SAMPLETRAJ 

Sinit 

STATES 

T 

T R A J 

U 

VALID 

VALIDTRAJ 

W 

# 

Short Description 

discrete space in hybrid systems 

high-level regions 

goal high-level regions 

init high-level regions 

state space 

trajectory sampling 

initial state 

associate tree states to region 

tree data structure 

tree-trajectory function 

control space 

checks if a state is valid 

trajectory validation 

workspace 

continuous space in hybrid systems 

Defined in 

Definition 6.2.1 

Section 4.2 

Section 4.2 

Section 4.2 

Section 3.1.1 

Section 3.2.2 

Definition 3.1.1 

Section 4.4.2 

Section 3.3 

Section 3.3 

Section 5.1.1 

Section 3.1.2 

Section 3.2.3 

Section 5.2.1 

Definition 6.2.1 
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Chapter 2 

Related Work: Sampling-based Motion Planning 

This chapter provides a summary of related work on sampling-based motion plan­

ning, which has shown great promise in solving challenging motion-planning problems. 

The low-level motion planning layer of the proposed multi-layered approach, SyCLoP, 

is also sampling based and draws significantly from progress made in recent years 

in sampling-based motion-planning research. The chapter starts with an informal 

definition of the motion-planning problem and a description of early approaches to 

motion planning. The chapter then focuses on recent approaches that incorporate rich 

models of the robot and the physical world directly into motion planning in order to 

facilitate the execution in the physical world of plans produced in simulation. 

2.1 Motion Planning with Geometric Models: Generalized 

Mover's Problem 

Stated in its simplest form, the motion-planning problem involves planning a 

sequence of motions that take a robot from an initial configuration to a final con­

figuration, while avoiding collisions with obstacles in the environment. The robot 

may be comprised of several rigid objects either moving independently or attached 

to one another through joints, hinges, and links. A configuration refers to a spatial 
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arrangement of the robot, and the set of all configurations is referred to as the configu­

ration space. The environment can be a two-dimensional or three-dimensional world, 

referred to as the workspace, containing obstacles that the robot needs to avoid. 

Early on it was shown that the generalized mover's problem, where the robot is 

comprised of several rigid objects moving independently or connected through joints, 

was PSPACE-hard [Rei79]. Additional study on exact motion-planning methods for 

the generalized mover's problem led Schwartz and Sharir [SS88] to an algorithm that 

was doubly exponential in the degrees of freedom of the robot (subsequent work in 

real algebraic geometry rendered the algorithm singly exponential [BPR03]). This 

was followed by Canny's algorithm, which introduced the notion of a roadmap, i.e., 

a network of 1-dimensional curves that capture the connectivity of the configuration 

space, and showed that the general mover's problem is PSPACE-complete [Can88a, 

Can88bj. The algorithms, however, are mainly of theoretical interest due to the 

prohibitive complexity and difficulty of implementation. 

The hardness theoretical results on the generalized mover's problem motivated the 

development of alternative approaches that do not rely on an explicit computation 

of the configuration space, but rely instead on an efficient sampling of this space. 

Several distinct formulations of the sampling-based approach have emerged. One of 

the first sampling-based planners, Randomized Path Planning (RPP) [BL91], utilized 

a potential field to attract the robot toward the goal, while pushing the robot away 

from obstacles. When the robot would get stuck in a local minimum of the potential 
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field, RPP relied on sampling of the configuration space to generate random motions 

for escaping the local minima. The "Ariadne's Clew" [BMA95,BMA98] used sampling 

of the configuration space and genetic optimization to guide the exploration of the 

configuration space toward the goal. 

2.1.1 Roadmap Methods 

The Probabilistic RoadMap (PRM) [KSL096] was the first planner that demon­

strated the tremendous potential of sampling-based methods. PRM not only completely 

decoupled collision checking and planning, but also used sampling in innovative ways 

that resulted in performance gains that had not been observed earlier. PRM creates 

a roadmap by first sampling the configuration space. Each sample corresponds to a 

placement of the robot in the workspace. If the placement does not result in a colli­

sion, then the sample is considered valid and it is added to the roadmap. During a 

second step, neighboring roadmap samples are connected via simple paths that avoid 

collisions with obstacles. A motion-planning problem is then solved by first connect­

ing the initial and goal configurations to the roadmap, then using graph search on 

the roadmap to find a path between the initial and goal configurations. 

A critical aspect of PRM is the sampling strategy, since PRM relies on sampling to 

capture the connectivity of the free configuration space. The original PRM implemen­

tation [KSL096] employed uniform random sampling, which is easy to implement and 

has been shown to work well in a variety of different problems. It has also been ob­

served, however, that problems where the solution path must go through narrow pas-
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sages axe particularly challenging, since the probability of generating samples inside 

narrow passages is low due to these passages' small volume [KSL096,HKL+98]. Sev­

eral sampling strategies were developed to improve sampling inside narrow passages 

by sampling more around disconnected components of the roadmap [KSL096,Kav95], 

near obstacles [ABD+98a,HKL+98,BOvdS99], on or near the medial axis [GHK99, 

WAS99,HK00], or using machine learning and workspace information to sample more 

inside narrow passages [MTP+04,BB05,HSAS05,SHJ+05,HLK06,KH06,ZKB08], and 

many other strategies surveyed in [CLH+05,LaV06]. 

2.1.2 Tree Methods 

An alternative to roadmap-based approaches is to explore the configuration space 

by incrementally extending a tree from the initial configuration toward the goal con­

figuration. While a roadmap-based approach attempts to capture the connectivity of 

the free configuration space so that multiple queries can be solved quickly, the objec­

tive of a tree-based approach is to quickly extend the tree toward the goal to solve the 

one query under consideration. Tree-based approaches were popularized by sampling-

based motion planners such as Rapidly-exploring Random Tree (RRT) [LaV98,LK01] 

and Expansive Space Tree (EST) [HLM97,HKLR02], which successfully solved chal­

lenging motion-planning problems. A vertex in the tree corresponds to a valid sample, 

while an edge from a sample s' to s" indicates a valid path connecting s' to s". 

An RRT "pulls" the tree toward the unexplored parts of the configuration space 

by extending the tree toward random samples. At each iteration, a sample srand is 
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generated according to some sampling strategy. The closest sample in the tree, snear, 

is then computed according to a distance metric that defines closeness. A branch in 

the tree is created by extending a path from snear toward srand- As in the case of PRM, 

the sampling strategy plays a critical role in the ability of RRT to rapidly extend the 

tree toward the goal configuration. 

An EST "pushes" the tree to unexplored parts of the configuration space by sam­

pling points away from densely sampled areas. For each sample s in the tree, EST 

maintains a density estimate as a weight w(s), which is usually measured as the 

number of outgoing edges or the number of neighboring samples. At each iteration, 

a sample s is selected from the tree with probability inversely proportional to the 

density estimate w(s), and a branch is created by extending a random path from s. 

As in the case of roadmap approaches, the sampling strategy plays a critical role in 

tree-based approaches. In addition to RRT and EST, in order to improve the sampling 

strategy so that the tree quickly extends toward the goal, researchers have proposed 

numerous methods, such as [SL02, BV02, LL03, JYLS05, LK04a, LK05, BB07, BK07, 

PKV07a,PKV08b,ZM08] and many others surveyed in [CLH+05,LaV06]. 

2.1.3 Sampling-based Roadmap of Trees 

It is also possible to combine roadmap and tree approaches. Drawing from the 

success of multi-tree searches in discrete spaces in AI, the Sampling-based Roadmap 

of Trees (SRT) [PBC+05] searches a high-dimensional configuration space by creating 

a roadmap of trees that integrates the global sampling properties of roadmap-based 
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planners, such as PRM [KSL096], with the local sampling properties of tree-based 

planners, such as RRT [LaV98,LK01] and EST [HLM97,HKLR02]. As in PRM, SRT con­

structs a roadmap aimed at capturing the connectivity of the free configuration space. 

The nodes of the roadmap, however, are not single configurations but trees, which are 

grown by using tree-based motion planners. The edges of the roadmap correspond to 

connections between trees, which are also computed by sampling-based tree planners. 

SRT is shown to be significantly faster and more robust than the roadmap- and the 

tree-based planners it combines. The multi-tree search in SRT also provides a natu­

ral framework for a large-scale distribution based on asynchronous communication, 

yielding near linear speedup on hundreds of processors [PK05,PK07a]. 

2.2 Motion Planning with Rich Models: Toward Realistic 

Applications 

The generalized mover's problem considers the motion-planning problem from a 

purely geometric perspective that ignores the underlying robot dynamics. Motions of 

a robot in the physical world, however, are governed by dynamics that often impose 

constraints on the velocity, acceleration, and curvature. As a result, solution paths 

obtained by motion-planning methods that solve the generalized mover's problem 

may not be easily executed by the robot in the physical world. 

The execution of a solution path obtained in simulation requires the design of 

feedback controllers that can convert the simulated motions into low-level hardware 
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commands. The design of feedback controllers is a laborious and challenging task, 

since it depends on the robot dynamics and the interaction of the robot with the 

environment. While feedback controllers have been designed that can enable robots 

with essentially linear dynamics to follow geometric paths, the case of robots with 

nontrivial dynamics remains open to research [CLH+05,LaV06]. 

This challenge in designing feedback controllers that can enable complex robots to 

follow simple geometric paths underscores the need for incorporating robot dynam­

ics directly into motion planning, so that the produced motions obey the physical 

constraints of the robot. The configuration space is augmented with new parameters 

necessary to express the robot dynamics. Motion planning then takes place in this 

augmented configuration space, which is referred to as the state space. Solutions 

obtained by motion-planning methods that respect the underlying robot dynamics 

are referred to as trajectories. 

Some progress has been made in this direction by adapting popular geometric mo­

tion planners, such as RRT [LaV98,LK01] and EST [HLM97, HKLR02]. To incorporate 

robot dynamics into motion planning, tree-based approaches, such as RRT and EST, 

extend the search tree with trajectories that respect the underlying robot dynamics. 

Such trajectories are generally computed by propagating the robot dynamics forward 

in time (see [CLH+05,LaV06], and Chapter 5). 

The Path-Directed Subdivision Tree (PDST) [LK04a,LK05,Lad06] motion planner, 

takes this idea a step further and proposes the integration of motion planning with 
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physics-based simulations that model not only the dynamics of the robot, but also fric­

tion, gravity, and other interactions between the robot and the environment in which 

the robot operates. Motions produced by PDST in simulation have also been executed 

without much error by modular-chain robots in the physical world [SKYK08]. The 

work in [GRS+07] also uses physics-based simulations of articulated chains in com­

bination with sampling-based motion planners to effectively solve high-dimensional 

motion-planning problems for articulated-chain robots. 

The work in [BK07] builds upon PDST [LK04a,LK05,Lad06] to incorporate safety 

constraints in the presence of moving obstacles directly into motion planning. The 

work is further extended in [BTK07a, BTK07b] to allow for safe replanning not only 

for one robot, but for a group of robotic vehicles with second-order dynamics. 

Sampling-based motion planners have also been adapted to solve motion-planning 

problems involving flexible or deformable objects [HKW98,GHK99,AOLK00,GLM05, 

Mol06,SI07], humanoid robots [KKN+02], modular robots [YSS+07,VKR08,SKYK08], 

and many others surveyed in [CLH+05, LaV06]. 

Most motion planners to date, however, focus on robots whose underlying dy­

namics are continuous. Many robots expected to perform complex tasks combine dis­

crete and continuous dynamics. These hybrid systems, designed to explore unknown, 

dynamic, or possibly hazardous environments, can quickly modify their continuous 

dynamics to respond to mishaps or unanticipated changes in the environment. Such 

responses are often realized by employing discrete logic to instantaneously switch be-
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tween different operating modes. This combination of discrete logic and continuous 

dynamics in hybrid systems poses a significant challenge for current motion plan­

ners. Some sampling-based motion planners [KEK05, BF04, ND07, EKK04] based on 

RRT [LaV98, LK01] have been adapted to address motion planning for hybrid systems 

with few modes. The applicability of RRT-based motion planners to hybrid systems 

with a large number of modes remains challenging, since computational efficiency 

significantly deteriorates as the number of modes increases. 

Motion planning with rich models of the robot and the physical world poses signif­

icant computational challenges that dramatically increase the computational cost of 

current motion-planning methods. As discussed in the introduction in Chapter 1, this 

thesis proposes a novel multi-layered approach, SyCLoP, that seamlessly combines mo­

tion planning at different levels of modeling complexity. As shown in the rest of this 

thesis, a significant advantage of SyCLoP is that it significantly reduces the computa­

tional cost to solve challenging motion-planning problems for robots with dynamics, 

physics-based simulations, and hybrid systems by one to two orders of magnitude 

when compared to state-of-the-art motion planners. 
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Chapter 3 

Preliminaries 

This chapter defines the motion-planning problem and describes several compo­

nents used by sampling-based motion planners, including the multi-layered approach, 

SyCLoP, developed in this thesis. The chapter concludes with a description of the un­

derlying tree-search framework commonly used in sampling-based motion planning. 

3.1 Motion-Planning Problem 

The objective of motion planning is to compute a trajectory that enables the robot 

to accomplish the assigned task while satisfying constraints such as collision avoid­

ance, and velocity and acceleration bounds along the trajectory. Fig. 3.1 provides an 

illustration. A formal definition follows. 

Definition 3.1.1. (Motion-Planning Problem). A motion-planning problem is a 

tuple V = (5, VALID, sinit, GOAL), where 

• S is a state space consisting of a finite set of variables that completely describe 

the state of the system (see Section 3.1.1); 

• VALID : S —* {T, ± } is a state-constraint function, i.e., VALID(S) = T iff s G S 

satisfies the state constraints (see Section 3.1.2); 
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Fig. 3.1: In this motion-planning problem the objective is to find a trajectory that allows 
the robotic car to reach the goal position starting while avoiding collisions with the obstacles. 

• sinit G S is an initial state; 

• GOAL : S —> {T,_L} is a goal function, i.e., GOAL(S) = T iff s € S satisfies 

the motion-planning goal (see Section 3.1.3); 

A solution to the motion-planning problem V is a valid trajectory 7 : [0, T] —• S (see 

Section 3.1.4) that starts at Sinn and satisfies the motion-planning goal, i.e., 

7(0) = sinit; G O A L ( 7 ( T ) ) = T; and Vt e [0, T) : VALiD(7(t)) = T. 

3.1.1 State Space 

A state consists of a collection of variable values that completely describe the 

system at a given instance. The set of all states constitutes the state space, which is 

denoted by S and defined as 

S = {s : s is a state}. 
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When a system is composed of multiple robots, then the state of the system is 

obtained by concatenating the states of each robot in the system. The state space S 

of a multi-robot system is then obtained as the Cartesian product of the state spaces 

Si,S2,.--,Sn of each robot, i.e., 

S = Si x S2 x • • • x Sn. 

The following example illustrates common representations of the state spaces for 

several simple robots. More complex examples can be found in Chapters 5 and 6. 

Example 3.1.1. (State Space of a 2D Point Robot). Each state can be fully 

described by the point's position (x,y). Since the state describes only the robot con­

figuration, the state space is commonly referred to as the configuration space. 

(State Space of a 2D Polygonal Robot). The description of a state of a 2D 

polygonal robot requires the specification not only of the position (x,y), but also of the 

orientation 6 of the polygon w.r.t to a frame of reference. Similarly as in the case of 

a 2D point robot, the state space is commonly referred to as the configuration space. 

(State Space of a 3D Polyhedral Robot). A state (configuration) of a 3D 

polyhedral robot can be fully described by the position (x, y, z) and the orientation 

of the polyhedra w.r.t a frame of reference. Orientation in 3D can be described in a 

variety of ways, e.g., by Euler angles, by an axis and an angle, or by a quaternion. 

(State Space of a Simple Car). In addition to the configuration (x,y,9), the state 

of a simple car can include information about the velocity v and steering angle tp. 



23 
3.1.2 State Constraints 

State constraints indicate a desired invariant that each state should satisfy. In 

motion planning, it is common to require avoiding collisions with obstacles and, for 

greater safety, even require that a minimum separation distance be maintained. When 

planning for an articulated robotic arm, constraints are also imposed on the joint 

limits in order to keep the rotations at each joint within desired bounds. In motion-

planning problems that involve robotic vehicles, state constraints are often used to 

ensure that the vehicles maintain a reasonable speed and avoid sharp turns. 

This thesis allows for a general specification of state constraints as a function 

VALID : S —> {T, _L}, where 

VALID (s) = T iff s satisfies the state constraints. 

3.1.3 Motion-Planning Goal 

The motion-planning goal is specified as desired constraints that a goal state 

should satisfy. Such constraints could include a desired position or orientation. In 

motion-planning with dynamics, it is also common to require that a robot's velocity 

remain within certain bounds. 

As in the case of VALID, this thesis allows for a general specification of a motion-

planning goal as a function GOAL : S —»• {T, _L}, where 

GOAL(S) = T iff s satisfies the motion-planning goal. 
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3.1.4 Trajectory 

A trajectory indicates the evolution of a system's state w.r.t time. 

Definition 3.1.2. (Trajectory). A trajectory is a function 7 : [0, T] —• S, parame­

terized by time T G K-°. The notation \^\ indicates the time duration T. The set of 

all trajectories is denoted byT. 

Note that there is no requirement that 7 should be a continuous function. This 

general definition of a trajectory accommodates hybrid-system trajectories, which, as 

described in Chapter 6, contain discrete transitions. 

3.2 Motion-Planning Components 

Sampling-based motion planners, including the multi-layered approach, SyCLoP, 

developed in this thesis, make use of common motion-planning components, such 

as trajectory concatenation, trajectory sampling, trajectory validation, state-space 

projections, and coverage estimates. 

3.2.1 Trajectory Concatenation 

Trajectory concatentation allows sampling-based motion planners to extend a tra­

jectory by concatenating to its end another trajectory. 

Definition 3.2.1. (Trajectory Concatenation). Let 71 : [0, Ti] —• S and 72 : 

[0,T2] —* S, where 7i(Ti) = 72(0). The concatenation 0/71 by 72, written as 71 o 72, 
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is another trajectory 7 : [0, T\ + T2] -* S defined as 

|

7i(*)> iftefoTi] 

^(t-TO, iftei^Ti+Tz]. 

