A FURTHER INVESTIGATION ON AR-VECTOR MODELS
FOR TEXT-INDEPENDENT SPEAKER IDENTIFICATION

Ivan MAGRIN-CHAGNOLLEAU

Joachim WILKE

Frédéric BIMBOT

Télécom Paris (E.N.S.T.), Dépt. Signal — C.N.R.S., URA 820
46, rue Barrault — 75634 Paris cedex 13 — FRANCE — European Union
email: ivan@sig.enst.fr and bimbot@sig.enst.fr

ABSTRACT

In this paper, we investigate on the role of dynamic in-
formation on the performances of AR-vector models for
speaker recognition. To this purpose, we design an experi-
mental protocol that destroys the time structure of speech
frame sequences, which we compare to a more conventional
one, i.e. keeping the natural time order. These results are
also compared with those obtained with a (single) Gaussian
model. Several measures are systematically investigated in
the three cases, and different ways of symmetrisation are
tested. We observe that the destruction of the time order
can be a factor of improvement for the AR-vector mod-
els, and that results obtained with the Gaussian model are
merely always better. In most cases, symmetrisation is ben-
eficial.

1. INTRODUCTION

Auto-Regressive (AR) Vector Models have been a signifi-
cant subject of interest in the field of Speaker Recognition
[1] 2] [3] [4] [5] [6] [7]. Whereas the idea of modeling a
speaker by an AR-vector model estimated on sequences of
speech frames is common to these works, the way to mea-
sure the similarity between two speaker models is addressed
very differently. Secondly, the use of AR-vector model is
often motivated by the belief that such an approach is an
efficient way to extract dynamic speaker characteristics, as
opposed to static characteristics such as the distribution of
speech frame parameters.

In this paper we report on a systematic investigation on
similarity measures between AR-vector speaker models ob-
tained as simple combinations of canonical quantities. We
also design a protocol in order to examine the role of dy-
namic information on the performance of the AR-vector ap-
proach : we destroy the natural time order of speech frames
by shuffling them randomly, and we evaluate the AR-vector
approach on these temporally disorganised data. We finally
compare both previous approaches to a (single) Gaussian
Model [8] [9] [10] [11].

2. DEFINITIONS AND NOTATION

Let {x:}1<¢<m be a sequence of p-dimensional vectors. Let
us define the centered vectors x; = x; — X where x is the
mean vector of {x:} .

Let us denote Xy the covariance matrix of {x:} :
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We also define as X, the lagged covariance matrices :

X

M
1 . % .
I E x; - x;0, with k= 1,..,q
t=k+1

and the Toeplitz matrix X :

X A x,
x5 A X,

X = . . .
XqT XqT_l XO

A g-th order AR-vector model of sequence {x} } is classically
written as :

q
D Aixi_i=e with 4g=1,

1=0

where {A;} is a set of ¢ + 1 matrix prediction coefficients,
and e, is the prediction error vector. {Ai,..., A;} are ob-
tained by solving the vector Yule-Walker equation [12].
With A = [Ap ... Ay], the covariance matrix of the resid-
ual of {x;} filtered by A is :

E{Y = AxAT

Similarily, for a signal {y:}1<¢<n with model B, we will
denote :

EP BY BT
If we now consider :

EY = BXxBT

EWM Ay AT

these matrices can be interpreted as the covariance ma-
trix of the filtering of {x;} by B, and vice-versa. As A

is obtained by minimising t’r(Eg(A)) and B by minimising
tr(BEY), we have tr(EL)) > tr(E{) and tr(B{Y) >
tr(BP)).

Let us finally define Fg?/A) and F‘(;})X as :

1
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|| function f || a | loga | g | log g || a—logg—1 | log (a/g) | a—g ||
AR-vector model - spectral frames in their natural time order
FEM | FAB 168 8.6 | 16.8]8.6 | 16.2]7.6 | 162]7.6 | 191|108 | 23.8]19.4 | 222|175
symmetrised 35° 4.1° 4.1° 4.1° 32° 79° 73°
Fa 1 r s 75.6 | 51.4 | 75.6 | 51.4 | 88.3 | 73.0 | 88.3 | 73.0 | 15.2|343 | 7.6 |18.7 | 15.2| 146
symmetrised 6.0 * 4.8 * 12.4 48~ 5.4 ° 7.0° 6.0 ¢
AR-vector model - spectral frames in a random time order
BUAD | fIBD N 95565 | 25565 | 41581 | 41581 || 25562 | 41559 | 3.5|546
symmetrised 3.5° 3.5° 5.7° 5.7 ° 2.5° 4.1° 41°
O FE), | 425 |45.4 | 425 [45.4 | 98.1 (829 | 98.1 (829 | 1.3[229 | 1.06.7 | 3.289
symmetrised 4.8 * 2.2* 46.7 * 12.7 * 2.9° 1.0° 1.6 °
H Gaussian model H
PP 1 £y, | 37.5147.0 | 37.5|47.0 | 98.4|98.4 | 98.4|984 || 0.6 7.9 0.6]32 | 29|64
symmetrised 3.8"* 1.3* 97.1 * 99.4 * 1.0° 0.6 ° 1.0°

Table 1. TIMIT - Speaker identification error rates

where E3 is the symmetric square root matrix of E.