3.2.2 Trajectory Sampling 

Sampling-based motion planners often employ a trajectory-sampling strategy to 

generate a trajectory 7 : [0, T] —> «S that starts at a given state s € S, i.e., 7(0) = s. 

Definition 3.2.2. (Trajectory Sampling). Let V = (S, VALID, sinit, GOAL) 6e 

a motion-planning problem. Given a state s € S, a trajectory-sampling strategy 

SAMPLETRAJ(7 3 , S) is a sampling function that, according to some probability distri­

bution, generates a trajectory 7 : [0, T] —• S that starts at s, i.e., 7(0) = s. 

The only requirement imposed on S A M P L E T R A J ( P , S) is that it should be a sam­

pling function. The purpose of this requirement is to provide the motion planner 

with alternative trajectories that can start at s 6 S. In this way, subsequent calls to 

SAMPLETRAJ(7->, S) produce different trajectories based on the probability distribu­

tion and the sampling strategy. This allows the motion planner to extend the search 

for a solution along different directions. 

Note that trajectory sampling depends on the motion-planning problem V and in 

particular the robot model. In this way, SAMPLETRAJ provides SyCLpP with a general 

formulation that hides away the specifics of a particular motion-planning problem. 
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Chapters 5 and 6 describe common trajectory-sampling strategies used by SyCLoP in 

the case of motion planning for robot with dynamics and hybrid systems, respectively. 

3.2.3 Trajectory Validation 

The purpose of trajectory validation is to compute the largest part of a given 

trajectory 7 : [0,T] —> S, starting at time 0, that satisfies the state constraints. 

Trajectory validation is typically used in combination with trajectory sampling. Given 

a state s £ S, trajectory sampling generates a trajectory 7 : [0, T] —> «S that starts at 

s. Then, trajectory validation is used to keep only the valid part of 7, starting at s. 

This allows the motion planner to consider only valid trajectories as it proceeds with 

a search for a solution to the motion-planning problem. 

Definition 3.2.3. (Trajectory Validation). LetV = (<S, VALID, sinit, GOAL) be a 

motion-planning problem. Given a trajectory 7 : [0, T] —> S, the function VALIDTRAJ : 

r —• T computes the largest valid part of 7, starting at time 0, as follows: Let K, 

0 < K <T, be as large as possible such that 

\/k 6 [0, K) : VALID(7(A;)) = T. 

Then, 7 ^ ^ : [0, K] —* S, where 

V*€[0,tf]:7vaiid(AO=7(*) 

denotes the largest valid part 0/7 starting at time 0. 

The implementation of VALIDTRAJ(7) relies on an incremental discretization of 

7 in order to compute 7vaiid- At the i-th. iteration, VALIDTRAJ(7) checks the validity 
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of 7(2 * e), where e > 0 is a constant. If VALID(7(Z * e)) = _L, then an invalid state is 

found, so K = (i — 1) * e, and the iteration stops. Otherwise, i is incremented by one 

until i*e > T. Note that e > 0 should be set to a small value in order to minimize the 

possibility of skipping over an invalid state, i.e., 7(i*e) = T and7((z+l)*e) = T, but 

7(£) = _L for some t € (i * e,(i + 1) * e). Such an incremental approaches advocated 

in [CLH+05, LaV06] and is commonly used by sampling-based motion planners. 

3.2.4 State-Space Projections 

A projection of a space «S onto another space Z is obtained via a projection func­

tion P R O J : S —• Z. The multi-layered motion-planning approach SyCLoP developed 

in this thesis uses state-space projections to effectively reduce the dimensionality of 

<S by projecting S onto a lower dimensional space Z. Given a set of state samples 

S = { s i , . . . , sn} from <S, the projection of S is obtained as Z = {zi,..., zn}, where 

Zt = PROj(Si) . 

The objective of the projection is to reduce the dimensionality while at the same time 

preserve the underlying structure of the original set. For many motion-planning prob­

lems, simple projections that consider only some of the state components have been 

shown to work well in practice [LK04a, LK05, Lad06, PKV07a, PKV08b, PKV08d]. 

In particular, for motion-planning problems involving robotic vehicles such as cars, 

differential drives, unicycles, low-dimensional projections are usually obtained by con­

sidering only the position component of a state, i.e., (x, y) 6 R2 (resp., (x, y, z) G M3) 
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for a robot operating in a 2D (resp., 3D) workspace. For articulated-arm robots, the 

position of the end-effector is typically used for the projection. 

For other motion-planning problems, such as those arising in reconfigurable robots 

and computational biology, it is more challenging to design an appropriate projection 

function that reduces the dimensionality while preserving the underlying structure 

of the original set. In these cases, dimensionality reduction [J0I86, CCOO, HKO01] 

can provide a viable approach for automatically computing projections onto low-

dimensional Euclidean spaces. The author's work in [PK06, PSCK07, PK07b] has 

developed an effective framework for computing low-dimensional projections that 

preserve the underlying structure of high-dimensional data remarkably well. 

3.2.5 Coverage Estimates 

An important issue that arises frequently in sampling-based motion planning re­

lates to the estimation of coverage of a region of the state space by the samples 

generated by the motion planner. The motion-planning approach SyCLoP developed 

in this thesis, as described in Chapter 4, relies on coverage estimates in order to 

determine which parts of the state space should be further explored. 

Consider a region y and a set of samples y = {iji,..., yn} from y. The objective 

of a coverage estimate 

cov(y,y) 

is to quantify how well y covers y. Coverage estimates were first introduced in the 

context of Monte Carlo methods as a way to measure the quality of deterministic sam-
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pling (also referred to as quasirandom sampling) in comparison to random sampling 

(see recent books [Nie92, DT97] for details and extensive references on the subject). 

One such measure that has been widely used is the dispersion. As noted in [EKK04], 

while dispersion has been used in sampling-based motion planning to generate quasir­

andom samples [LBL03], its use as a coverage estimate is impeded by the significant 

cost required to compute it in high dimensions. 

A viable way to avoid computational bottlenecks due to the high-dimensionality 

of the state space is to compute the coverage in a low-dimensional projection onto a 

Euclidean space. Such an approach, which has been advocated in [CLH+05, LaV06, 

LK04a, LK05, Lad06, PKV07a, PKV08b, PKV08d], is also followed in this thesis. 

1. Given y = {y~i,..., yn}, compute a low-dimensional projection Z = {z\,..., zn} C 

Rm as described in Section 3.2.4, i.e., Z{ = PROJ(^J ) . 

2. Overlay an implicit grid with n cells over Rm. 

3. Compute the coverage by counting the number of grid cells that have at least 

one sample inside, i.e., 

n I 1, if the i-th cell contains at least one sample z from Z 

cov(y,y) = Y,< 
0, otherwise. 

Note that it is not necessary to maintain an explicit representation of the grid. In 

fact, a hash data structure is typically used to maintain a list of nonempty grid cells. 

When a new sample y is added to y, then its projection is computed as 

Z = PROj (y ) . 
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The cell that z belongs to is then added to the list of nonempty grid cells (if not already 

there). This approach allows for fast updates and minimal memory requirements 

since the number of nonempty grid cells is always less than or equal to the number 

of samples. Note that a different spacing can be used along each dimension, allowing 

the grid to be coarser along some dimensions and finer along others. 

3.3 Motion Planning as a Search Problem 

Let V = (5, VALID, Sinit, GOAL) be a motion-planning problem, as defined in 

Section 3.1. Motion planning is generally considered as a search problem for a valid 

trajectory 7 : [0, T] —• S that satisfies the motion-planning goal, i.e., 

7(0) = Si„it, G O A L ( 7 ( T ) ) = T, and Vt € [0, T] : VALID( 7 (*) ) = T. 

Many sampling-based motion planners follow a common framework that searches for 

a solution by extending in the state space S a tree rooted at the initial state Sinjt. 

Pseudocode of the basic search is given in Algo. 1. 

A search data structure is maintained as a tree T = (Vr,Er) (Algo. 1:2). A 

vertex v(s) € Vr is associated with a state s € S, where VALID(S) = T. An edge 

(v(si),v(s2)) € £7- indicates that a valid trajectory 7Sl)S2 : [0, T] —• S from Si to S2 

has been computed, i.e., 

(0), s2 = 7si,S2( r). a n d W e [ O ' ^ l :
 VALID(7«I,«2(*))

 = "T-

Initially, W = {^(sinit)} and £7- = 0 (Algo. 1:2). As the search proceeds iteratively 

(Algo. 1:3-10), T is extended by adding new vertices and edges. At each iteration, a 
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Algori thm 1 A Basic Search-Tree Framework for the Motion-Planning Problem 

Input : P = (5, VALID, Sinn, GOAL): motion-planning problem 
£max £ K>0: upper bound on overall computation time 

Outpu t : A solution trajectory or _L if no solution trajectory is found 
1 

2 

3: 

4: 

5 

6: 

7: 

8: 

9 

10 

11 

STARTCLOCK 

T = (VT, ET); VT <- {s ini t}; ET «- 0 
while ELAPSEDTIME < tmax do 

s <— SELECTSTATEFROMSEARCHTREE(7 ? , T) 

7 *- S A M P L E T R A J ( P , S) Osee Section 3.2.2 
7vaiid <— VALIDTRAJ(7) Osee Section 3.2.3 
Snew -•* l a s t S t a t e of 7valid 

VT*-VTU {Snew}; ET <- ET U {(s, Snew)} 
if GoAL(snew) = T then 

re turn T R A J ( T , snew) ^compute solution trajectory 
re tu rn ± 

state s is first selected from the states already in T (Algo. 1:4). The search tree T is 

then extended by using a trajectory-sampling strategy (see Section 3.2.2) to generate 

a trajectory 7 : [0,T] —• S that starts at s (Algo. 1:5) and keeping only the valid 

part 7vaiid of 7 (Algo. 1:6). The vertex v(snevr), where snew is the last state of 7vaiid! is 

added to VT (Algo. 1:8). The edge (v(s),v(snew)) is added to ET, and 7 is associated 

with (v(s),v(snew)) (Algo. 1:8). If GOAL(snew) = T, then a solution trajectory is 

found (Algo. 1:9). In fact, the solution trajectory T R A J ( T , snew) (Algo. 1:10) can 

be computed by concatenating the trajectories associated with the tree edges that 

connect v(smit) to v(snew), i.e., 

1 R A J ( T , Snew) = 7slnit,ai ° 7si ,s 2 ° ' ' " ° 7sn,snew> 

where v(si),..., v(sn) denotes the sequence of vertices that connects v(s-mit) to v(sRevr). 
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Chapter 4 

SyCLoP: Synergic Combination of Layers of 

Planning 

This chapter describes the proposed multi-layered approach, SyCLoP, which syn-

ergically combines high-level discrete planning with low-level motion planning to 

dramatically reduce the computational time for solving challenging motion-planning 

problems. SyCLoP, as shown later in the thesis, can be applied to motion-planning 

problems that incorporate robot dynamics, physics-based simulations, hybrid sys­

tems, and high-level tasks specified using the expressiveness of linear temporal logic. 

4.1 Overall Approach 

The efficiency of the search-tree framework presented in Section 3.3 depends on 

the ability of the motion planner to quickly extend the search tree T along those 

directions that can be used for computing a solution trajectory. 

SyCLoP utilizes information provided by the problem specification and informa­

tion gathered during previous exploration steps to guide future explorations closer to 

obtaining a solution to the given motion-planning problem. This is a concept that has 

been studied before mainly in the context of geometric motion planning by sampling-

based motion planners that construct roadmaps. For example, PRM [KSL096] uses 
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the information of the connectivity of the samples to create more samples in parts of 

the configuration space where connectivity is low. The work in [BB05] uses nearest-

neighbors information in the context of PRM to define the utility of each sample in an 

information-theoretic sense and only add to the roadmap those samples that increase 

the overall entropy. The planners in [MTP+04] and [HSAS05] also utilize information 

in the context of PRM to find appropriate sampling strategies for different parts of the 

configuration space. In contrast to roadmap methods, traditional tree-based motion 

planners such as RRT [LaV98,LK01] and EST [HLM97, HKLR02] rely on limited infor­

mation, such as distance metrics or simple heuristics to guide the search. Although 

the tree may initially advance quickly, as the time goes on, the growth slows down 

rapidly as it becomes more and more difficult to find promising directions for the 

search. These limitations become even more pronounced when solving challenging 

motion-planning problems that incorporate richer models of the robot and the physi­

cal world, such as robot dynamics, physics-based simulations, and hybrid systems. In 

these cases, the added complexity renders current motion planners practically inef­

fective. To address some of the limitations observed in tree-based planners in solving 

challenging problems with dynamics, recent work in [LK04a,LK05,Lad06] and [BK07] 

rely on a subdivision scheme and potential fields to guide the tree search, respectively. 

To effectively guide the search for a solution and overcome the limitations of 

current motion planners, SyCLoP seamlessly combines high-level discrete planning 

with low-level motion planning in a multi-layered approach. As mentioned in the 
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introduction in Chapter 1, in the first layer, planning takes place in a simplified high-

level and discrete model of the motion-planning problem. In the second layer, motion 

planning is based on the full model of the motion-planning problem. 

The purpose of high-level planning, which draws from research in AI and logic, 

is to guide low-level motion planning as it extends T in search for a solution to the 

motion-planning problem. The high-level planning provides high-level plans, which 

constitute solutions to the motion-planning problem under the simplified model. 

The rationale for high-level planning is that solutions obtained under the simplified 

model can be indicative of solutions under the full model of the motion-planning 

problem. Moreover, from a computational perspective, it is significantly more efficient 

to obtain solutions under the simplified model than under the full model. 

The objective of the low-level planning in the second layer is to extend T so 

that it closely follows the current high-level plan. Since a high-level plan constitutes 

a solution to the motion-planning problem under the simplified model, by closely 

following the high-level plan, the low-level motion planner might be able to obtain a 

solution under the full model of the motion-planning problem. 

A distinctive feature and a crucial property of SyCLoP is the synergic combina­

tion of high-level discrete planning and low-level motion planning. Note that it is 

not known a priori which high-level plan would be the best in guiding the low-level 

motion planner toward a solution. As the search progresses, the different planning 

layers in SyCLoP exchange information with one another in order to evaluate the feasi-
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bility of current high-level plans and compute increasingly feasible high-level plans in 

future iterations. Aiming to strike a balance between greedy and methodical search, 

SyCLoP gives priority to highly feasible plans, but at the same time it does not ignore 

other plans. This is especially relevant in the early stages of the search when more 

information is needed to properly evaluate the feasibility of different high-level plans. 

This synergic combination of high-level discrete planning and low-level motion 

planning provides SyCLoP with the flexibility to extend the search tree T along useful 

directions while able to radically change direction if information from the search 

suggests other highly feasible plans. As shown in later chapters of this thesis, SyCLoP 

dramatically reduces the computational cost in solving challenging motion-planning 

problems that incorporate robot dynamics and physics-based simulations (Chapter 5), 

hybrid-systems (Chapter 6), and high-level tasks expressed in LTL (Chapter 7). 

The rest of this chapter is as follows. The simplified high-level and discrete model 

of the motion-planning problem is described in Section 4.2. The synergic combina­

tion of the high-level discrete planning and low-level motion planning in SyCLoP is 

described in Section 4.3. Descriptions of the high-level discrete planning and low-level 

motion planning are provided in Sections 4.4 and 4.5, respectively. 

4.2 High-Level Discrete Model of Motion-Planning Problem 

The high-level planning layer in SyCLoP operates on a simplified discrete model 

of the motion-planning problem. Although it is possible to consider other high-
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level models, this thesis focuses on discrete models due to their simplicity and the 

computational efficiency of planning on discrete models as compared to continuous 

models. Moreover, the use of discrete models allows SyCLoP to benefit from research 

in computer logic and AI, where discrete planning plays an important role. 

Discretizations of the motion-planning problem in the context of geometric mo­

tion planning appeared early in the literature. Key theoretical results were ob­

tained using discretizations based on decompositions of the collision-free configuration 

space [Lat91]. As discussed in related work in Chapter 2, the notion of a roadmap, 

introduced by Canny's algorithm [Can88a], provides a discretization of the motion-

planning problem in the form of a graph. Each vertex in the graph is associated with 

a collision-free region of the configuration space. The union of all the regions asso­

ciated with the graph vertices corresponds to the collision-free configuration space. 

An edge in the graph indicates physical adjacency of the regions associated with the 

end-vertices of the edge. Similar discretizations are also obtained by exact and ap­

proximate cell-based decomposition methods, which decompose the collision-free con­

figuration space into a collection of cells (see discussions in [Lat91,CLH+05,LaV06]). 

A distinctive feature of SyCLoP in contrast to decomposition methods is that 

SyCLoP does not impose any strict requirements on the discrete model of the motion-

planning problem. In particular, SyCLoP does not require the discrete model to be 

based on a partition of the collision-free configuration space. This allows SyCLoP 

to consider discrete models that can be computed efficiently, as opposed to the 
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exponential-time cost required to partition the collision-free configuration space. 

In many cases, the discrete model used by the high-level planning layer of SyCLoP 

is based on a simple partition of the state space S into a finite number of regions 

11 = {Kull2,..., Kn}, where S = Tlx U Tl2 U • • • U Kn. 

Since SyCLoP does not require that a region TZi ETZ should contain only valid states, 

such partitions can be easily obtained in a variety of ways. For instance, as described 

in Chapter 5, partitions used for motion-planning problems that incorporate robot 

dynamics are based on grid and triangular decompositions of the workspace on which 

the robot operates. In the case of motion-planning for hybrid systems, partitions are 

based on the discrete logic employed by the hybrid system (see Chapter 6). When 

incorporating high-level tasks expressed in LTL into motion planning, as described 

in Chapter 7, partitions are based on the LTL formula specifying the high-level task. 

The high-level discrete model is represented in terms of a graph G-JI — (Vn, En), 

whose vertices are regions in the partition 1Z and whose edges denote adjacency 

between regions. Region Tli G 71 is considered adjacent to Tlj G Tl if there exists a 

trajectory 7 : [0, T] —• S that goes directly from a state in Tli to a state in Tlj, i.e., 

7(0) G Ki, 7(T) G Tlj, and \/t G [0, T] : 7(2) G Tli U % 

Then, Vn = {v(7li) : Hi G 71} and 

En = {(v(7li), v(7lj)) : (Tli, Tlj e7l)A (Tli is adjacent to Tlj)}. 

Fig. 4.1 (a, b) provides an illustration. The high-level discrete model also keeps in­

formation about regions associated with the initial state and regions which contain 
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Fig. 4.1: (a) A grid-based partition, (b) The high-level discrete model represented as a 
graph, (c) Example of a high-level plan. 

states that satisfy the motion-planning goal. More specifically, 

• "ftinit = {Hi -T^i € ft A sinit e ft*} and 

• ftcoAL = {Tli-.Tli ell A (3s € Hi : GOAL(S) = T)}. 

Putting it all together, the high-level discrete model is a tuple 

V = (ft, GK, ftinit, ft-GoAl,)-

A solution w.r.t to the discrete model is a connected sequence of regions [ftjj*=1 that 

starts at a region in TZmit and ends at a region in T^GOAL, i-e., 

ftu € fti„it, Kik € ftcoAL, and ^(ft*.), v(ftij) G E R , Vj G {1 ,2 , . . . , fc - 1}. 

4.3 Interplay of Planning Layers 

As discussed in Section 4.1, SyCLoP systematically takes advantage of the fact that 

solutions obtained under the high-level model can be indicative of solutions under the 

full model of the motion-planning problem. SyCLoP uses high-level plans to guide the 
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low-level motion planner as it extends T in search for a solution. In turn, information 

gathered during the search, such as the progress made in following the high-level plan, 

is fed back from the low-level to the high-level layer. In this way, high-level plans 

become increasingly useful in guiding the low-level motion planner toward a solution. 

Consider a high-level plan [7£iJ*=1. Recall that [fciJjLi connects "Ril G 'Rnmx to 

1Zik 6 T̂ GOAL (see Section 4.2 and Fig. 4.1(c)). If a solution trajectory 7 : [0, T] —* S 

exists that reaches TZ^,!^^,... ,1Zik in succession, then [72 ]̂jf=1 is considered feasi­

ble. A feasible high-level plan is indicative of solutions under the full model of the 

motion-planning problem. Since it is not known a priori which high-level plan is 

feasible, SyCLoP maintains a running weight estimate w ( [ ^ t j ] . ) on the feasibility 

of [7£jJ . = r A high weight indicates that SyCLoP is making significant progress in 

following the high-level plan, while a low weight indicates little or no progress. 

The core part of SyCLoP, illustrated in Fig. 1.1 and 4.2, proceeds by repeating the 

following steps until a solution is found or a maximum amount of time has elapsed: 

1. Obtain a high-level plan [7£iJ = 1 by a high-level discrete planner operating on 

the discrete model V = (11, G-n, 7£jnit, T^GOAL) °f the motion-planning problem. 

2. Use low-level motion planning to extend the search tree T from one region to 

its neighbor, as specified by the current high-level plan [7£jJ =1 . 

3. Update the weights w(|72ij = 1) on the feasibility estimates of the high-level 

plans in order to compute increasingly feasible plans in future iterations. 

The discrete model can provide SyCLoP with many alternative high-level plans. 



Fig. 4.2: Interplay of high-level discrete planning and low-level motion planning in SyCLoP. 
Given a high-level plan, the low-level motion planner extends the search tree T, so that 
it closely follows the high-level plan. Information gathered during the search is fed back 
from the low-level to the high-level layer to compute increasingly feasible high-level plans 
in future iterations. Obstacles are shown in yellow. High-level plans are shown in light red. 
Tree vertices are shown as blue circles, while tree edges are shown as red curves. 

A central issue is which high-level plan to choose at each iteration from the com-

binatorially large number of possibilities. Since the feasibility estimates are based 

on partial information, it is important not to ignore high-level plans associated with 

lower weights, especially during the early stages of the search. 

SyCLoP aims to strike a balance between greedy and methodical search. For this 

reason, SyCLoP selects more frequently high-level plans associated with higher feasi­

bility estimates and less frequently high-level plans associated with lower feasibility 

estimates. Information gathered during the search by the low-level motion planning 

(such as coverage, regions 7£;. that have been reached, and time spent) is used to 
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update the weights w ( [ ^ i j =1) o n the feasibility of high-level plans. 

As a result, a new high-level plan associated with a high weight could be selected 

in the next iteration. In turn, by receiving high-level plans [TZ^]._. that are estimated 

to be highly feasible, the low-level motion planner is able to make progress and extend 

T toward TZ^, 72.,2,..., lZik in succession until it successfully computes a solution. 

This synergic combination of high-level discrete planning (Section 4.4) and low-

level motion planning (Section 4.5) through the weight estimates on the feasibility 

of high-level plans is a crucial component of SyCLoP. This combination provides 

SyCLoP with the flexibility to extend T along useful directions while able to radically 

change direction if information from the search suggests other highly feasible plans, 

as illustrated in Fig. 4.2. Pseudocode for SyCLoP is given in Algo. 2. 

4.4 High-Level Discrete Planning: Guiding the Search 

The current high-level plan a is computed at each iteration (Algo. 2:6) by searching 

the graph Gn — iYn, En) of the discrete model V for a connected sequence of regions 

[R-ij]j=i from TZil e 72.injt to Kik € T̂ GOAL- As discussed in Section 4.3, the discrete 

model can provide SyCLoP with combinatorially many alternative high-level plans. 

Since feasibility estimates are based on partial information, especially during early 

stages of the search, it is important not to ignore high-level plans associated with low 

weights. For this reason, SyCLoP aims to balance greedy and methodical search in 

the computation of high-level plans at each iteration of the core loop (Algo. 2:6). 
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Algori thm 2 SyCLoP: Synergic Combination of Layers of Planning 

Input : P = («S, VALID, sinit, GOAL): motion-planning problem 
£max £ R: upper bound on overall computation time 

Outpu t : A solution trajectory or ± if no solution trajectory is found 

1 

2 

3 

4: 

5 

6 

7: 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20: 

21 

STARTCLOCK 

T — (VT, ET)\ VT *— {sinit}; ET «— 0 ^initialize search tree 
V = (11, G-JI, ̂ init,^GoAL) <— DISCRETEMODEL(T') 0 construct discrete model 
INITFEASIBILITYESTIMATES(GTJ, W) ^initialize feasibility estimates 
while TIME < tmax do Qcore loop interplay: discrete search-motion planning 

a = [7£iJ*=1 <— HIGHLEVELPLANNING(X>, W) ^compute high-level plan 
cravail «— 0 0 begin motion-planning step 
for j = k, k — 1 , . . . , 1 do Qstart using high-level plan 

if S T A T E S ( T , ^ . ) ^ 0 A rand(0,1) < 1+|^va,i|i, t hen 
tfavaii *— {R-ij} U o-avaii Qget directions from the high-level plan 

for several times do 
TZij <— SELECTREGiON(cravaii, w) 0 se/ec£ region from available regions 
s <— SELECTSTATE(STATES(T, 7^.), tu) ^select state for propagation 
Tvaiid <— EXTENDSEARCHTREE(T, s) ^attempt to extend search tree 
snew <— last state of 7vaiid 
if Snew 7̂  NULL then §was the tree extended? 

VT <— VT U {snew}; £7- <— .E7- U {(s, Snew)} 0 ^ ^ state and trajectory 
UPDATE(cravaii) 0consider for selection newly reached regions 
if GoAL(snew) = T then re turn T R A J ( T , snew) ^solution 

UPDATEFEASIBILITYESTIMATES(GT2, W) 

re tu rn _L 

4.4.1 Balancing Greedy and Methodical Search 

An effective strategy that balances greedy and methodical search can be obtained 

by selecting each high-level plan a with probability w(a)/ ^ f f , w(a'). This selection 

process is biased towards high-level plans that are estimated to be highly feasible, 

since the objective of SyCLoP is to quickly compute a solution trajectory. At the same 

time, since it is not known a priori which a actually leads to a solution trajectory, 

the selection process guarantees that each high-level plan has a non-zero probability 

of being selected. Computationally, however, such strategy is feasible only when it is 
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practical to enumerate all high-level plans. Due to the discrete model, there is usually 

a combinatorial number of high-level plans, which makes enumeration impractical. 

4.4.2 Estimating the Feasibility of High-Level Plans 

To address the issue of selecting a high-level plan among combinatorially many 

plans, SyCLoP associates a weight w(1Zi) with each IZi € TZ. The weight w{1Zi) is a 

running estimate on the feasibility of including IZi in the current high-level plan. 

The weight w(7Zi) is computed based on information gathered by the low-level 

motion planner during each exploration of IZi. As it can be imagined, there are 

many ways that can be used to compute w(1Zi). This thesis focused on simple and 

efficient computations that were shown to work well in practice for solving challeng­

ing motion-planning problems involving robot dynamics, physics-based simulations, 

hybrid systems, and high-level tasks expressed in LTL. 

The weight w(TZi) in this thesis is computed as 

v o l ^ T ^ c o v ^ ) . 
W{ni) = ti^fc) ' (41) 

where 

• vol(72.j) is the volume of 1Zi\ 

• cov(72.j) is an estimate on the coverage of IZi by the states in T. 

• time(72.j) is the total time the motion planner has spent exploring IZi, 

• z\, z% are normalization constants, where usually 0 < z\ < z<i < 1. 
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The coverage cov(7£j) is computed as 

cov(fti) = Cov(Tli, STATES(T, Hi)), 

where Cov(ftj, STATES(T, 7^)) is described in Section 3.2.5 and STATES(T, Hi) de­

notes the states s € T associated with Hi, i.e, s € IZi. 

When cov(T^i) is high, then there are many states in Hi which SyCLoP can use to 

extend T to the next region in the current high-level plan. Preference is also given to 

Hi when it has a large volume, since it allows SyCLoP to extend T in different direc­

tions. The term time(72.j) ensures that SyCLoP does not spend all the computation 

time extending T from states associated with one particular Hi. In fact, as time(Hi) 

increases, the likelihood that Hi is included in the current high-level plan decreases 

rapidly, allowing SyCLoP to spend time extending T from states associated with other 

regions. In this way, SyCLoP associates a high weight w(Hi) with Hi when Hi has a 

large volume and has been covered well in a short amount of time. 

4.4.3 Computing the High-Level Plan 

The computation of a high-level plan is essentially a graph-search algorithm and 

the literature on this subject is abundant (see [Zha06] for extensive references). The 

combination of search strategies in this thesis aims to bias the computation toward 

high-level plans associated with high weights. However, random high-level plans are 

also used, although less frequently, as a way to correct for errors inherent with the esti­

mates. The use of randomness is motivated by observations made in [GO02,PBC+05], 
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where random restarts and random neighbors have been suggested as effective ways 

to unblock the exploration when sampling-based motion planners get stuck. 

With high probability, SyCLoP computes the high-level plan (Algo. 2:6) as the 

shortest path by using an adaptation of Dijkstra's shortest path algorithm, where 

an edge (v(R,i),v(R,j)) e En is assigned the weight l/(w(TZi) * w(Hj)). In this way, 

SyCLoP selects at each iteration a high-level plan that is estimated to be highly feasible 

for advancing the search toward the goal. 

With small probability, SyCLoP computes the high-level plan (Algo. 2:6) as a 

random sequence of edges that connect a region in 72.in;t to a region in 7?.GOAL- This 

computation is carried out by using depth-first search, where the frontier nodes are 

visited in a random order. 

4.5 Low-Level Motion Planning: Explore 

The exploration starts by rooting a tree T at the specified initial state sinit 

(Algo. 2:2). The objective of the motion-planning step (Algo. 2:7-20) is to quickly 

extend T from states associated with regions specified by the current high-level plan 

[iZy]... At each iteration a region P*. is selected from [R>ij] = 1 and explored for 

a short period of time. The exploration aims to extend T from 7? .̂ to 7^3+1. For 

this reason, several states are selected from the states associated with TZ^ and are 

extended toward TZij+l. 
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4.5.1 Selecting a Region From the High-Level Plan 

The objective is to select a nonempty region IZ^ €. [TtjJ = 1 whose exploration 

causes T to grow closer to the goal. Since [ft»J = 1 specifies a sequence of neighboring 

regions that end at a region associated with the motion-planning goal, the order in 

which the regions appear in the high-level plan provides an indication of how close 

each region is to the goal. For this reason, SyCLoP prefers to select regions that 

appear toward the end of [7?.̂ .] more frequently than regions that appear at the 

beginning. SyCLoP maintains a set Travail of regions that it considers for the selection 

process. At the beginning of each motion-planning step, Travail is set to 0 (Algo. 2:7). 

r ik Then, the current lead [7^ J = 1 is scanned backwards starting at j = k down to 1. 

If there are states s E T associated with TZi:j, i.e., STATES(T, 11^) ^ 0, then "R^ is 

added to 7£avaii with probability 1/(1 + |7£avaii|
2) (Algo. 2:8-10). A region i2^ is then 

selected from i?avaii (Algo. 2:12) with probability 

where w(lZij), defined in Eqn. 4.1, estimates the feasibility of TZir 

As noted in Section 4.4.2, the selection schemes presented in this thesis are shown 

to work well on practice for challenging motion-planning problems involving robot 

dynamics, physics-based simulations, hybrid systems, and high-level tasks expressed 

in LTL. As it can be imagined, it is possible to develop better selection schemes 

that can further improve the computational efficiency of SyCLoP in solving new and 

challenging motion-planning problems. 
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4.5.2 Selecting a State From a High-Level Region 

Prom the states in T that are associated with 1Zijt i.e. STATES(T, TZ^), a state s 

is selected with probability 

^—/ T -1—, 
nsel(s) ^—' nsel(s')' 

where nsel(s) is the number of times s has been selected in the past. This selection 

schemes follows well-established strategies in motion planning [CLH+05,LaV06,SL02, 

PKV07b,PKV08a] based on probability distributions that favor those states that have 

been selected less frequently. 

4.5.3 Extending the Search Tree by Trajectory Sampling 

Given a state s eT, the search tree T is extended from s by using the trajectory-

sampling strategy, S A M P L E T R A J ( P , S) (see Section 3.2.2), to generate a trajectory 

7 : [0, T] —• S that starts at s, i.e., 7(0) = s. Then, starting from t = 0, SyCLoP 

checks the validity of 7 and keeps only the valid portion of 7 (see Section 3.2.2). 

4.5.4 Adding a New Branch to the Search Tree 

Let 7vaiid : [0, K] —» S denote the valid trajectory extended from s € T. Then, 

def 

Snew = 7vaiid(-f0 and (v(s), f(snew)) are added to T (Algo. 2:17). In addition, snew is 

added to the appropriate region 1Zi. If Hi is not in Travail, then TZi is added to Travail 

(Algo. 2:18). Thus, when T reaches new regions, they become available for selection 

during the next iteration of the motion-planning step. 
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Chapter 5 

Motion Planning with Nonlinear Dynamics 

Motion planning that incorporates nonlinear dynamics is greatly motivated by 

the availability of new robots and the need to produce trajectories that respect the 

physical constraints in the motion of these robots. This chapter demonstrates the 

computational efficiency of SyCLoP in solving challenging motion-planning problems 

for robotic systems with nonlinear dynamics. Experiments on nonlinear models of 

robotic vehicles show significant computational speedups of one to two orders of 

magnitude when compared to state-of-the-art motion planners. 

5.1 Control-based Systems 

Many physical systems and in particular robots are often controlled by applying 

external inputs. As an example, an automatic car is driven by applying acceleration 

and rotating the steering wheel. The dynamics of a system, which are often nonlinear, 

describe the evolution of a system's state. This section defines control-based systems 

using a general formulation that allows treating the dynamics as a black box. 

Definition 5.1.1. (Control-based System). A control-based system is a triple 

M = (S,U,f), where 

• S is a state space consisting of a finite set of variables that completely describe 
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the state of the system (see Section 3.1.1); 

• U is a control space consisting of a finite set of input variables that can be applied 

to the system (see Section 5.1.1); 

• / : SxUx R-° —> S is a flow function that simulates the system dynamics when 

an input is applied to the system for a certain time duration (see Section 5.1.2). 

5.1.1 Control Space 

A control is an external input that can be applied to a system in order to affect 

its behavior. Each control is represented by a collection of variable values. The set 

of all controls constitutes the control space, which is denoted by U and is defined as 

U = {u : u is a control}. 

5.1.2 Dynamics 

When a system is at a state s € S and a control u EU is applied for a duration of 

t G R-° units of time, the system's state evolves according to the underlying dynamics 

and at the end the system may be at a new state snew £ S. Such behavior is captured 

by a flow function, which is defined as follows. 

Definition 5.1.2. (Flow Function). A flow function f : S xU x R-° —• S is such 

that, for each s € S, u £lA, and t € R-°, f(s, u, t) outputs the new state snew £ «S 

obtained by applying the input u fort units of time when the system is at state s. 

Consistency in the flow function is ensured by the following requirements: 
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• (Identity Property). For each s e S and ueU, 

S = / ( S , M , 0 ) . 

• (Transitive Property). For each s € S, u € U, *i € R-°, £2 € R-°, 

/ ( s , u, h +*2) = / ( / (« , u, «i),«, t2).. 

Differential Equations 

In many physical systems, the dynamics of the state evolution is commonly de­

scribed by a set of differential equations of the form g : S xW —> «S with first, second, 

or higher order derivatives. In such cases, closed-form solutions (if available) or state-

of-the-art numerical integrations that minimize numerical errors can be used for the 

computation of the flow function / . An example of a kinematic car is provided below. 

Several examples of second-order dynamics are given in Section 5.3.2. 

Example 5.1.1. (KCar: Kinematic Car). 

• State Space S: The state s = (x, y, 6) of a kinematic car model consists of a 

position (x,y) £ R2 and an orientation 9 € [0,211). 