The first matrix can be interpreted as the covariance matrix
of {x;} filtered by B relative to the one of {x;} filtered by
A, and the second one as the covariance matrix of {y;}
filtered by A relative to the one of {x;} filtered by A.

3. SPEAKER MODELS

The purpose of this paper is to investigate on different ways
of using an AR-vector model for speaker identification. A
speaker is characterised by a second-order AR-vector model
(¢ = 2) estimated on some speech material training. The
matrix prediction coefficients { A1, A2} are obtained by solv-
ing the vector Yule-Walker equation in the case ¢ = 2 :

Ao
'

A

[AIAZ]-[ Xo]z—[XFXE]

e A first model is a 2nd-order AR-vector model trained
on speech frames presented in their natural time order.
Therefore, the model of X is {A, X}.

e A second model is a 2nd-order AR-vector model trained
on the same speech frames as previously, but presented
in a random time order. Each speaker X is charac-
terised by {A’, X'} which are obtained in the same
way as {4, X'}, after speech frames have been randomly
shuffled.

Gaussian speaker model is also tested as a reference model.
In this second framework, a speaker X' is represented by
the covariance matrix Xp. It is equivalent to a Oth-order
AR-vector model, i.e. A =[Ap] = I, and X = [AXp], which
we will denote as {I, Xo}.

4. SIMILARITY MEASURES

We consider now 2 speakers A" and ), and we present a gen-
eral formalism for expressing similarity measures between
their AR-vector models.
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Two families of similarity measures are investigated :

Eo@y) = f ()
e @y = (k)

The first family can be interpreted as a measure between
two models (A and B), via their influence on the same vec-
tor signal (X). This family of measures (which we will refer
to as VI), generalises the Itakura measure to the vector
case [13]. Examples of such measures are proposed in [4]
and [6]. On the opposite, the second family can be viewed
as a measure between two signals (X and Y') filtered by a
common model (A). Some of the IS measures proposed in
[3] [5] belong to this family. Note also that setting {4, X'}
= {I, Xo} allows to construct a similar family of measures
for the Gaussian model.

The function f is chosen equal to a combination of the fol-
lowing canonical quantities :

al) =
g(I)

It can be shown that a and g are positive and that a > g.
Moreover these quantities can be computed very efficiently
[11]. The composed functions a — logg — 1 and log (a/g)
are respectively the Maximum-Likelihood measure [9] and
the Arithmetic-Geometric Sphericity measure [8].

As these measures are not symmetric, different symmetrisa-
f)({B/A)

}—17 tr(T)
[det(T)]7

tions can be applied on the original measures. Given
and f}(,A/B), we define :
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|| function f || a | loga | g | log g || a—logg—1 | log (a/g) | a—g ||
AR-vector model - spectral frames in their natural time order
FEA | A 38 7 30.2 | 38.7]30.2 | 37.1(29.5 | 37.1 295 | 42.5]35.2 | 51.1]50.8 | 49.5|49.5
symmetrised 248° 25.1° 248° 244 ° 26.3 35.6 ° 33.3°
Fa 1 93.3 | 86.0 | 93.3|86.0 | 96.5 | 94.6 | 96.5 | 94.6 || 44.1|69.8 | 41.6]39.1 | 49.2 | 39.1
symmetrised 235 * 213" 324 * 254 244° 346 ° 33.0 °
AR-vector model - spectral frames in a random time order
(BT | pBD ) 3591822 | 35.9(82.2 | 36.881.3 | 36.8|81.3 || 324|835 | 346|822 | 343|816
symmetrised 39.1° 39.1° 40.0 °© 40.0 °© 343 ° 33.3° 333 °
O FE, | 787 | 714 | 78.7 | 714 | 98.4 ] 93.7 | 98.4|93.7 | 159|438 | 13.3|21.6 | 20.3 | 27.3
symmetrisation 21.9 14.6 * 69.8 * 524 * 14.0 °© 13.3 © 14.3 °©
H Gaussian model H
PO N E || 770|718 | 77.1 | 71.8 | 98.4 | 98.4 | 98.4|98.4 | 14.6|27.3 | 12.7|17.1 | 20.3 | 21.3
symmetrised 15.6 * 11.8 97.8 * 98.4 * 12.7° 12.4° 14.3°

Table 2. FTIMIT - Speaker

M is the average number of frames for the training sen-
tences across all speakers, and IV is the average number of
frames for the test sentences. The same symmetrisations

are applied to f}(,%( and f;f;‘)y .

5. DATABASE AND SIGNAL ANALYSIS

We use the first 63 speakers of TIMIT [14] and NTIMIT
[15] for our experiments (19 females and 44 males)'. Each
of them has read 10 sentences. The signal is sampled at 16
kHz, on 16 bits, on a linear amplitude scale. NTIMIT is a
telephone-channel version of TIMIT.