• Control Space U: The kinematic car is controlled by setting the speed (uo) and 

steering angle (u\). The speed and steering control are restricted to |ito| < 

vmax = Zm/s and \ui\ < ^m a x = 35°. 

• Equations of Motion: x = Mocos(0), y — u0sin(^), 6 = uot&n(ui)/L, where L 

is the distance between the front and rear axles. 
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Physics-based Simulations 

When differential equations become too cumbersome to fully describe the dy­

namics, a computer program, such as physics-based simulators, can be used for the 

dynamics simulation. Simulation allows modeling of complex robot dynamics, fric­

tion, gravity, and interactions of the robot with the environment, which cannot be 

easily described analytically. Similar to the abstraction of collision checking in early 

sampling-based approaches, physics-based simulations allow the motion planner to 

access the necessary components for planning purposes, while hiding the intricacies 

of the robot and its interactions with the environment. This general treatment allows 

SyCLoP to handle systems with general nonlinear dynamics. 

5.2 Applying SyCLoP to Motion Planning with Nonlinear Dy­

namics 

The multi-layered approach SyCLoP, described in Chapter 4, can be used in the 

context of motion planning for control-based systems with nonlinear dynamics. This 

section describes the high-level discrete model and the trajectory-sampling strategy 

that are used by SyCLoP for motion-planning problems with nonlinear dynamics. 

5.2.1 High-Level Discrete Model of Motion-Planning Problem 

As discussed in Section 4.2, the high-level discrete model provides a simplified 

high-level planning layer that is used to effectively guide the low-level motion planner 
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as it extends the search tree T. Recall that the discrete model is based on a partition 

n = {nl,n2,...,nn} 

of the state space S into different regions. SyCLoP computes the partition 1Z based 

on a workspace decomposition. For robots operating in 2D (resp., 3D) environments, 

the workspace, denoted by W, corresponds to a region in R2 (resp., R3). Without 

loss of generality, W is assumed to be a unit square in 2D and a unit cube in 3D. 

A projection function P R O J : S —• W (see Section 3.2.4) maps each state s G S to 

a point in the workspace W, typically, by extracting the position component from s. 

Then, the workspace is decomposed into different regions 

Wx,W2,...,Wn, 

and the state-space partition K = {IZi, IZ2, • • •, TZn} is computed as 

Ui = {s e S : P R O J ( S ) € Wi}, for i = 1,2,...,n. 

The graph Gn = (Vn, En) of the discrete model is then computed as 

• VR. = {v(Ki) :KieK} and 

• En = {(villi),vCJlj)) : Wi is adjacent to VVj. 

The computation of workspace decompositions is an active research area in com­

putational geometry, and over the years numerous methods have been developed. 

Simple workspace decompositions can be obtained by imposing a uniform grid over 

W, where each cell constitutes a decomposition region Wj. Other decompositions 

can be obtained by triangulations or trapezoidations. Fig. 5.1 provides an example. 



(a) uniform grid (b) triangulation (c) trapezoidation 

Fig. 5.1: Various workspace decompositions. 

The impact of different workspace decompositions on the computational efficiency of 

SyCLoP is studied in Section 5.4. 

5.2.2 Low-Level Motion Planning 

Applying SyCLoP to solve motion-planning problems with dynamics requires defin­

ing the trajectory-sampling strategy that is used by the low-level motion-planning 

layer, as described in Chapter 4. This section describes common strategies that can 

be applied to all control-based robotic systems. 

Trajectory Sampling by Forward Propagation 

As described in Section 3.2.2, trajectory sampling provides the necessary mecha­

nism for extending the search tree T from a state s ET. Recall that a search tree T is 

extended by creating a new branch at s, which is obtained by computing a trajectory 

7 : [0, T] —> S that starts at s, i.e., 7(0) = s. 

Forward propagation, which is based on the flow function / , allows SyCLoP to sam-
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pie different trajectories that start at s. A common strategy for forward propagation 

is to select a control u EU and a time duration T G [Tmin, Tmax] pseudo-uniformly at 

random, and compute 7 as the trajectory obtained by applying the control u for T 

units of time when the system is at state s, as defined below: 

Definition 5.2.1. (Primitive Trajectory). Let M = (S,U,f) be a control-based 

system. A state s G S, an input u G U, and a time duration T € R-° define a 

primitive trajectory ~fs,u,T '• [0, T] —* S, such that 

Vte[0,r] :7 s ,u ,T(i) = / ( s , M ) . 

An advantage of this random-selection strategy is that it can be applied to any 

system. For a car-like system, such strategy corresponds to selecting random values 

for the acceleration and the turning velocity of the steering wheel. A disadvantage 

is that the resulting trajectories are usually of poor quality. In order to improve the 

trajectory quality, one could design propagation strategies that are system specific. 

For the car example, propagation strategies can be designed that allow the car to move 

straight, make a smooth left or right turn, reverse, and incorporate other common 

driving strategies. Research in control theory [LaV06] has made significant progress 

in designing high-quality trajectories for different robotic systems. Such strategies are 

implemented by applying not just one control, but a sequence of controls for different 

time durations, as indicated in the following definition: 

Definition 5.2.2. (Extended Trajectory). Let M = (S,U,f) be a control-based 

system. A trajectory 71 : [0, T\] —• S, an input w2 G U, and a time duration T2 G R-° 
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define an extended trajectory 7 : [0, T\ + T2] —• S, written 7 = 71 o (u2, T2), such that 

-y(s,u,t) = < 
7i(*), if te&Tx], 

/ ( 7 i (T i ) ,w 2 , i - r 1 ) , XteiTuTx+Tt]. 

(Piecewise Trajectory). A state s € S, a sequence of inputs [UJ]"=1, Ui € U, 

and a sequence of time durations [Ti]"_1, Tj G R-°f define a piecewise trajectory 

7 : [0, Tx + T2 + • • • + Tn] -» 5 , swc/i tferf 7 =7 7JfttliTl o (u2, T2) o • • • o (wn, T„). 

Different propagation strategies can also be combined. In such cases, each prop­

agation strategy can be selected pseudo-uniformly at random or according to some 

probability distribution that is biased toward strategies that the user deems more 

appropriate for the motion-planning problem under consideration. SyCLoP can use 

general or system-specific strategies for trajectory sampling. 

5.3 Computational Efficiency 

The computational efficiency of SyCLoP is compared to several state-of-the-art 

motion-planning methods. Results presented in Section 5.3.4 show significant com­

putational speedups of up to two orders of magnitude and highlight the benefits of 

synergically combining high-level discrete planning with low-level motion planning. 

5.3.1 Motion-Planning Methods used in the Comparisons 

SyCLoP is compared to RRT [LaV98,LK01], ADDRRT [JYLS05], and EST [HLM97, 

HKLR02]. Standard implementations were followed, as suggested in the respective re-
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(a) Benchmark "Misc" (b) Benchmark "WindingCorridors" 

(c) Benchmark "RandomObstacles" (d) Benchmark "RandomSlantedWalls" 

Fig. 5.2: Several benchmarks used for the experimental comparisons of SyCLoP. 

search articles and motion-planning books [CLH+05,LaV06]. These implementations 

utilize the Object-Oriented Programming System for Motion Planning (OOPSMP) 

framework [PBK07,PK08] and are well-tested, robust, and efficient. Every effort was 

made to fine-tune the performance of these motion planners for the experiments. 

5.3.2 Models of Robots with Second-Order Dynamics 

The robot dynamics are modeled by a set of ordinary differential equations. The 

models consist of a smooth (second-order) car (SCar), unicycle (SUni), and differential 

drive (SDDrive). Detailed descriptions can be found in [CLH+05, LaV06]. 

(SCar: Smooth Car). 

• State Space S: The state s = (x,y,0,v,ijj) consists of the position (x,y) G R2, 
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orientation 9 € [0,211), velocity v, and steering-wheel angle ip. 

• Control Space U: The car is controlled by setting the acceleration «o and the 

rotational velocity of the steering-wheel angle U\. 

• Equations of Motion: x = vcos(9); y = vH\n(9); 9 = v t&n(ip) / L; v — 

Wo; ip = ui, where L is the distance between the front and rear axles. 

(SUni: Smooth Unicycle). 

• State Space S: The state s = (x,y,6,v,u) consists of the position (x,y) G M2, 

orientation 6 € [0,211), translational velocity v. and rotational velocity ui. 

• Control Space U: The unicycle is controlled by setting the translational UQ and 

rotational U\ accelerations. 

• Equations of Motion: x = vcos(6); y = vsin(6); 9 = u; v = uo\ Co = wi 

(SDDrive: Smooth Differential Drive). 

• State Space S: The state s = (x, y, 9, UL, WR) consists of the position (x, y) 6 R2, 

orientation 9 € [0,211), and left UJL and right-wheel UJR rotational velocities. 

• Control Space U: The differential drive is controlled by setting the accelerations 

of the left UQ and right wheels u\. 

• Equations of Motion: x — Q.5r(u>e + ur) cos(0); y = 0.5r(u;e + UJT) sin(^); 9 — 

r(u>r — u>e)/L; u>e = uo; uir = ui; where L is the length of the axis connecting 

the wheel centers. 
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5.3.3 Motion-Planning Benchmarks 

The benchmarks used in the experiments axe designed to vary in type and difficulty 

and to test different aspects of motion planning. Fig. 5.2 provides an illustration. 

Benchmark "Misc" consists of several obstacles arranged as in Fig. 5.2(a). Random 

motion-planning problems are created that place the robot in opposite corners of the 

workspace. The objective is to plan a trajectory that allows the robot to move from 

one position to another while avoiding collisions with the obstacles. By placing the 

initial and goal positions in the opposite corners of the workspace, the robot must 

wiggle its way through the various obstacles and the narrow passages in the workspace. 

Benchmark "WindingCorridors" consists of long and winding corridors, as shown 

in Fig. 5.2(b). Random motion-planning problems are created by placing the robot 

in two different corridors, either 4 and 5 or 5 and 4 (counting from left to right), 

respectively. This benchmark is chosen to illustrate the efficacy of motion planning 

methods in solving problems where even though the initial and goal specification place 

the robot in neighboring places in the workspace, the solution trajectory is rather long 

and the robot travels through a large portion of the workspace. 

Benchmark "RandomObstacles" consists of a large number of obstacles (278 ob­

stacles) of varying sizes placed at random throughout the workspace, as shown in 

Fig. 5.2(c). The random placement of the obstacles creates many narrow passages, 

posing a challenging problem for motion-planning methods, since research [CLH+05, 

LaV06] has shown that many motion planners have a tendency of getting stuck in 
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such random environments with narrow passages. Random queries place the robot in 

opposite sides of the workspace. 

Benchmark "RandomSlantedWalls" consists of 890 obstacles resembling slanted 

walls, as illustrated in Fig. 5.2(d). Initially, a random maze is created using the 

disjoint set strategy and then only 97% of the maze walls are kept. Knocking down 

of the maze walls creates multiple passages in the workspace for connecting any two 

points. The dimensions of the remaining walls are set uniformly at random from 

the interval [1/60,1/90] in order to create obstacles of different sizes. Each of the 

remaining walls is rotated by some angle chosen at random from [2°, 15°], so that the 

walls are aligned at different angles. This benchmark tests the efficiency of motion-

planning methods in finding solutions for problems with multiple passages. Random 

queries place the robot in opposite sides of the workspace. 

5.3.4 Experiments and Results 

For each combination of benchmark (Section 5.3.3) and robot model (Section 5.3.2), 

30 random motion-planning problems are generated as described in Section 5.3.3. In 

each instance, the computational time required to solve the query is measured. In 

each case, the workspace is decomposed using a 32 x 32 uniform grid. Rice PBC and 

Cray XD1 ADA clusters were used for code development. Experiments were run on 

ADA, where each of the processors runs at 2.2GHz and has up to 8GB of RAM. 

Fig 5.3 indicates the computational speedup obtained by SyCLoP in comparison 

to the other motion-planning methods used in the experiments. Fig 5.3 shows that 
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(c) Speedup of SyCLoP vs. EST 

Fig. 5.3: Speedup obtained by SyCLoP when compared to RRT, ADDRRT, and EST us­
ing various robot models (KCar, SCar, SUni, SDDrive) and motion-planning benchmarks 
((A)"Misc" (B) "WindingCorridors" (C) "RandomObstacles" (D) "RandomSlantedWalls"). 

SyCLoP is consistently more efficient than RRT, ADDRRT, and EST. In fact, SyCLoP is 

one to two orders of magnitude faster. The next section discusses some of the reasons 

for the observed computational efficiency of SyCLoP. 

5.3.5 A Closer Look at the State-Space Exploration 

Experimental results presented in Fig. 5.3 indicate that SyCLoP offers considerable 

computational advantages over state-of-the-art motion-planning methods across a va-



(a) Exploration of "Misc." after 2s, 4s, 8s of running time 

(b) Exploration of "WindingTunnels" after 2s, 4s, 8s of running time 

(c) Exploration of "RandomObstacles" after 2s, 4s, 8s of running time 

(d) Exploration of "RandomSlantedWalls" after 6s, 12s, 24s of running time 

Fig. 5.4: Snapshots of the tree exploration by SyCLoP with the smooth car (SCar) as the 
robot model. Red dots indicate state projections onto the workspace. The green line in 
each figure indicates the current high-level plan. 

riety of challenging problems. SyCLoP computationally outperforms powerful motion 

planners, such as RRT, ADDRRT, and EST by an order of magnitude on easy problems 

and as much as two orders of magnitude on more challenging problems. 

The understanding of the main reasons for the success of a motion-planning 

method is in general a challenging issue and subject of much research. This sec-



62 

tion takes a closer look at the exploration done by RRT, ADDRRT, EST, and SyCLoP in 

order to provide some insights behind the computational efficiency of SyCLoP. 

By using nearest neighbors to random states as exploration points, RRT is fre­

quently led toward obstacles where it may remain stuck for some time [CLH+05, 

LaV06, JYLS05, PBC+05]. Adjusting the exploration step size of RRT, as ADDRRT 

does, has been shown to alleviate the problem to a certain extent but not in all situ­

ations [JYLS05]. The use of ADDRRT incurs additional computational costs, which in 

some cases, as those observed in this work, outweigh the benefits offered by ADDRRT. 

However, both in the case of RRT and ADDRRT, as the tree grows large, it becomes more 

frequent for the nearest neighbors to random states not to be at the frontier of the 

tree but instead at "inner" nodes of the tree. Consequently, especially in challenging 

problems where propagation is difficult, these methods end up exploring the same 

region many times, thus wasting computational time. 

EST on the other hand suffers from a different kind of problem. EST directs the 

search toward less explored regions of the state space. As the tree grows large, the 

growth of the tree slows down as there are many regions with similar low density 

distributions. Consequently, EST ends up slowly expanding the tree in all possible 

directions, which do not necessarily bring the exploration closer to the goal region. 

Although these methods have been shown to work well in a variety of settings, the 

main drawback is that they only use a limited amount of information to guide the 

exploration. There is generally much more information available to motion-planning 
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methods that, if properly used, can significantly speed up the computations. 

The main strength of SyCLoP is the synergic combination of high-level discrete 

planning and low-level motion planning. As detailed in Chapter 4 and Section 5.2, 

the high-level planning provides SyCLoP with high-level plans that guide the low-level 

motion planner to extend the search tree closer to the goal. The search provides 

valuable feedback information that is used by SyCLoP to refine the high-level plan 

for the next motion-planning step. As the search progresses, the high-level plans 

produced by SyCLoP become more accurate and eventually result in the tree reaching 

the goal. Fig. 5.4 provides a snapshot of the exploration done by SyCLoP at different 

time intervals. The tree grows quickly and reaches the goal in a short amount of time. 

5.4 Impact of Workspace Decompositions 

As shown in Section 5.3.4, SyCLoP significantly reduces the computational time for 

solving challenging motion-planning problems with nonlinear dynamics. As discussed 

in Section 5.3.5, the computational efficiency of SyCLoP derives from an effective com­

bination of high-level discrete planning and low-level motion planning. An important 

aspect of SyCLoP is the role of the workspace decomposition. Understanding this role 

is important for successful applications of SyCLoP to increasingly challenging prob­

lems. As noted earlier, the results presented in Section 5.3.4 were obtained by using 

a uniform grid decomposition of the workspace. In the experiments presented in 

this section, SyCLoP uses grid, trapezoidal, and triangular decompositions of various 
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granularities to solve challenging motion-planning problems with nonlinear dynamics. 

Workspaces used in the experiments are shown in Fig. 5.5(a) and are designed to vary 

in type and difficulty and provide representative problems. 

5.4.1 Grid Decompositions 

Grids with 1 x 1, 2 x 2, 4 x 4, 8 x 8, 16 x 16, 32 x 32, 64 x 64, and 128 x 128 cells 

were used for the experiments. Fig. 5.5(b) provides an illustration. 

5.4.2 Triangular Decompositions 

Different triangulations were obtained by varying the triangle area. Fig. 5.5(c) 

shows an illustration. Triangulation T l is obtained by using Seidel's algorithm as 

implemented in [NM95]. It is a coarse triangulation and consists primarily of long 

and thin triangles. Triangulations T2, T3, T4 are computed using the industrial-

strength package Triangle [She02] and are obtained by requiring the minimum angle 

in each triangle to be at least 20° and the maximum area of each triangle in T2, T3, 

and T4 to be at most 0.01, 0.0005, and 0.0002, respectively. Such triangulations are 

commonly used in mesh generations. 

5.4.3 Trapezoidal Decompositions 

Trapezoidal decompositions are illustrated in Fig. 5.5(d) and are computed using 

Seidel's algorithm as implemented in [NM95]. 
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5.4.4 Conforming Delaunay Triangulations 

Conforming Delaunay triangulations have been widely used in computational ge­

ometry and are similar to Delaunay triangulations for a set of points, which maximize 

the minimum angle among all possible triangulations, but could potentially differ in 

some places to take into account polygonal edge constraints by adding additional ver­

tices [She02]. Although in some theoretical cases 0(n3) new vertices are required, in 

practice the bound is linear [She08]. Fig. 5.5(e) illustrates the conforming Delaunay 

triangulations as computed by the industrial-strength package Triangle [She02]. 

5.4.5 Results 

For each combination of workspace, workspace decomposition, and robot model, 

SyCLoP solves 30 random motion-planning problems. The computational efficiency of 

SyCLoP for a given combination is measured as the average time to solve the problems. 

Fig. 5.6 shows that the granularity of the workspace decomposition directly im­

pacts the computational efficiency. SyCLoP is faster when the decomposition is neither 

too fine- nor too-coarse grained. When the decomposition is too fine-grained, the com­

putational advantages offered by the interplay between the high-level planning and 

motion planning are outweighed by the computational cost associated with high-level 

plan computations and updates to exploration estimates. On the other end of the 

spectrum, when the decomposition is too coarse-grained there is no significant advan­

tage by using the high-level plan to guide the motion planner. Finding the right level 
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(a) Workspaces used for the experiments 
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(b) Illustration of some grid decompositions, 8 x 8, 16 x 16, 32 x 32, 64 x 64 

1 esk 
(c) Illustration of triangulations Tl , T2, T3, T4 

(d) Illustration of trapezoidal decompositions for each workspace 

(e) Illustration of conforming Delaunay triangulations for each workspace 

Fig. 5.5: (a) Workspaces used for the experiments. Each figure also illustrates a typical 
query for a second-order car model with the initial state shown in green and the goal state 
shown in red. (b-e) Illustrations of different workspace decompositions. 
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1 2 4 8 16 32 64 128 Tl T2 T3 T4 Tr 

(a) Smooth cax 
1 2 4 8 16 32 64 128 Tl T2 T3 T4 Tr 

(b) Smooth Unicycle 

2 4 8 16 32 64 128 Tl T2 T3 T4 Tr 

(c) Smooth Differential Drive 

Fig. 5.6: Bars (from left to right) correspond to the results when using different decom­
positions (x-axis) on the workspaces in Fig. 5.5. to denotes the computational time of 
SyCLoP when using a conforming Delaunay triangulation. Mother denotes the computational 
time of SyCLoP when using a different decomposition. Decompositions 1, 2, 4, 8, 16, 32, 
64, and 128 denote grid decompositions. Decompositions Tl, T2, T3, T4 denote triangular 
decompositions. Decomposition Tr denotes trapezoidal decomposition. 

of granularity to take full advantage of the computational benefits offered by the inter­

play between high-level discrete planning and low-level motion planning could further 

increase the computational efficiency of SyCLoP but can require extensive fine-tuning. 

Fig. 5.6 also shows that significant computational efficiency can instead be ob­

tained with no fine-tuning by using conforming Delaunay triangulations. In the con­

text of SyCLoP, conforming Delaunay triangulations provide a natural workspace de­

composition that achieves a balance between coarse- and fine-grained decomposition, 

and thus allows a remarkably efficient interplay between high-level discrete planning 

and low-level motion planning in SyCLoP. 
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5.4.6 Advantages of Delaunay Triangulations 

It is also interesting to note that similar observations have been made in the 

context of particle finite element methods, where it has been shown that methods 

based on Delaunay triangulations are in many cases better suited that grid-based 

discretizations [L96]. In particular, iterative numerical methods such as the particle 

finite element method [OnIDPA04] rely on Delaunay triangulations to connect mov­

ing fluid particles with a finite element mesh [DPIOA07]. The fast regeneration of 

the mesh at every time step is crucial to the success of the Langrangian flow formu­

lation. The Extended Delaunay Tesselation [ICO03] allows to generate non-standard 

meshes combining different geometrical shapes in the same mesh. Moreover, EDT is 

better suited over grid discretization methods [L96] in efficiently computing boundary 

domains by simplifying the correct identification of boundary nodes. 

Delaunay triangulations also play an important role in surface modeling across dif­

ferent application domains, including robotics, computer graphics, geographic data 

processing, computer vision, computer aided design, molecular and medical data visu­

alization, and hydrodynamics [AD97, GKM+01,DPIOA07]. Delaunay triangulations 

offer efficient three-dimensional terrain surface modeling in simulations of off-road 

vehicles where wheel-surface contact geometry is needed to obtain ground-reaction 

and friction forces [AD97]. Delaunay triangulations also allow to efficiently keep track 

of the near environment of an autonomous digital agent [GKM+01] or to efficiently 

update the free surface of a moving fluid when simulating fluid dynamics [DPIOA07]. 
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Chapter 6 

Motion Planning for Hybrid Systems 

This chapter describes how the multi-layered approach SyCLoP can be applied to 

effectively solve challenging motion-planning problems for hybrid systems. Hybrid 

systems are often part of sophisticated embedded controllers used in robots exploring 

unknown and possibly hazardous environments. Hybrid systems go beyond continu­

ous models by employing discrete logic to instantaneously modify the underlying robot 

dynamics to respond to mishaps or unanticipated changes in the environment. While 

the combination of discrete logic and continuous dynamics poses significant challenges 

to current motion-planning methods, this combination is particularly well-suited to 

SyCLoP, which synergically combines high-level discrete planning with low-level mo­

tion planning. Experiments show SyCLoP obtains significant computational speedups 

of one to two orders of magnitude in comparison to state-of-the-art motion planners. 

6.1 Introduction 

Nowadays robots are expected to explore unknown or hazardous environments, 

quickly modifying their dynamics to respond to mishaps or unanticipated changes in 

the environment. For example, a vehicle may be required to modify the dynamics 

over different terrains due to safety issues, and a reconfigurable robot may change its 
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shape and use different gaits to climb, crawl, or walk. Such changes in the dynamics 

are often realized by instantaneously switching to a different operating mode. 

A challenging yet important problem is the development of motion planners for 

these hybrid robotic systems. The challenge lies in that a hybrid system combines 

discrete and continuous dynamics by associating continuous dynamics with each op­

erating mode and using discrete logic to switch between modes. 

Motion planning has generally focused on continuous systems. The use of RRT 

[LaV98, LK01,LaV06] has recently shown promise as a motion-planning method for 

hybrid systems with few discrete modes [EKK04,BF04,KEK05,ND07]. The applica­

bility of RRT to more complex hybrid systems, especially systems with a large number 

of discrete modes and transitions, remains challenging for three main reasons. First, 

an RRT relies heavily on distance metrics that should indicate how easily the hybrid 

system can transition from one state to another. Unfortunately, the definition of such 

distance metrics is difficult, even in the case of continuous systems, since it is not even 

clear that a distance metric can express this property [ABD+98b]. Second, the growth 

of an RRT has been shown to significantly slow down as the number of nodes in the tree 

increases [EKK04,CLH+05,LaV06], limiting the ability of RRT to successfully explore 

the continuous state spaces of systems with a large number of discrete modes and 

transitions. Third, the exploration of continuous state spaces by an RRT is local and 

prone to frequently getting stuck in certain regions [EKK04,PBC+05,PK05,CLH+05j. 

The limitations of current motion planners in coping with the additional compu-
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tational challenges posed by hybrid systems motivates the need for the development 

of new and effective methods. The combination of high-level discrete planning and 

low-level motion planning in the multi-layered approach SyCLoP is particularly well-

suited for hybrid systems, which naturally combine discrete logic with the underlying 

robot dynamics. As shown in the rest of this chapter, SyCLoP obtains significant 

computational speedups of two orders of magnitude in comparison to state-of-the art 

motion planners in solving challenging motion-planning problems for hybrid systems. 

6.2 Hybrid Systems 

A hybrid system combines discrete and continuous dynamics. Continuous dynam­

ics are associated with each mode, and discrete logic determines how to switch between 

modes. In this thesis, hybrid systems are modeled by hybrid automata [ACH+95]. 

Definition 6.2.1. (Hybrid Automata ) . A hybrid automaton is a tuple 

H = (S, VALID, E, GUARD, JUMP,U, / ) , where 

• S — Q x X is the Cartesian product of the discrete and continuous state spaces; 

• Q is a discrete and finite set; 

• X = {Xq : q € Q} is the collection of the continuous state spaces, where Xq is 

the continuous state space associated with q £ Q; 

• VALID : S —» {T, _L} is a state-constraint function, i.e., VALID(S) = TijfseS 

satisfies the state constraints; 
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. • E C Qx Q is the set of discrete transitions between discrete states; 

• GUARD = {GuARD(g.>g:?.) : (qi,qj) € E}, where GuARD(g.)9i) C Xq. is the guard 

condition associated with (qi,qj) € E; 

• J U M P = {JuMP(gi>9j) : ($,$,•) € E}, where JuMP(9ii9j) : GuARD(gi>9i) -* Xq. is 

the jump function associated with (qi,qj) E E; 

• U = {Uq : q € Q}, w/iere Wg is </ie control space associated with q G Q; 

• f : SxUxR-0 —• S is a flow function that simulates the hybrid-system dynamics 

when an input is applied to the hybrid-system for a certain time duration. 

The state of the hybrid automaton is a tuple s = (q,x) £ S that describes both 

the discrete and the continuous components. The invariant VALID : S —* {T, _L} 

indicates for each state s & S whether or not s satisfies the state constraints. The 

set E C Q x Q describes which transitions are possible from one mode to another. 

A discrete transition occurs at a state s — (q, x) €E S iff s satisfies a guard condition, 

i.e., GuARD(9)9')(x) = T for some q' £ Q. When a discrete transition occurs, then 

the current state of the hybrid system is set to a new state s' = (q', x') according 

to the jump function, where x' = JuMP(9ig')(a;). The input space Uq can represent 

controls, nondeterminism, or uncertainties. As in the case of control-based systems 

(see Chapter 5), this thesis treats the dynamics of the hybrid system as a black 

box / : S xU x R-° -> S, where for each s = (q, x) € U, u G Uq, and t > 0, 

f(s,u,t) outputs the new state obtained by following the dynamics when the hybrid 
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system is at s and u is applied for t units of time. This allows for modeling general 

nonlinear dynamics. In fact, the only requirement is the ability to simulate the 

dynamics. When the dynamics in each q G Q is given by a set of differential equations 

gq : Xq x Uq —• Xq, closed-form solutions (if known) or numerical integration can be 

used for the simulation. Since Xq can include derivatives of different orders (e.g., 

velocity, acceleration), gq can be nonlinear. A hybrid-system trajectory consists of 

continuous trajectories interleaved with discrete transitions. 

Definition 6.2.2. (Continuous Trajectory). A state s = (q,x) G S, a time 

T > 0, and an input u £Uq define a continuous trajectory $fs,u,T '• [0, T] —• Xq, where 

• ys,u,T{t) € Xq - { G U A R D ( M 0 : (q, q') € E), for t G [0, T); and 

• {q,ys,uAt)) = f{s,u,t),fort£[Q,T}. 

(Discrete Transit ion). For any state s = (q, x) 6 5, define 

X (</, JUMP(<2, 9#)(a;)), x G G U A R D ( , ^ ) for some (q, q') G E, 

(q,x), otherwise. 

(Continuous Trajectory + Discrete Transit ion). The hybrid-system trajectory 

Ts,u,r : [0, T] —* S, defined as 

X(?,*.,<r(t)), t = T 

ensures that discrete transitions at time T, if they occur, are followed. 

(Trajectory Extension). The extension of a trajectory $ : [0,T] —» S by applying 

x{q,x) = < 
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to $(T) the input v! € U for a duration of time T > 0 is written as <fr o (u1, T"), and 

it is another trajectory E : [0, T + T'\ —> S defined as 

$(t), *€[o,r] 

T*(D,«',7v(*-r), t e ( r , r + r ] . 

(Hybrid-System Trajectory). .4 hybrid-system trajectory 7 : [0, T] —• «S is defined 

by a state s & S, a sequence u\,..., Uk € W 0/ inputs, and a sequence 7 \ , . . . , Tfc € R-° 

0/ tame durations, where T — X)f=i »̂ anc^ 7 = ^s,«i,Ti ° (w2. ^2) ° • • • ° (uk, Tk). 

The continuous trajectory ^a,u,T is thus obtained by applying the control u to 

the state s for a duration of T units of time. Moreover, ^S,U,T never reaches a guard 

condition during the time interval [0, T). The trajectory TSIU>T is similar to ^a,u,T, 

but, unlike ^S,U,T, ^S,U,T follows the discrete transitions at time T when they occur. 

We note that in the hybrid-system benchmarks used in this thesis the discrete 

transitions are considered urgent, i.e., a discrete transition is immediately taken once 

a guard condition is satisfied. There is, however, no inherent limitation of SyCLoP 

in dealing with non-urgent discrete transitions. When discrete transitions are non­

urgent, enabled discrete transitions could be taken nondeterministically with some 

probability or taken only when the invariant is invalid or a combination of both. 

6.3 Applying SyCLoP to Motion Planning for Hybrid Systems 

The combination of high-level discrete planning and low-level motion planning in 

SyCLoP, described in Chapter 4, is particularly well-suited for hybrid systems, which 

~(t) 
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naturally combine discrete logic with the underlying robot dynamics. This section 

describes the high-level discrete model used by SyCLoP in the case of motion-planning 

for hybrid systems. This section also describes how to extend the search tree from 

a selected state. The high-level discrete model and the tree-extension procedure 

are similar to what SyCLoP used in motion planning with dynamics, as described in 

Chapter 5. The main distinction is that in the case of hybrid systems these procedures 

need to take into account the combination of discrete logic with the robot dynamics. 

6.3.1 High-Level Discrete Model of Motion-Planning Problem 

As discussed in Section 4.2, the discrete model of the motion-planning problem 

provides a simplified high-level planning layer that effectively guides the low-level 

motion planner as it extends the search tree T. The discrete model in the case of 

motion-planning for hybrid systems is computed based on a partition of the continuous 

state spaces associated with the modes of the hybrid system. For each q € Q, let 

n(q) = {n1(q),...,TZnq(q)} 

denote a partition of the continuous state space Xq. The partition of Xq is usually 

computed on a low-dimensional projection, as described in Section 5.2.1. Based on 

this partition, as described in Section 5.2.1, a the graph G ^ ) = (Vn(q), E^g)) is 

constructed as follows: 

• V»(«) = M ^ i t e ) ) : fti(9) € n(q)}, and 

• En{q) = {{v{Hi{q)),v{Tlj{q))) • Ki{q) is adjacent to Kjiq)}. 



76 

In this way, Gn{q) = (Vn(q),En(q)) provides a simplified high-level planning layer of 

the continuous dynamics associated with the mode q € Q. 

SyCLoP uses the graphs Gn(q) — (Vn(q), En(q)) associated with each g g Q and the 

discrete transitions E of the hybrid system to construct the graph Gn = (VR, En) of 

the discrete model for the hybrid system. More specifically, 

• ^ = U,6QV^(9) ' a n d 

• En = (UqeQ Enq)) U {WHiteO), w(ft,(0)) : TRANSOM, TIM")) = T}, 

where the function TRANS(7£J(<7/),'7£7(<7")) determines whether or not there is a dis­

crete transition from a state in 7li(q') to a state in lZj(q"). This allows Gn = (Vn, En) 

to capture both the discrete logic and the continuous dynamics of the hybrid system. 

Note that the computation of TRANS(1Zi(q'),1Zj(q")) depends on the definition 

of guard GuARD(g/)q») : Xq> —> {T, _L} and jump JuMP(g')q«) : Xq> —• Xq» functions. 

When it is computationally infeasible or expensive to determine if there is a discrete 

transition from Ki(q') to TZj(q"), i.e., 

3x € Tli(q') : GUARD(^i9»)(x) = T A JUMP(g/>g»)(x) € Uj(q"), 

the definition of TRANS can be relaxed. In fact, it is only required that no false 

negatives are returned, i.e., TRANS(Hi(q'),'Jlj(q")) = _L when there is a discrete 

transition from Hi(q') to Hj(q"). A false negative would cause SyCLoP to miss an 

edge in Gn = (VR,, En), and as a result, not be able to compute any feasible high-level 

plans. False positives, i.e., TRANS(1Zi(q'),'Rj(q")) = T when there is in no discrete 

transition from Tli(q') to lZj(q"), are, however, allowed. A false positive would add 
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a spurious edge to En., which could lead to the computation of an infeasible high-

level plan. However, as the search progresses, the weight estimates associated with 

the spurious edge would indicate that such edge should not be included in future 

high-level plans as it is not helping SyCLoP to extend the search tree T. By allowing 

false positives, the computation of TRANS(TZi(q'),TZj(q")) can be greatly simplified. 

In particular, it can be computed as 

• TRANSiKiW^jiq")) = T « = • 3x G fci(q') : GuARD(<//)(?»)(x) = T or 

• TRANS(Ki(q'),Kj(q")) = T <=• W,<f)eE. 

6.3.2 Low-Level Motion Planning 

Applying SyCLoP to solve motion-planning problems for hybrid systems requires 

taking into account the discrete logic of the hybrid system during the tree-extension 

step. In particular, accurate simulations require detecting whether a discrete tran­

sition will occur, and if it does occur, then localizing the time when the discrete 

transition occurs. This section describes a common approach for generating trajec­

tories and detecting and localizing discrete events. 

Extending the Search Tree 

As described in Section 4.5.3, the search tree T is extended from a given state 

s € S by first generating a trajectory 7 : [0, T] —> «S that starts at s and then keeping 

only the valid portion -yvaiia : [0, K] —> S, K < T, of the initial trajectory 7. 
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Let s = (q, x) € «S be the state selected from the search-tree T. The actual 

extension of T from s = (q, x) is computed by the EXTENDSEARCHTREE function. 

In the case of motion-planning for hybrid systems, an input control u 6 Uq, which 

could be selected pseudo-uniformly at random or according to some other strategy 

(see Section 6.4.1), is applied to s for a short duration of time T > 0. The function 

EXTENDSEARCHTREE simulates the continuous and discrete dynamics of the hybrid 

system to obtain the resulting hybrid-system trajectory TS,U,T, as in Definition 6.2.2. 

Pseudocode is given in Algo. 3. 