Each sentence is analysed as follows : for each speech to-
ken, the speech signal is kept in its integrality; it is de-
composed into frames of 31.5 ms at a frame rate of 10 ms,
with no pre-emphasis. A Hamming window is applied to
each frame. Then the module of a 504 point Fourier Trans-
form is computed, from which 24 Mel-scale triangular filter
bank coefficients are extracted. The spectral vectors {x:}
(of dimension p = 24) are formed from the logarithm of
each filter output. These analysis conditions are identical
to those used in [11].

For the TIMIT database, all 24 coefficients of {x;} are kept.
For NTIMIT, 24-dimensional vectors are also extracted, but
we keep only the first 17 coefficients, which corresponds to
the telephone bandwidth. Experiments are also made on
“FTIMIT”, obtained by taking the 17 first coefficients of
the vectors {x;} extracted from TIMIT.

6. EXPERIMENTS

A common training/test protocol is used for all the exper-
iments. It is described in detail in [11] (as protocol “long-
short”). Training material consists of 5 sentences (i.e =

IMore precisely, we have kept all female and male speak-
ers of “train/drl” and “test/drl”, the first female speaker of
“train/dr2”, and the first 13 male speakers of “train/dr2”.
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identification error rates

14.4 s) which are concatenated into a single reference per
speaker. Tests are carried out on 5 X 1 sentence per speaker
(i.e = 3.2 s per sentence) which are tested separately. The
total number of independent tests is therefore 63 x 5 = 315.
The decision rule is the 1-nearest neighbour.

Results of the experiments are given by database (Tables 1
2 and 3). Performances are reported in terms of closed-
set speaker identification error rates on the test set for the
canonical measures and various combined measures in their
asymmetric and their best symmetric form. For the sym-
metrised measures, a superscript indicates to which sym-
metrisation (%, ¢ or ) does the result correspond.

7. DISCUSSION

The following observations can be made :

e Symmetrisation is generally a factor of improvement.
However, the appropriate symmetrisation is difficult to
predict. It depends on the type of asymmetric measure,
and whether the data are in a natural or in a random
time order.

e For each database (TIMIT, FTIMIT and NTIMIT), we
have underlined the best 10 (or 11) measures. They are
(almost) the same ones for all 3 databases. The best
one is always obtained with the Gaussian Model.

e With spectral frames in their natural order, VI mea-
sures globally outperform IS measures in canonical
forms, but the trend is inverted with composed forms.

e With spectral frames in a random order, symmetric
composed IS measures outperform all other AR-vector
measures, in spite of the loss of the dynamic spectral
characteristics.

8. CONCLUSION

In our experiments, we did not succeed in obtaining bet-
ter speaker identification results with an AR-vector model
based measure than with a single Gaussian model classifier.



|| function f || a | loga | g | log g || a—logg—1 | log (a/g) | a—g ||
AR-vector model - spectral frames in their natural time order
FEA | fAB) 718 | 54.6 | 71.8 | 54.6 | 67.3 | 54.3 | 67.3 | 54.3 | 78.1|58.4 | 83.8]69.5 | 82.9|67.9
symmetrised 518 52.1° 50.5 * 50.2 * 57.5 66.0 * 65.1°
Fa 1 96.8 | 92.4 | 96.8 | 92.4 | 97.1 | 95.6 | 97.1| 95.6 || 67.3|88.9 | 66.0 |78.7 | 75.2 | 76.8
symmetrised 61.9 * 56.5 * 68.3 * 53.0 * 59.7 ° 63.2 ° 66.4 °
AR-vector model - spectral frames in a random time order
FEAD | pAED 1 6441921 | 641|921 | 65.4 | 91.8 | 65.4 | 91.8 || 61.9 924 | 64.8]93.3 | 64.4|93.0
symmetrised 65.4 ° 65.1° 67.9 ° 68.3 ° 62.2 ° 64.4 ° 64.1°
O FE), | 94.0 | 94.3 | 94.0 | 94.3 | 98.4 | 97.5 | 98.4 | 97.5 || 47.0 | 86.4 | 46.0 | 63.2 | 56.8 | 77.1
symmetrisation 61.9 * 52.4 * 88.3 * 724 % 50.2 © 44.1 ° 48.6 °
H Gaussian model H
P 11y | 93.0194.6 | 93.0 | 94.6 | 98.4 | 98.4 | 98.4 | 98.4 || 44.1|75.9 | 42.5|59.7 | 56.2 | 73.3
symmetrised 58.1 * 49.8 * 97.8 * 98.4 * 47.6 ° 44.1° 49.2 °

Table 3. NTIMIT - Speaker identification error rates

This observation is in contradiction with results reported
in [7], but this divergence may be due to different signal
pre-processing and analysis.

Moreover, we globally obtained better performances with
the AR-vector model on spectral frames in a random time
order rather than when we kept the natural time order.
Therefore, the role of dynamic speaker characteristics in
the success of the AR-vector model can be questioned, as
our results suggest that AR-vector models tend to extract
indirectly speaker characteristics of a static nature.
Finally, the influence of symmetrisation can be crucial, but
its theoretical basis remains to be understood.
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