Algori thm 3 EXTENDSEARCHTREE 

Input : H — («S, VALID, E, GUARD, JUMP,U, / ) : hybrid system 
s = (q, x) 6 S: starting state 
e € R>0: integration step 
^steps € N: number of integration steps 

Outpu t : The new state obtained at the end of propagation 
1: u <— sample control from Uq 

2: X0 <— X 

3: for i = 1,2,..., risteps do 
4: Xi *- f* fq(Xi-uu) 
5: if VALID((<7, Xi)) = -L then Qcurrent state is not valid 
6: r e tu rn (9, Xj_i) Q previous valid state 
7: if (q,xt) e G(g,gnew) for some qnev/ 6 Q then 
8: (x\oc, T) <— localize discrete event in time interval ((i — 1) * e, i * e] 
9: r e tu rn J(g,9new) (q, xloc) 

10: re tu rn (q, Xi) 

The forward propagation follows the continuous dynamics fq associated with q € Q 

and is usually computed based on numerical integration of the ordinary differential 

equations associated with fq. This thesis uses 8-th order Prince-Dormand Runge-

Kutta numerical integration with adaptive step-size control as implemented in GSL 

3 
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[GDT+06]. The forward propagation is an iterative procedure. Let nsteps denote the 

number of propagation steps and let e > 0 denote the integration step. Initially, 

XQ = x (Algo. 3:2). During the i-th iteration, Xi G Xq is obtained by numerically 

integrating the differential equations fq(xi-i,u) for e units of time (Algo. 3:4). 

If (q, x^ is not valid, then the forward propagation is terminated (Algo. 3:5-6). 

The previous valid state (q,Xi-i) is returned as the new state snew obtained at the 

end of the forward propagation. The valid hybrid-system trajectory corresponds then 

to tya,u,T (see Definition 6.2.2), where T = (i — 1) * e. 

If (q, Xi) is valid, the simulation checks whether the state (q, Xi) satisfies any 

guard condition, i.e., (q,Xi) G G(q>qaew) for some qnev/ € Q. If a guard condition 

is satisfied, then a discrete event has occurred in the time interval (i — 1 * e, i * e] 

(Algo. 3:7). This stage, commonly known as event detection, is followed by the event 

localization stage, which localizes the earliest time T e ((i — 1) * c, i * e] the guard 

condition is satisfied (Algorithm 3:8). Variants of bisection or bracketing algorithms, 

as those found in the classical numerical literature, are commonly employed for the 

event detection [EKP01]. Once the event is localized, the propagation stops and the 

corresponding discrete transition is applied to obtain the new state snew (Algo. 3:9). 

The valid hybrid-system trajectory corresponds then to Ts>U)r (see Definition 6.2.2). 

We note that, due to limitations of floating-point arithmetic, as with any other 

numerical method in computational mathematics, including symbolic techniques for 

linear hybrid systems, there will be round-off errors in the simulation of the con-
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tinuous dynamics and the event detection and localization of discrete transitions. 

The approach followed by SyCLoP to deal with such numerical errors is similar to 

the approach followed by other numerical methods for hybrid-system falsification 

[BF04, KEK05, ND07], which choose the integration step e > 0 to be small in order 

to minimize such errors. For certain hybrid systems with linear guard descriptions, 

it is also possible to use more accurate event detection and localization algorithms, 

such as those surveyed and developed in [EKP01], which come asymptotically close 

to the boundary of the guard set without overshooting it. 

6.4 Computational Efficiency 

The computational efficiency of SyCLoP is compared to several motion-planning 

methods that have been developed for hybrid systems. Results presented in Sec­

tion 6.4.3 show significant computational speedups of up to two orders of magnitude 

obtained by SyCLoP. Similar to the case of motion-planning with nonlinear dynamics 

(see Section 5.3), this thesis also studies the impact of various decompositions on the 

computational efficiency of SyCLoP in the case of motion planning for hybrid systems. 

6.4.1 A Hybrid Robotic System Navigation Benchmark 

The hybrid system used in the experiments consists of an autonomous robotic ve­

hicle, whose underlying dynamics change discretely depending on terrain conditions. 

The choice of this specific system is to provide a concrete, scalable benchmark in 
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which the competitiveness of SyCLoP can be tested. This hybrid-system benchmark, 

which is motivated by robotics applications, is constructed based on a scalable naviga­

tion benchmark proposed in [FI04]. A given environment is divided into nxn equally 

sized cells. The hybrid system associates one mode <& G Q with each cell Cj. For each 

mode, the associated dynamics is specified by a set of ordinary differential equations. 

A discrete transition ((ft, qj) £ E occurs when the hybrid system moves from Ci to Cj. 

When the discrete transition occurs, velocity components of the current continuous 

state of the robotic vehicle are set to zero. While the navigation benchmark proposed 

in [FI04] uses linear dynamics, the benchmark in this thesis uses second-order dy­

namics that are commonly used for modeling cars, differential drives, and unicycles. 

Details of these models can be found in [CLH+05, LaV06] and Section 5.3.2. 

Autonomous driver models 

A trajectory-sampling strategy S A M P L E T R A J ( P , S) (see Section 3.2.2) could be 

thought of as playing the role of the automatic driver. At each state, the driver selects 

the controls that it applies to the system. As described in Section 5.3.2, each vehicle 

model is controlled by two input values, UQ and u\, corresponding to 

• SCar: acceleration (w0) and steering-wheel velocity (u\); 

• SUni: translational acceleration (uo) and rotational acceleration (ui); 

• SCar: rotational acceleration of left (UQ) and right (ui) wheels. 
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The driver models used in this thesis consist of simple if-then-else statements that 

depend on the state values and the dynamics associated with each mode of the hybrid 

system. In the first model, RandomDriver, UQ and U\ are selected pseudo-uniformly at 

random from [—maxo.maxo] and [—maxi,maxi], respectively. In the second model, 

StudentDriver, the driver follows an approach similar to stop-and-go. When the 

speed is close to zero, StudentDriver selects uo and u\ as in RandomDriver. Oth­

erwise, StudentDriver selects controls that reduce the speed. The third model, 

HighwayDriver attempts to maintain the speed within acceptable lower and upper 

bounds. When the speed is too low, HighwayDriver selects controls that increase the 

speed. When the speed is too high, HighwayDriver selects controls that slow down 

the vehicle. Otherwise, HighwayDriver selects controls that do not change the speed 

considerably. For completeness, a succinct description of the selection strategy for UQ 

and u\ for each driver model and each second-order model is provided in Algo. 4. 

Algori thm 4 Autonomous Driver Models 

RandomDriver f(a, i, c, L, R): return rnd(—maxj, max*) 

StudentDriver f(a, i, c, L, R): 
if a G (0.2,1] then return rnd(—LmaXj, R(c — l)maxj) 
elif a G [—1, —0.2) then return rnd(i?(l — c)maxj, Lmaxj) 
else return rnd(—maxj,maxj) 

HighwayDriver /(a, i, c, L, R): B={0.4, 0.6, 0.8, 1.0} 
if 3b € B A a G (b — 0.2, b] then return rnd(—LfemaXj, R(c — 6)maxj) 
elif 3b G B A a G [—b, 0.2 — b) then return md(R(b — c)maxj, LftmaXj) 
else return rnd(—maxj, max*) 

SCar: UQ = f(v/vmax, 0,0.2,1,1); U\ = rnd(—maxi, maxi) 
SUni: w0 = f(v/vmax, 0,0.2,1,1); ux = f(u/umax, 1,0.2,1,1) 
SDDrive: u0 = / (a , 0,1.2,0,0.25); Uj = - / ( a , 1,1.2,0,0.25); a = f ± ^ 
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Modes and discrete transitions 

The continuous dynamics associated with each mode q G Q is selected pseudo-

uniformly at random from SCar, SUni, and SDDrive. The set of discrete transitions E 

is created using a strategy similar to maze generation based on Kruskal's algorithm. 

Initially, E is empty and walls are placed between each pair of neighboring cells Cj 

and Cj. Then, walls are visited in some random order. If the cells divided by the 

current wall belong to distinct sets, then the wall is removed and the two sets are 

joined. At the end, each remaining wall is kept with probability p = 0.9 to allow 

for more than one passage from one cell to another. Each time a wall that separates 

some Ci from Cj is removed, discrete transitions (qi,qj) and (qj,qi) are added to E. 

6.4.2 Experiments 

Experiments are performed using the hybrid robotic system described in Sec­

tion 6.4.1. A problem instance is obtained by fixing the number of modes \Q\ = n x n 

and the driver model to RandomDriver, Student Driver, or HighwayDriver. For each 

problem instance, 40 random motion-planning problems are created. Each motion-

planning problem is created by selecting pseudo-uniformly at random one cell as the 

initial place and another cell as the goal. 

The hybrid robotic system is made increasingly complex by increasing the num­

ber of modes. This thesis presents experiments with over one million modes. An 

important part of experiments is the comparison with previous related work. The 
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closest work that SyCLoP can be compared to is the application of RRT to hybrid 

systems [EKK04,KEK05]. This thesis also includes comparisons with a more recent 

version of RRT, developed in [ND07], that is guided by the star discrepancy coverage 

measure. To distinguish between RRT and its variant, the acronym RRT[D*] to refer 

to the star-discrepancy version of RRT [ND07]. This thesis also studies the impact of 

the high-level discrete planning on the computational efficiency of SyCLoP. 

Experiments were run on the Rice Cray XD1 ADA and PBC clusters, where each 

processor is at 2.2GHz and has up to 8GB RAM. For each experiment, the average 

computational time in seconds is reported (averages over 40 runs). An upper bound of 

3600s was set for each run. SyCLoP constructs the discrete model based on a uniform 

grid decomposition on a two-dimensional projection, as described in Section 6.3.1. 

6.4.3 Results 

A summary of the results is shown in Table 6.1. Table 6.1 indicates that SyCLoP is 

consistently more efficient than RRT. As an example, when RandomDriver is used and 

|Q| = 322, RRT requires on average 195.3s, while SyCLoP requires only 2.4s. Similarly, 

when Student Driver or HighwayDriver are used and \Q\ = 322, RRT requires on 

average 210.5s and 219.3s, while SyCLoP requires only 3.4s and 2.9s, respectively. 

Moreover, as the number of modes is increased SyCLoP remains efficient, while RRT 

times out. As Table 6.1 shows, RRT times out in all instances with \Q\ > 642, while 

SyCLoP requires on average less than 15s for problem instances with |<3| = 642 and 

less than 75s for problem instances with \Q\ = 1282. 
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RandomDriver \Q\ 

RRT 
RRTCD*] 
SyCLoP[NoGuide] 
SyCLoP 

l2 

0.1 
0.1 
0.1 
0.4 

22 

0.1 
0.9 
0.1 
0.4 

42 

0.3 
0.5 
0.3 
0.6 

82 

1.5 
4.7 
3.6 
1.2 

162 

16.8 
5.1 
5.7 
1.5 

322 

195.3 
24.8 
10.0 
2.4 

642 

X 
411.3 
147.1 
11.1 

1282 

X 
X 

564.8 
66.1 

5122 

X 
X 
X 

352.7 

10242 

X 
X 
X 

1198.4 

StudentDriver \Q\ 

RRT 
RRT[D*] 
SyCLoP[NoGuide] 
SyCLoP 

l2 

0.1 
0.1 
0.1 
0.4 

22 

0.2 
1.4 
0.1 
0.4 

42 

0.7 
0.3 
0.4 
0.7 

82 

2.4 
1.0 
3.4 
1.3 

162 

25.4 
4.6 
5.6 
1.8 

322 

210.5 
23.2 
10.3 
3.4 

642 

X 
605.8 
189.2 
12.4 

1282 

X 
X 

576.8 
64.6 

5122 

X 
X 
X 

294.5 

10242 

X 
X 
X 

1289.9 

HighwayDriver \Q\ 

RRT 
RRT[D*] 
SyCLoP[NoGuide] 
SyCLoP 

l2 

0.1 
0.2 
0.1 
0.4 

22 

0.2 
0.7 
0.1 
0.4 

42 

0.3 
0.2 
0.4 
0.6 

82 

2.9 
0.9 
4.0 
1.3 

162 

25.5 
3.9 
5.9 
1.8 

322 

219.3 
23.7 
8.8 
2.9 

642 

X 
515.5 
151.6 
10.9 

1282 

X 
X 

514.9 
70.4 

5122 

X 
X 
X 

288.9 

10242 

X 
X 
X 

954.8 

Table 6.1: Comparison of SyCLoP to other methods as a function of the number of modes 
|Q| and the driver model. Times are in seconds (averages over 40 runs). Entries marked 
with X indicate a timeout, which was set to 3600s. 

Table 6.1 also indicates that SyCLoP is consistently more efficient than RRT[D*]. 

The computational advantages of SyCLoP become more pronounced as |Q| is increased. 

For example, when RandomDriver is used and \Q\ = 642, RRT[D*] requires on average 

411.3s. Similarly, when StudentDriver or HighwayDriver are used, RRT[D*] requires 

605.8s and 515.5s, respectively, while SyCLoP requires on average less than 15s. Fur­

thermore, RRT[D*] times out as the number of modes is increased to \Q\ = 1282, while 

SyCLoP requires only a short time (less than 75s) to handle such problem instances. 

Table 6.1 also shows that SyCLoP scales up reasonably well. While other methods 

failed to handle large problem instances beyond |Q| = 1282, SyCLoP even when |Q| = 
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10242 remains computationally efficient. Overall, the results show the competitiveness 

of SyCLoP for solving challenging motion-planning problems for hybrid systems. 

Impact of High-Level Discrete Planning 

The second set of experiments focuses on the importance of the high-level discrete 

planning on SyCLoP. We refer to the version of SyCLoP that does not use the high-

level discrete planner to guide the low-level motion planner as SyCLoP [NoGuide]. 

Table 6.1 shows that SyCLoP [NoGuide] is considerably slower than SyCLoP. For ex­

ample, SyCLoP [NoGuide] requires on the average 564.8s, 576.8s, and 514.9s when 

\Q\ — 1282 and RandomDriver, StudentDriver, and HighwayDriver are used, re­

spectively, while SyCLoP requires only 66.1s, 64.6s, and 70.4s. These results highlight 

the importance of high-level discrete planning, which, by guiding the low-level motion 

planner, significantly improves the computational efficiency of SyCLoP. 

Impact of Decompositions 

As shown in Section 5.4 in the case of motion planning with dynamics, decom­

positions used for the computation of the discrete model can have an impact on the 

computational efficiency of SyCLoP. When using a grid decomposition, while the ef­

ficiency increases when the decomposition is neither too fine- nor too coarse-grained, 

finding the right granularity requires extensive efforts. As an alternative solution, 

significant computational gains are obtained with no fine-tuning by instead using 

conforming Delaunay triangulations. Similar observations, as discussed below, can 
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|Q|=1282, D |Q|=5128, C Q|=10248, D 

TD 4 5 6 

Fig. 6.1: Impact of decompositions on SyCLoP for hybrid systems. Graphs show some 
typical results when using conforming Delaunay (TD) or grid decompositions with 2l x 2l 

cells, i = 4,5,6. Finding the right grid size is problem dependent. With no fine-tuning TD 
yields significant computational speedups. 

be made for SyCLoP in the case of hybrid systems as well. 

Fig. 6.1 shows the results when SyCLoP uses grid-based decompositions with 24 x 24, 

25 x 25, and 26 x 26 cells, and conforming Delaunay triangulations. Fig. 6.1 shows 

that fine-tuning is necessary in order to find the right grid decomposition so that 

SyCLoP can take full advantage of the interplay between discrete planning and motion 

planning. In some cases the best results are obtained when using 24 x 24 grids and in 

other cases when using 25 x 25 or 26 x 26 grids. Fine-tuning the grid decomposition 

can, however, require extensive efforts each time SyCLoP is applied to a new problem. 

Fig. 6.1 also shows that decompositions based on conforming Delaunay triangula­

tions (see TD in the graphs) offer an alternative solution. As these results indicate, 

the efficiency of SyCLoP is much higher when using a conforming Delaunay trian­

gulations instead of the various grid decompositions. Furthermore, these significant 

computational gains are obtained without any fine-tuning. 
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Chapter 7 

Motion Planning with Linear Temporal Logic 

This chapter describes the application of SyCLoP to automatically plan low-level 

motions that enable a robot not only avoid collisions with obstacles and reach a desired 

destination, but also complete high-level tasks specified using the expressiveness of 

linear temporal logic (LTL). To the best of my knowledge, no other sampling-based 

motion planner has incorporated LTL directly into motion planning. 

7.1 Introduction 

When the motion-planning goal is specified as a set of goal states, as is the case 

with current motion planners [CLH+05, LaV06], it does not matter how a solution 

trajectory reaches the goal. This makes it difficult or impossible to impose temporal 

constraints on the solution trajectories. Temporal constraints provide a general way 

for high-level specifications, such as "the robotic car, after inspecting a contaminated 

area A, should visit the decontamination station B before visiting any of the base 

stations C or D," or "the vacuum cleaner should vacuum all the rooms at least twice." 

LTL provides the necessary mathematical framework for expressing temporal con­

straints. LTL has been widely used in model checking of discrete systems in software 

and hardware [CGPOO], and timed systems [BDL+01]. The work in [BBW08] used 
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LTL to analyze gene networks under parameter uncertainty. The work in [FKGP05] 

generated trajectories that satisfy LTL constraints on the sequence of triangles vis­

ited by a point robot with Newtonian dynamics by using a controller that could drive 

the point robot between adjacent triangles. Applications of this work [FKGP05] to 

general systems are limited, however, due to the unavailability of controllers that can 

generate valid trajectories that allow a robot to navigate between adjacent triangles. 

In fact, the design of such controllers remains an open problem. 

A significant advantage of SyCLoP is that it can incorporate high-level tasks ex­

pressed in LTL directly into motion planning. This allows SyCLoP to compute solution 

trajectories without relying on controllers, which are difficult to design, in order to 

steer the robot from one state to another. In this way, SyCLoP effectively computes 

solution trajectories that enable complex robotic systems, such as systems with non­

linear dynamics and hybrid systems, to avoid collisions with obstacles, reach the 

desired destination, and accomplish the assigned task expressed in LTL. 

7.2 Linear Temporal Logic (LTL) 

LTL provides the necessary mathematical framework for expressing high-level 

specifications as temporal constraints. LTL formulas combine propositions with 

Boolean connectives -i, A, V and temporal connectives X (next), U (until), 1Z (re­

lease), T (future), Q (globally). This thesis interprets LTL formulas over trajectories 

7 : [0, T] —> S. As a result of this interpretation, X is not defined. 
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Fig. 7.1: Illustration of a set of propositions and the propositional assignment map. 

7.2.1 Propositional Map and Propositional Assignments 

Let II = {7Ti,7r2,... ,7rn} denote the set of propositions. Each proposition iti is 

associated with a set of states Pi C S. A state s 6 S satisfies proposition 7Tj iff s G Pj. 

The map r : S —> 2 n maps each state s € S to propositional truth values: 

T(S) = {7TJ : 7TJ € IT and s € Pi}. 

In this way, r(s) indicates the propositions satisfied by s G S. Fig. 7.1 provides an 

illustration. 

7.2.2 Propositional Assignments Satisfied by a Trajectory 

Consider a trajectory 7 : [0, T] —• S. At time T\ = 0, 7 satisfies some propositional 

assignment T\, where T\ = r(7(0)). Then, 7 continues to satisfy r2 until some time T2, 

?i < T2 < T; where 7 satisfies some other propositional assignment r2 = r(7(T2)). 

Continuing in this manner, 7 satisfies a sequence of propositional assignments [TJ]"=1, 
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where rt = r(7(Ti)), T< ^ r i + i , and 0 < T\ < T2 < • • • < Tn < T, as indicated in the 

following definition. 

Definition 7.2.1. (Propositional Assignments Satisfied by a Trajectory). 

Let 7 : [0, T] —• S denote a trajectory. Then, 7 satisfies the sequence of propositional 

assignments [ri]"=1 where 

• TijL Ti+i, for i = 1 , . . . , n - 1 

* Ti — r(7(Tj)), for i — 1 , . . . ,n, where 

I* ifi=l 
Ti = 

argminr._1<(<r r ^ ^ r(7(t)), if i > 1. 
v 

We write r(7) £0 denote such sequence, T{^) =• [T{]"=1 , and soy that 7 follows [TJ]"=1. 

7.2.3 Syntax and Semantics 

This section defines the syntax, semantics, and syntactically safe LTL formulas. 

Definition 7.2.2. (LTL Syntax). Every proposition n G II is a formula. If (f) and 

ip are formulas, then -*<j>, <f> Atp, (f>V ip, <j)Urp, (j>Hip, F(f>, and Q<f) are also formulas. 

(LTL Semantics). Let 7 : [0, T] —• S denote a system trajectory. Let j>t denote 7 

for t' >t. Then, the semantics of an LTL formula over 7 are defined as 

• 7 f= ?r for 7T G n if -K € T ( 7 ( 0 ) ) 

• 7 (= ̂ 0 z / 7 \fc (j) 
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• 7 (= 0 A ^ 3 / 7 | = 0 and 7 |= ^ 

• 7 (= 0 Uijj if3t>0 such that 7>t (= ^ and 7>tl (= 0 for all 0 < ti < t, and 

• 0 V V = -•(-'^ A ->V), - ^ =- trueW0, £0 = -1T-4, and fillip = ^(-.0W^0). 

(Syntactically Safe LTL [Sis94]). An LTL formula 0 #ia£, when written in positive 

normal form, uses only the temporal operators 11 and Q is syntactically safe. Every 

syntactically safe formula is a safety formula. 

The following provides several examples of LTL formulas. 

• "take measurements from each station A, B, C, D in the area": 

F{itA) A F{nB) A F(TTC) A f(nD), 

where 7i"i, i = A, B, C, D, is the proposition associated with station i. 

• "after inspecting a contaminated area A, visit a decontamination station B, 

before returning to any of the base stations C or D": 

T (TTA A ((-i7Tc A ->7TD) U(irB A T{irC V 7T£>)))) 

7.2.4 Automata Representation 

In this work, syntactically safe LTL formulas are translated to nondeterministic 

finite automata (NFA). 

Definition 7.2.3. (NFA). An NFA is a tuple A = (V, E,8,v0, Ace), where V is a 

finite set of states; E = 2 n is the input alphabet of propositional assignments; S : 
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V x S —*• 2V is the transition function; vo G V is the initial state; and Ace C V is the 

set of accepting states. The set of states on which the sequence [TJ]™=1 of propositional 

assignments ends up when run on A is defined as 

8(v0, n ) , n = 1 

AWU) = < 
VveAWtt)6^*)'- n>1-

A accepts [n^=1 iff A( fa]"=1) n Ace ^ 0. 

Let 7 : [0, T] —> «S denote a trajectory. Let T(-J) denote the sequence of proposi­

tional assignment [TJ]"=1 in the order that they are satisfied by 7 (see Section 7.2.2). 

The automaton A is said to accept 7 iff A accepts T{^). 

7.2.5 Problem Statement 

Given a hybrid automaton H — («S, VALID, E, GUARD, JUMP,U, f ) , propositions 

II, and a syntactically safe LTL formula <j> over II, compute a sequence u\, U2, • • •, w/t 

of input controls and a sequence Tj, T2, . . . , Tj, of times, such that the hybrid-system 

trajectory 7 : [0,T] -* S, where T = £ t i Tit and 7 =7 Ta|aIt>t,1>Tl o (w2,T2) o • • • o 

(wfc, Tfc), is valid and satisfies <f>, i.e., (Wt € [0, T] : VALID(7(£)) = T) and 7 |= <j>. 

7.3 Applying SyCLoP to Motion Planning with LTL 

The multi-layered approach SyCLoP can incorporate high-level tasks expressed in 

LTL directly into motion planning. This section describes the modifications needed 

to be made to the high-level discrete model and the low-level motion-planning layer 
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of SyCLoP in order to solve LTL motion-planning problems. 

7.3.1 High-Level Discrete Model of the Motion-Planning Problem 

Consider a valid trajectory 7 : [0, T] —> S. While in the traditional motion-

planning formulation a solution trajectory was found whenever G O A L ( 7 ( T ) ) = T, 

in the LTL motion-planning formulation a solution trajectory must satisfy 0, i.e., 

7 (= (j> (see Section 7.2.3). As a result, the discrete model of the motion-planning 

problem with LTL should incorporate the LTL specification in addition to the state-

space partition. The propositions IT = {7i"i,7r2,... ,7rn} and the propositional map 

r : «S —> 2 n induce a partition of S, defined as 

B = {B(n) : n e 2 n } , where B(n) = {s € S : r(s) = n}. 

Following the definitions and discussion in Section 4.2, the graph GB = (VB,EB) of 

the partition B is constructed as V& = {v{B{ri)) : B(ri) G B} and 

EB = {(viBinVMBiTj))) • (BiTilBiTj) € B) A (Bin) is adjacent to Bfo))}. 

As discussed earlier, the graph GB = (VB, EB) by itself is not sufficient for the com­

putation of high-level plans, since in LTL motion planning the goal is expressed as an 

LTL formula (f> and not as a set of states, as is the case in traditional motion planning. 

We would like to obtain a high-level plan consisting of a sequence [#(rj)]i=1 such 

that the associated sequence [ri]i=l of propositional assignments satisfies 4>. As shown 

in [KV01], given a syntactically safe LTL formula 0, with an exponential blow-up 

at most, an NFA A<j, can be constructed that describes all prefixes satisfying <j>. 
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Therefore, [Ti\i=1 should end on an accepting state when run on A,/,. 

This is achieved by performing a discrete search (explicit model checking) on the 

combined product of GB = (Vg, EB) and A4. The combined product of GB = (Vg, EB) 

and A4 can be expressed as a graph G-JI = (V^, En), where 

e Vn = {v(TZ(a,n)) : a <E V^V{B{T$) € VB). and 

. ^ = {(«(7t(o'f7i))>t;(W(a*,Ti)) : (a', a") e £ 4 , , («(B(T«)),t/(B(T.,))) e £ B } . 

In this way, the graph G-JI = (V^, £•&) of the discrete model can be used for the 

computation of high-level plans as described in Section 4.4. 

7.3.2 Low-Level Motion Planning 

The semantics of certain functions of the low-level motion planner in SyCLoP 

change slightly due to incorporating LTL into motion planning. This section describes 

all the modifications that are made to the low-level motion planner in SyCLoP. 

Associating a State in the Search Tree with a High-Level Region 

A state s e T is associated with 1l(a,Ti), written s € 1Z(a,Ti), if the following 

two conditions are satisfied: 

• s satisfies Tj, i.e., T(S) = Tj, and 

• the trajectory T R A J ( T , s), when run on the automaton A4,, ends up on the 

automaton state a. 
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In other words, lZ(a, Ti) contains those states s E T that satisfy T{ and whose cor­

responding trajectories T R A J ( T , S) have reached the state a in the automaton A,/,. 

Thus, STATES(T, K(a, n)) = {s : s G T A s e K(a, Ti)}. 

Weight Es t imate Associated with a High-Level Region 

Recall that, as defined in Eqn. 4.1, the weight estimate w(7l(a, Ti)) associated 

with the the region 1Z(a, Ti) is computed as 

_ vo\zl(K(a,Ti)) * covZ2(K(a,Ti)) 
w^'^- time(K(a,Ti)) 

The meaning of these terms in the case of motion-planning with LTL is as follows: 

def 
• vol(ft(a,7i)) ='volOBfo)); 

• cov(1l(a,Ti)) ^ Cov(B(Ti),STATES(T,1l(a,Ti))), where Cov is described in 

Section 3.2.5; 

• time(7£(a!, Ti)) denotes the time SyCLoP has spent extending the search tree T 

from states in STATES(T, TZ(a, Ti)); 

• z\,Z2 are normalization constants. 

Adding a Branch to the Search Tree 

Let •tf(snew) D e t n e n e w vertex and {v(s),v(snew)) the new edge that should be 

added to T. Let A,f,{T, s) denote the set of the automaton states where T ( T R A J ( T , S)) 

ends up when run on A4. When computing snew, SyCLoP also computes 

At,(T, snew) = Ua&^(T,«)5(a, r(snew)). 
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If any a € A^iT, snev/) is an accepting state, then SyCLoP has successfully computed 

a solution trajectory. If all the automaton states in .4^(7", snew) are rejecting states, 

i.e., not connected to some accepting state, then snew is rejected since in such cases 

it is not possible to extend T R A J ( T , S) and obtain a solution trajectory. If snew is 

not rejected, then v(snew) and (v(s),v(snew)) are added to T. SyCLoP also associates 

with (v(s),v(snew)) the trajectory 7S(Snew that connects s to snew 

7.4 Experiments 

The objective of the experiments is to provide a validation of SyCLoP as a hybrid-

system motion-planning method for computing solution trajectories that satisfy spec­

ifications expressed by LTL formulas. As discussed in Chapter 6, related work 

[BF04, KEK05, ND07] can only be used for motion-planning problems where the goal 

is expressed as a set of states. For these cases, SyCLoP (see Chapter 6) showed signif­

icant computational speedups of up to two orders of magnitude. Currently, SyCLoP 

cannot be experimentally compared to related work [BF04, KEK05,ND07], since ex­

tending such work to LTL motion planning remains open to research. 

Experiments are performed using increasingly complex LTL formulas. The hybrid-

system benchmark consists of a model of an autonomous robotic vehicle driving over 

different terrains, as described in Section 6.4.1. This benchmark, similar to the one 

used in [PKV07b, PKV08a], is based on a navigation benchmark proposed in [FI04]. 

Each terrain corresponds to a mode q e Q. The continuous dynamics, velocity, 
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and acceleration depend on terrain conditions and vary from one terrain to another. 

Second-order dynamics used for modeling cars, differential drives, and unicycles (see 

Section 5.3.2) are associated with each mode. In each terrain, there are polygons 

marked as propositions Pquk and guards GuARD(9i)9j). When a guard G U A R D ^ ^ . ) is 

satisfied, a discrete transition occurs and the mode of the new state is set to qj. 

The choice of this specific system is to provide a concrete benchmark that is easily 

scalable to test SyCLoP as the complexity of LTL formulas is increased. We created 

12 safety properties and 100 instances of the hybrid-system benchmark. Syntactically 

safe LTL formulas were manually designed in order to provide meaningful properties. 

Benchmark instances were generated at random in order to test SyCLoP over many 

problems and obtain statistically significant results. 

7.4.1 Problem Instances 

For each problem instance, the number of modes was set to UQ = 10, number 

of propositions per mode was set to np = 15, and number of guards per mode 

was set to ncuARD = 5. A random problem instance is generated as follows. First, 

the second-order continuous dynamics associated with each mode, 1 < q < rag, is 

selected pseudo-uniformly at random from those of a car, unicycle, or differential 

drive. Second, velocity is bounded by vmax, where vmgx is selected pseudo-uniformly 

at random from [3,6]m/s. Third, for each mode, np propositions and WGUARD guards 

are generated as random polygons. 
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7.4.2 LTL Specifications 

Experiments in this work use the following syntactically safe LTL formulas to 

specify motion-planning problems: 

• sequencing: (with n = 3,4,5,6) 

ff = K W (TTI A .(iriW (TT2 A (TT2W (... irn-1 A (7rn_iW (*<#*„)))))))); 

• counting a sequence: (with n = 1,2,3,4) 

^ = ((woV7ri)W(7riAH(S...(S((7roV7ri)W7rB))))), 

S W = ' ftW (7T2 A feW (7T3 A (ftW (7T4 A (7T4W (ft A V) ) ) ) ) ) ) ; ft = ' TTo V 7T, 

• coverage: (with n = 4,5,6,7) $$ = VILi ̂ C71"*) 

For each problem instance, proposition 7Tj in the above formulas denotes the i-th 

proposition among the propositions that were generated when creating the problem 

instance. A solution trajectory for 0" will reach, at some point, TT\, 7r2,..., nn in that 

order. A solution trajectory for <fy will, at some point, reach 7r2,7r3,7r4 n-times in 

that order, and then it will reach 7r5. A solution trajectory for 03 will, at some point, 

reach each 7Ti,..., 7rn. Standard tools (such as, scheck [Lat03]) were used to generate 

an NFA for each (j>. These tools were also used to generate a minimal DFA for <f> by 

converting the NFA to a DFA and then applying minimization. 
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7.5 Results 

Experiments were run on the Rice Cray XD1 ADA and PBC clusters, where each 

processor is at 2.2GHz and has up to 8GB RAM. Each run of SyCLoP uses a single 

processor, i.e., no parallelism. For each LTL motion-planning problem specified by a 

formula 4> described in Section 7.4.2, we report the computational time of SyCLoP in 

seconds, averaged over 100 problem instances. A summary of the results is shown in 

Fig. 7.2 and 7.3. 

The results in Fig. 7.2 indicate that SyCLoP was capable of computing solution 

trajectories for all problem instances. Even for the most challenging problem in the 

experiments (instances where the safety property is specified by 4>l), SyCLoP was able 

to compute a solution trajectory in less than five minutes. We also observe that 

the computational time increases sub-linearly (Fig. 7.2(a, b)) or sub-quadratically 

(Fig. 7.2(c)) with the number of automaton states. These results provide promising 

initial validation. Since none of the related methods [BF04,KEK05,ND07] can be used 

for comparisons (as discussed, these methods cannot handle LTL safety properties), 

we ran experiments with a random version of SyCLoP in order to provide a basis for 

the results. In the random version, the combination of model checking and motion 

planning is ignored: at each iteration, a state s is selected uniformly at random from 

all the states in T, and then T is extended from s as described in Section 4.5. The 

random version could not solve any of the problem instances. It always exceeded the 

allowed time tmax, even though tmax was set to one hour per problem instance. 
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Fig. 7.2: Computational time (in seconds, averaged over 100 runs) of SyCLoP when com­
puting solution trajectories for motion-planning problems with various LTL formulas. 

We also compared the computational efficiency of SyCLoP when using an NFA as 

computed by standard tools (scheck [Lat03]), a minimal NFA constructed by hand, 

or a minimal DFA (scheck -d [Lat03]) for <j>. The motivation for these experiments 

comes from the work in [AEF+05], which shows significant speedup when using DFA 

instead of NFA in the context of model checking. Fig. 7.3 shows a summary of the 

results for various cases of 4%. As indicated in Fig. 7.3, SyCLoP is only slightly more 

computationally efficient when using minimal NFAs (constructed by hand) instead 

of minimal DFAs, even though the minimal NFAs had significantly fewer states than 

the corresponding minimal DFAs. As concluded in [AEF+05], DFAs offer certain 

computational advantages that can offset the drawbacks of a possibly exponential 

increase in size. In particular, a DFA search has a significantly smaller branching 

factor, since there is exactly one transition that can be followed. This observation 

is also supported by the comparison of minimized DFAs to non-minimal NFAs (as 
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Fig. 7.3: Comparison of the computational time (in seconds, averaged over 100 runs) 
of SyCLoP when using a minimal DFA, a minimal NFA constructed by hand, or an NFA 
constructed by standard tools for the LTL motion-planning problems specified by <\>\. 

computed by standard tools, such as scheck [Lat03]), since in such cases, as shown 

in Fig. 7.3, there is significant speedup when using minimized DFAs. Therefore, the 

non-minimized NFA, as obtained from standard tools, should also be determinized 

and minimized. 
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Chapter 8 

Falsification of Safety Properties in Hybrid 

Systems 

As hybrid systems are often paxt of devices operating in safety-critical situations, 

the validation of safety properties becomes increasingly important. Safety properties 

assert that nothing "bad" happens to the system. This chapter highlights the con­

nection between motion planning and the falsification of safety properties in hybrid 

systems. It then describes the applications of SyCLoP for the falsification of safety 

properties in hybrid systems with nonlinear dynamics and high-dimensional contin­

uous spaces. Experiments on an aircraft conflict-resolution protocol in the context 

of air-traffic management demonstrate the computational efficiency of SyCLoP, which 

obtains up to two orders of magnitude speedup when compared to related work. 

8.1 Verification of Safety Properties in Hybrid Systems 

Hybrid systems play an increasingly important role not only in robotics, but also 

in transportation networks as part of sophisticated embedded controllers used in the 

automotive industry and air-traffic management, or in manufacturing processes, and 

even medicine and biology as part of medical devices monitoring health conditions 

[TPS98,PC00,GL04,BEKK05,PAM+05]. As discussed in Chapter 6, a hybrid system 
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combines discrete and continuous dynamics. Continuous dynamics are associated 

with each mode, and discrete logic determines how to switch between modes. As an 

example, a hybrid system may model air traffic control, where the modes correspond 

to the cruising of the planes and the discrete logic models conflict-resolution protocols. 

As hybrid systems are employed in safety-critical situations, verification of safety 

properties becomes increasingly important [ACH+95, TMBO03]. Safety properties 

assert that nothing "bad" happens, e.g., "the robotic car will not shift to reverse 

when driving at high velocities," or "the concentrations in a regulatory gene network 

will not increase beyond certain levels." A hybrid system is considered safe if unsafe 

states cannot be reached starting from initial safe states. 

The hybrid-system verification problem has traditionally been formulated as a 

reachability analysis on the state space of the hybrid system. In the forward reach­

ability formulation, safety verification is equivalent to showing that the set of states 

reachable from the initial states does not intersect the set of unsafe states. In the 

backward reachability formulation, safety is guaranteed by showing that the set of 

states that can reach an unsafe state does not intersect the initial set of states. 

Over the years a rich theory has been developed for this problem as well as nu­

merous methods [ACH+95, HKPV95,Pur95,Hen96,LPY99,LL98]. Initial approaches 

included enumeration and symbolic methods originally developed for discrete sys­

tems [CGP00]. Tools such as KRONOS [Yov97] and UPPAAL [BDL+01] have been 

used for the verification of real-time hardware and software, and HyTech [HHWT97] 
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has been used for the verification of hybrid systems with linear dynamics. Re­

search has also focused on abstraction methods that make verification more amenable 

to analysis by constructing a simplified model that simulates the original system 

[AHLP00,GPB05,CK03,ADI06]. The simplified model is usually obtained by elim­

inating variables that do not influence safety properties, mapping each domain to 

a smaller domain, or constructing finite-state models that group states that satisfy 

the same predicates. Alternative methods have also been developed that approxi­

mate the reachable set [ACH+95, SK00, BT00, ADM02,TMBO03,SK03]. Tools such 

as d/dt [ADM02], Checkmate [SK00], VeriSHIFT [BT00] use polyhedra or ellipsoids 

to overapproximate the reachable set, and other tools use level sets to compute con­

vergent approximations [TMBO03]. 

8.2 From Verification to Falsification 

Unfortunately, even for safety properties where verification is equivalent to reach­

ability checking, decidability holds only for hybrid systems with simple continuous 

dynamics (essentially some types of linear dynamics) [ACH+95, HKPV95, TMBO03, 

Mit07]. In light of these theoretical results, it is no surprise that the most effi­

cient complete algorithms for hybrid-system verification have a single- or double-

exponential dependency on the dimension of the state space and are generally limited 

in practicality to hybrid systems with up to six dimensions, simple dynamics, and 

few or no input controls [ACH+95, TMBO03,Mit07]. 
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These hardness theoretical results underscore the need for the development of 

alternative methods that perhaps satisfy weaker forms of completeness, but can han­

dle more general hybrid systems. In fact, recent computational methods developed 

in [EKK04,BF04,KEK05,BCLM06,ND07, JFA+07], even though unable to determine 

that a hybrid system is safe, are capable of handling nonlinear hybrid systems and 

finding unsafe behaviors when such systems are unsafe. 

In essence, the focus in these recent approaches shifts from verification to fal­

sification, which often is the main focus of model checking in industrial applica­

tions [CFF+01]. Falsification studies the following problem: Can a hybrid-system 

witness trajectory be produced from a safe state to an unsafe state when such trajec­

tories exist? 

8.3 Applying SyCLoP to Hybrid-System Falsification 

This thesis approaches hybrid-system falsification from a motion-planning per­

spective. While the objective in motion planning for hybrid systems is to reach 

a desired goal, the objective in hybrid-system falsification is to find a trajectory 

that leads to an unsafe state. That is, the objective of hybrid-system falsification 

is the complement of the motion-planning goal. This allows the direct application 

of motion-planning methods for hybrid systems to also be used for the falsification 

of safety properties. Therefore, the multi-layered approach, SyCLoP, developed in 

this thesis can be used for the falsification of safety properties in hybrid systems, as 
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described in Chapter 6. An advantage of SyCLoP is that it offers significant computa­

tional speedups of up to two orders of magnitude over related work [KEK05,ND07]. 

When a hybrid system is safe, it may not be possible to prove that unsafe states 

are unreachable. Such an approach trades completeness for the ability to discover 

safety violations for complex hybrid systems with nonlinear dynamics that current 

verification methods cannot handle. 

8.3.1 Falsification of LTL Safety Properties in Hybrid Systems 

A significant advantage of SyCLoP is that they can take into account specifications 

expressed by LTL formulas (see Chapter 7). In the context of motion planning, 

such specifications correspond to high-level tasks. In the case of hybrid-systems, 

LTL can be used to specify safety properties. LTL allows for complex specifications 

that cannot otherwise be expressed as a set of states, as it is the case in current 

falsification methods [BF04,KEK05,ND07,PKV07b,PKV08a]. Other methods, such 

as [HHMWT00, DPR07], have been used however to verify LTL safety properties 

for hybrid systems where the continuous dynamics can have nonlinear terms but only 

first-order derivatives. Another limitation is that these methods [HHMWT00.DPR07] 

cannot handle high-dimensional systems such as those used in robotic vehicles or 

air-traffic management. As described in Chapter 7, SyCLoP can be used as a hybrid-

system falsification method, that, in contrast to related work [BF04, KEK05,ND07], 

can handle LTL safety properties, controls, and general nonlinear dynamics. 
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8.4 Experiments 

The rapid increase in air traffic is stressing the capabilities of current mostly 

human operated air traffic management systems (ATMS). Enhanced automation of 

future ATMS is seen as a viable approach to improve the system and alleviate the task 

of human operators [SMT+95, TPS98, BP00, LLL00, TMG01, GL04]. An important 

aspect of current and future ATMS is the guarantee of aircraft safety. A safety conflict 

occurs when two aircraft come closer to one another than a desired minimum distance. 

Conflict-avoidance procedures used in current ATMS first determine possible conflicts 

by predicting future aircraft positions and then resolve possible conflicts by modifying 

aircraft routes. In order to simplify the task of human operators, researchers are 

focusing on the development of conflict-resolution protocols which take into account 

traffic and environmental conditions and even the possibility of malicious attacks. 

Such conflict-resolution protocols are usually modeled as hybrid systems [SMT+95, 

TPS98,BP00,LLL00,TMG01,GL04]. As the complexity of these conflict-resolution 

protocols increases, the validation of safety properties becomes even more challenging 

and surpasses the capabilities of current hybrid-system verification tools. 

This section presents experiments with an aircraft conflict-resolution protocol with 

high-dimensional continuous state spaces. Such experiments demonstrate the effec­

tiveness of SyCLoP. Comparisons to related work show computational speedups of up 

to two orders of magnitude. 
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8.4.1 Aircraft Conflict-Resolution Protocol 

The aircraft conflict-resolution protocol, which has been widely used in [TMBO03, 

BF04,KEK05,ND07], tests the computational efficiency of SyCLoP when also dealing 

with high-dimensional continuous states spaces. The continuous state space is X = 

Xi x X<i x • • • x Xjv, where Xi is the continuous state space associated with the i-th 

aircraft. Each aircraft i has three continuous state variables (xi,yi,0i), where (xi,yi) 

denotes the position and 9i denotes the orientation. This thesis presents experiments 

with up to 20 aircraft (60 continuous dimensions), which is considerably larger than 

instances considered in related work (5 aircraft in [KEK05] and 8 aircraft in [ND07]). 

The continuous dynamics of the i-th aircraft are given by 

±i = v cos(6i) + (-Mi sin(0j) + d2 cos(0j))(- sin(0j)) 

Vi = vcos(8i) + ( -u i sin(0j) + d2 cos(^))(cos(^)) 

$i = PROTOCOL(i) 

where v is a constant forward velocity; wi,«2 € [—w, w] is the wind disturbance; 

and PROTOCOL(i) determines the yaw rate. The discrete logic is incorporated in the 

computation of PROTOCOL(Z), which is based on a conflict-resolution protocol that 

aims to safely bring all aircrafts from their initial positions (xjn,t, yf111) to their goal 

positions (xfoal, yfoal) while avoiding collisions with each other. 

As in [EKK04,KEK05,ND07], the function PROTOCOL(i) switches depending on 

the modes associated with the aircrafts. At the initial position, the i-th. aircraft is 

in heading mode, q = 1, and rotates with an angular velocity 6i = pROTOCOL(i) = 
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#goai — @i until it points toward the goal position, where 0gOai € [—n, n) is computed as 

the directed angle between the x-axis and (:rfoa , yfoa). Once reaching the desired goal 

heading, the i-th. aircraft switches to cruising mode, q = 2, and cruises toward the 

goal with angular velocity #* = PROTOCOL(i) = 0. If two aircrafts i and j get close 

to each-other, i.e., within p distance, then both aircrafts enter an avoid mode, q = 2. 

During the avoid mode, both aircrafts i and j make an instantaneous turn by —90° 

and then follow a half-circle with constant angular velocity 0i = PROTOCOL(Z) = c 

and 0j — PROTOCOL^ ' ) = c. At the end of the half circle, each aircraft makes 

instantaneous turns until pointing toward their own goal positions, and then the 

aircrafts return to cruise mode. It is also possible that during the avoid mode between 

aircrafts i and j , another aircraft k comes within p distance to i. In this case, aircrafts 

i and k make instantaneous turn by —90° and execute the same avoid procedure as 

above. When an aircraft reaches the goal position, it stays there and it is no longer 

involved in the collision-avoidance protocol. A violation of the safety property occurs 

if at any point two aircraft come within d (d < p) distance from each other. 

We initially experimented with the benchmark in [EKK04], which has 5 aircraft 

(15 continuous dimensions). As in [EKK04], the avoidance distance was set to p = 

5.25fcm and the collision distance was set to d = lkm. The translational velocity was 

set to Q.3km/s and the angular velocity was set to c = 0.03rad/s. The maximum 

wind disturbance was set to w = 0.1. For the benchmark used in [EKK04], all 

computational methods tested in the experiments, RRT, RRT [D*], SyCLoP, were able to 
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compute witness trajectories in a matter of a few seconds (less than 10s). The methods 

would quickly find collisions that resulted from the aircrafts making instantaneous 

—90° turns during the avoid mode and bumping into each other as they followed the 

respective half-circles. Fig. 8.1 provides an illustration. 

Fig. 8.1: A collision between two aircraft is quickly found after a few seconds (less than 
10s). The exploration is shown in red. Goal positions are shown as blue circles. 

8.4.2 Safer Aircraft Conflict-Resolution Protocol 

In order to make the protocol safer, when two aircrafts i and j enter an avoid 

mode, each aircraft determines whether it would be best to make a —90° or a 90° 

instantaneous turn. Let halfcirclej(aj) denote the half-circle made by the i-th aircraft 

following an aj-degree instantaneous turn, where a* G {—90°, 90°}. The half-circle 

halfcirclei(a*) is defined similarly. The decision which half-circle to take is based on 

maximizing the minimum distance between the two aircraft when they follow the 
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half circles with constant angular velocity (9j = PROTOCOL(Z) = (—sign(aj))c and 

6j = PROTOCOL^ ' ) = (—sign(a.,))c. This safer protocol eliminates those collisions 

which could be avoided by making the appropriate —90° or 90° instantaneous turn 

instead of always turning by -90°, as it is the case in [EKK04,KEK05,ND07]. This 

safer protocol makes it more challenging to compute witness trajectories. A witness 

trajectory involving 10 aircrafts, as computed by SyCLoP, is shown in Fig. 8.2. 

Fig. 8.2: Example of a witness trajectory that indicates a collision between two aircrafts 
in a scenario involving 10 aircrafts. Blue circles indicate goal positions. 

8.4.3 Experimental Settings 

A problem instance is obtained by specifying the number N of the aircrafts, the 

initial (xjnit,y]nit), and the goal (a;foal, yfoal) positions for each aircraft i. The ex­

periments carried out in related work [TMBO03,BF04,KEK05,ND07] relied on one 
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problem instance, where the initial and goal positions were set by hand. In order 

to test SyCLoP across different problem instances, we use an automatic procedure to 

generate random problem instances. This allows a more comprehensive testing that 

better characterizes the computational efficiency of each method. As noted earlier, in 

the hand-designed problem instance, all the computational methods (RRT, RRT [D*], 

and SyCLoP) solved the problem in less than 10s. 

In the automatic procedure for generating a random benchmark instance, half of 

the aircrafts are placed from left to right at the top and the other half are placed 

at the bottom at a safe distance from each other. The aircrafts placed at the top 

have goal positions at the bottom, and the aircrafts placed at the bottom have goal 

positions placed at the top. More precisely, let h — N/2. The gap between aircrafts 

is set to gap = (2.85 + 0.04 * (N — 10)) * p, which corresponds to 2.85p for N = 10; 

3.05p for N = 15; and 3.25p for N = 20. Then, for each i = l , . . . , / i , which 

corresponds to the first half of the aircrafts, a;jmt is selected pseudo-uniformly at 

random from [initj,initj +p], where initj = — 500A;ra + (i — 1) * gap; yfA is selected 

pseudo-uniformly at random from [250,350]/cm; xfoal is selected pseudo-uniformly at 

random from [goal^goali -1- p], where goa^ = —420A;m + (i — 1) * gap; and yf is 

selected pseudo-uniformly at random from [—350, —250]fcm. For each i — h,...,N, 

which corresponds to the second half of the aircrafts, o;-nit is selected pseudo-uniformly 

at random from [initi,initj + p], where initj = — 500A;m + (i — h — 1) * gap; y\mt is 

selected pseudo-uniformly at random from [—350, — 250]fcm; afoa is selected pseudo-
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method 
SyCLoP 
RRT 
RRT[D*] 

number of aircrafts 
N = 10 N = 15 N = 20 

30.35s 42.67s 77.61s 
242.15 394.40s 1973.11s 

X X X 

Table 8.1: Comparison of the computational efficiency for solving the aircraft conflict-
resolution problem with respect to the number of aircrafts N. For each N, the computa­
tional efficiency of each method is measured as the median computational time obtained 
on 200 random instances of the aircraft conflict-resolution problem. Entries marked with X 
indicate a timeout, which was set to 3600s. 

uniformly at random from [goal^goalj+p], where goali = —420km+(i — h — l) *gap; 

and ?/foa is selected pseudo-uniformly at random from [250,350] km. 

Experiments were carried out with iV = 10,15,20 aircrafts, which correspond 

to continuous state spaces with 30,45,60 dimensions, respectively. For a fixed N, 

200 problem instances were generated using the randomized procedure described in 

Section 8.4.3. Each method was run on each problem instance. A timeout of 3600s was 

imposed on each run. The median computational time is reported for each method. 

8.5 Results 

Table 8.1 provides a summary of the results. In each case, SyCLoP is several times 

faster than RRT and RRT [D*]. As the number of aircrafts is increased, the compu­

tational advantages of SyCLoP become more pronounced. In fact, SyCLoP obtains 

computational speedups of up to two orders of magnitude in comparison to related 

work in hybrid-system falsification. 
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Chapter 9 

Discussion 

The work in this thesis was motivated by recent advances in autonomous robotics, 

where robots such as Twendy-One, vehicles racing in the DARPA Grand Challenge, 

and the IRobot array of domestic and military robots have shown a great degree of 

autonomy in accomplishing their assigned task. 

This thesis focused on motion planning. Motion planning, which constitutes a fun­

damental component of autonomy, also presents a significant challenge in autonomous 

robotics. The overall objective is to provide robots with the ability to automatically 

plan the motions needed to accomplish an assigned task. 

Toward this goal, this thesis developed a multi-layered approach, SyCLoP, that 

seamlessly combines high-level discrete planning and low-level motion planning. A 

distinctive feature and a crucial property of SyCLoP is that high-level discrete planning 

and low-level motion planning are not independent but in fact work in tandem. High-

level discrete planning, which draws from research in AI and logic, guides the low-

level motion planning during the search for a solution. Information gathered during 

the search is in turn fed back from the low-level to the high-level layer in order to 

improve the high-level plan in the next iteration. In this way, high-level plans become 

increasingly useful in guiding the low-level motion planner toward a solution. 

This synergic combination of high-level discrete planning and low-level motion 
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planning, as demonstrated in this thesis, allows SyCLoP to effectively solve chal­

lenging motion-planning problems that incorporate robot dynamics, physics-based 

simulations, and hybrid systems. Moreover, SyCLoP yields significant computational 

advantages of one to two orders of magnitude when compared to related work. 

In addition to traditional motion planning, which focuses on planning motions 

that allow the robot to reach a desired destination while avoiding collisions, SyCLoP 

can take into account high-level tasks specified using the expressiveness of linear 

temporal logic (LTL). LTL allows for complex task specifications, such as sequencing, 

coverage, and other combinations of temporal objectives. 

This thesis also provides a seemingly surprising contribution of motion planning 

in hybrid-system falsification. Analogies between motion-planning trajectories in tra­

ditional robotics applications and witness trajectories that show a hybrid system 

violating a safety property are exploited to apply SyCLoP for the falsification of safety 

properties in hybrid systems. We note that SyCLoP allows specification of safety prop­

erties expressed by syntactically safe LTL formulas for hybrid systems with general 

nonlinear dynamics. 

The synergic combination of high-level discrete planning and low-level motion 

planning in SyCLoP demonstrated the ability of motion planning to take into account 

rich models of robots and the physical world. This provides an important step toward 

the overall goal of enabling robots in the physical world to autonomously accomplish 

high-level tasks. In combination with control theory, localization, mapping, vision, 
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and probabilistic reasoning, this has the potential to significantly increase the au­

tonomy of robots employed in service, search-and-rescue missions, exploration, and 

navigation to accomplish their assigned tasks. 
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